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Abstract

This report describes our researches in the 2005 Summer Visiting Faculty Research Program from May 2005 to August 2005. Three of our research topics within the field of wireless communication networks are included: physical-layer security, cooperative communications, and testbed development.
In the first topic, information-theoretic secrecy gives the strongest information security that is important for military wireless networks. In contrast to the classical spread spectrum or encryption methods, we propose an array redundancy-based approach to guarantee wireless transmissions with inherent and provable security. The redundancy of transmit antenna arrays introduces some degrees of freedom for deliberate signal randomization. Transmission security is analyzed by proving the indeterminacy of eavesdroppers' blind deconvolution. The new physical-layer security approach is shown as a competitive alternative to quantum cryptography to achieve information-theoretic secrecy. In addition, we extend this method into MIMO transmissions, and show that randomized MIMO transmissions can achieve such secrecy. The indeterminacy of the adversary's blind deconvolution in MIMO case is proved. Receiving error rates and secret channel capacity are analyzed and simulated. 
In the second topic, cooperative communications encoded with space-time block codes (STBC) are shown as a promising way to enhance the performance of distributed wireless networks when the mobile users have no physical antenna arrays. In contrast to most existing work that depends on the assumption of perfect synchronization among the transmitters, we consider the asynchronism among the transmitters. We propose equalization techniques for successful demodulation of the asynchronous received STBC-encoded signals. A Viterbi equalizer and a linear-prediction-based blind equalizer with linear complexity are proposed. Performance loss due to transmitter asynchronism is studied. This will help justify the application of STBC-encoded cooperative transmissions in distributed networks. 
In the third topic, a testbed is setup in order to demonstrate the secure transmission scheme and the cooperative transmission scheme. In particular, it is both convenient and cost-effective to use cooperative transmissions to realize the secure transmission scheme. It is especially promising when existing techniques or networks need to be enhanced by the proposed security techniques. We implement BPSK and QPSK transmissions using ComBlock modules. Channels are measured and used in the simulation of secure transmissions. The major work of the testbed development is the receiver programming which addresses especially the frequency synchronization problem. 
This research has brought two journal papers submitted and two conference papers accepted. 
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This report consists of three parts. The first part develops physical-layer security techniques with both multi-input single-output (MISO) transmissions and multi-input multi-output (MIMO) transmissions. The second part addresses cooperative communications, whereas the last part involves the testbed development. To save space, some details have to be skipped, but can be referred in [16]-[19]. 

Part I. 

Array Redundancy and Deliberate Randomization

for Inherently Secure Wireless Transmissions
This part is organized as follows. In Section I.1, we consider the MISO secure transmission [18]. Then in Section I.2, secure MIMO transmission is proposed [16]. Note that the main focus of both of them is the theoretic proof of the transmission security. Simulations are conducted for each of them.
I.1. Secure MISO transmission
I.1.1. Introduction
Along with the rapid development of wireless communication networks, wireless security has become a critical concern. While many security techniques developed in wired networks can be applied, the special characteristics of wireless networks call for innovative wireless security design. Wireless transmissions are inherently broadcasting without physical boundary (any receivers nearby can hear the transmission). Wireless nodes have more severe constraints on energy and bandwidth, whereas wireless networks have more dynamic topology. Since physical-layer security techniques can address directly such special wireless characteristics, they are helpful to provide boundary control, to enhance efficiency, as well as to assist upper-layer security techniques for innovative cross-layer security designs.
An important issue of physical-layer security is to realize inherently secure transmissions, i.e., to guarantee wireless transmissions with negligibly low probability of interception (LPI) without relying on upper layer data encryption. Many existing physical-layer secure transmissions either can not withstand a strict LPI analysis, or rely on encryption keys so that the security is not in the physical-layer.
In [13,14], we have shown that inherent security can be realized based on the diversity of antenna array transmissions. The array redundancy makes it possible to randomize the transmitted signals to prevent deconvolution, especially blind deconvolution, so as to prevent eavesdropping. Such an approach represents an innovative way of secure waveform design, differently from the widely used spread spectrum or data encryption techniques. This section gives a further development over [13] with a new deliberate randomization scheme and a rigorous security proof.
The new approach's contribution to cryptography lies in realizing provable secrecy which we call (weak) information-theoretic secrecy. It means that LPI can be proved but the secrecy is theoretically susceptible to exhaustive search. The complexity of exhaustive search is also provable, and can be made practically prohibitive.
It is well known that classical encryption techniques have only unproven complexity-based secrecy [3]. We also know that (strong) information-theoretic secrecy or perfect secrecy is achievable by quantum cryptography based on some special quantum effects such as intrusion detection and impossibility of signal clone [20]. Unfortunately, the dependence on such effects results in extremely low transmission efficiency because weak signals have to be used. For example, the channel capacity (assume a binary symmetric channel) may be in the level of 
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 [21]. A recent development in quantum cryptography [22] is to implement direct data encryption by quantum principles so that strong signals can be used for high efficiency. The secrecy in this case is just the provable secrecy or (weak) information-theoretic secrecy.

With similarly low efficiency, (strong) information-theoretic secrecy is also achievable by ordinary wireless transmissions such as broadcasting with weak signals [1] or transmitting in time-varying channels [14]. The approach developed in this section gives provable secrecy similar to [22]. However, fading channels in wireless transmissions can be a good source of initial advantage (compared to the short initial secret key in [21, 22]) as required between the legitimate users. The channel reciprocity gives a simple but reliable way of creating such advantage (compared to the unknown mysterious ways of exchanging the short initial secret key). Therefore, wireless transmissions can be a competitive alternative to quantum cryptographic techniques in wireless networks.

I.1.2. Secure array transmission model
We consider a wireless network where mobile users communicate with a base-station which has 
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 transmitting antennas. The base-station has either one transmitter with a physical antenna array, or 
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 cooperative transmitters. We consider the latter since it includes the former as a special case. The 
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 transmitters communicate with each other using a secure link, such as the wireline Ethernet or some cables that directly connect them together. Packets are transmitted by the 
[image: image5.wmf]J

 transmitters cooperatively, during which any unauthorized user should be deprived of signal interception capability, as illustrated in Fig. 1.
As shown in Fig. 1, Alice transmits to Bob without any shared encryption keys, in face of the passive eavesdropper Eve. Other than the 
[image: image6.wmf]J

 transmit antennas in the secure channel, Alice may also use some other antennas communicating with Bob, which gives an insecure public channel (required by many secrecy protocols [1, 20]).
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Fig. 1 Secure transmission model.
We consider only the secure channel from Alice to Bob in this section. Using 
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 antennas, Alice transmits symbol sequence 
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 which is assumed as i.i.d. uniformly distributed with zero-mean and unit variance. With a transmit-beamforming-like scheme, Alice transmits vectors 
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where 
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 transmit antenna during the symbol interval 
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. Assume the propagation channel be Rayleigh flat fading. The signal received by Bob (with one antenna) is
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where 
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 is zero-mean AWGN. The coefficients of the 
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 are independent complex circular symmetric Gaussian distributed with zero-mean and unit variance. In this letter, 
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With 
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 receiving antennas, Eve receives signals
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where 
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 identity matrix. We assume that each element of 
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 has the same distribution as, but is independent from, those of 
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. From the extensive studies on antenna array channels, we know that as long as the distance between Bob and Eve is larger than several carrier wavelengths, then their channels can be considered as independent. We use simulations to demonstrate it in Section I.1.4. Eve does not know 
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If Bob and Eve have receiving bit-error-rate (BER) 
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, respectively, then the secret channel capacity from Alice to Bob (with guaranteed information-theoretic secrecy) is 
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 denotes the binary entropy function.  If Alice and Bob can exchange information over the public channel, the secret channel capacity becomes 
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 [1]. Obviously, for small 
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, the capacity becomes too small to be useful. Therefore, our objective is to design 
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I.1.3. Deliberate randomization for provable secrecy
A way to guarantee high 
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 is to prevent Eve from channel/symbol estimation. We propose to design a transmission scheme with which Bob can detect signals without channel knowledge so that no training is to be transmitted. Without training, Eve has to rely on blind deconvolution, which will be prevented by a deliberate randomization scheme. Note that the necessary pilots for Bob's synchronization purpose can be transmitted by the antennas of the public channel.

I.1.3.1 Transmission and receiving procedure from Alice to Bob
Since it is necessary to exploit 
[image: image49.wmf]h

 as an initial advantage, we ask Alice instead of Bob to utilize the knowledge of 
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. Alice can estimate 
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 based on channel reciprocity. Bob first transmits a training signal to Alice using the same carrier frequency as the secret channel, from which Alice can estimate the backward channel. Since the forward channel 
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 equals the backward channel according to reciprocity, Alice can use the estimated channel as 
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 to design transmission parameters. Note that this step gives no useful information to Eve.

With the knowledge of 
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where 
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We use the method in [13] to design 
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 under the constraint (I.4). In each symbol interval, we first select randomly an element with sufficiently large magnitude from 
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I.1.3.2 A deliberate randomization scheme
From (I.5), we can choose 
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 appropriately to prevent Eve from blind deconvolution. For example, this purpose can be fulfilled by simply making 
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 with a distribution unknown to Eve since blind deconvolution requires known source statistics [13]. Nevertheless, to furbish a rigorous quantitative analysis, we consider a more structured scheme where Alice designs 
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 are arbitrary and unknown to both Eve and Bob, and can even be time-varying.

From (I.5) and (I.1), the transmitted signal vector is 
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I.1.3.3 Indeterminacy of Eve's blind deconvolution
From (I.6), the transmitted signal can be written as 
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We have used 
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 dimensional zero vector. Eve’s received signal can be written as 
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Obviously, in each symbol interval 
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Proposition 1. From the distribution of 
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where 
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 is an arbitrary non-zero scalar and 
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Proof. Define 
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Then we can verify that 
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The same conclusion holds if considering the sequence 
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Let us assume that Eve can estimate 
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In order to detect 
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Since Eve can not estimate 
[image: image137.wmf]e

H

, she may use a brute-force exhaustive search to look for a vector 
[image: image138.wmf]1

H

e

-

hH

 (assume 
[image: image139.wmf]e

H

 is invertible). The complexity increases exponentially with the channel length 
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I.1.4. Simulations
In this section, we use two experiments to study the security of the proposed transmission scheme by evaluating the BER of Bob and Eve. Eve is assumed to estimate symbols directly using Bob's method. In the first experiment, we used randomly generated channels. We used 
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 and QPSK transmission. Each BER was evaluated as the average of 
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 runs, and 
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 QPSK symbols were transmitted during each run. The results of BER as functions of receiving SNR are shown in Fig. 2 as the solid lines, from which we see that Bob can reliably receive signals while Eve can not.

In the second experiment, we study how confident we can say that Bob and Eve's channels are different. We considered a 
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 (height/wide/length) room with some blocks, and used electromagnetic simulation software (based on FDTD) to estimate all channels on a 
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 channels. Then we used each of them as 
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 to find the error rates of Bob and Eve with the simulation parameters in the first experiments. For each SNR value, Bob's error rate was the average of all these 
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 cases, while Eve's error rate was obtained as the minimum value among all possible channels 
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 or the majority 
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 of the channels. Note that the positions where Eve is within 
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 of Bob are avoided. The results are shown in Fig. 2 as the dashed curves. It can be seen that for at least 
[image: image156.wmf](99%)

 of all possible channels, Eve's error rate is extremely large. 
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Fig. 2. BER of Bob and Eve. Solid lines: Rayleigh fading channels. Dashed lines: channels obtained from EM propagation simulation in a special room.

I.2. Secure MIMO transmission
I.2.1. Introduction

Advanced wireless techniques such as multi-input multi-output (MIMO) techniques are important to broadband and highly dynamic wireless communication networks that are essential for military operations. Such techniques are developed with efficiency instead of security as the primary criterion, or even without security consideration at all. Because wireless transmissions are lack of physical boundary (any adversary can receive the signal within the range), the lack of security in these techniques may potentially result in a weak physical-layer security, which may even weaken the end-to-end network security.

Innovative cross-layer security designs with both physical-layer security and upper-layer security techniques are desirable for military wireless networks. While the physical-layer may rely on upper-layer encryption techniques for security, it is interesting to study whether the physical-layer can have built-in security and whether physical-layer security techniques can assist upper-layer security designs.

The built-in security of the physical-layer is defined as that physical-layer transmissions guarantee low-probability-of-interception (LPI) based on transmission properties such as modulations, signals and channels, without resorting to source data encryption. No secret keys are required before transmission. This is in contrast to the traditional techniques such as spread spectrum that rely on secret codes shared between the transmitter and the receiver.

One of the fundamental issues for physical-layer built-in security is the capacity of the transmission channel when built-in security is guaranteed. Such capacity is named secret channel capacity. The secrecy is defined as information-theoretic secrecy, i.e., the adversary's received signal gives no more information for eavesdropping than purely guessing. Information-theoretic secrecy is in fact equivalent to perfect secrecy [3]. Practically, it means negligibly low interception probability.

One of the recent attempts on specifying secret channel capacity is [4], where the MIMO secret channel capacity is analyzed under the assumption that the adversary does not know even his own channel. Unfortunately, such an assumption does not seem practical if considering deconvolution or blind deconvolution techniques. As a matter of fact, almost all existing results on secret channel capacity are based on some kinds of assumptions that appear impractical [1, 2, 5]. It has been a challenge in information theory for decades (after [2]) to find practical ways to realize information-theoretic secrecy.

Recently, we have found that antenna array transmissions may provide valid ways to realize information-theoretic secrecy when the transmission redundancy and the limit of blind deconvolution are appropriately exploited [13]. LPI can be guaranteed by using some extra antennas with some more transmission power or bandwidth. This innovative concept of secure waveform design is completely different from the traditional techniques such as spread spectrum.

This section extends the results of [13] and Section I.1 into multiple-input multiple-output transmissions so that the complexity of exhaustive search, the only way left for the adversary, is an order of magnitude higher. 

I.2.2. MIMO transmission model
We consider the case where Alice transmits to Bob using 
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 transmitting antennas. Bob uses 
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 receiving antennas. During this procedure, Bob extracts a secret key whereas Eve should be deprived of signal interception capability, as illustrated in Fig. 3. In this section, we consider the secret channel only, where Alice transmits a secret sequence to Bob using the 
[image: image160.wmf]J

 transmitting antennas. 
[image: image161.wmf]
Fig. 3. System model for secret-key agreement between Alice and Bob.
In the secret channel, a MIMO transmission scheme shown in Fig. 4 is used by Alice and Bob. A vector symbol sequence 
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Fig. 4. Block diagram of secure MIMO transmission.
The signal vector 
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We assume that 
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Eve may use multiple receiving antennas for better interception, and the interception becomes much easier when the propagation is flat-fading. Therefore, we consider the worst case (to Alice and Bob) where Eve receives signals from 
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. From the extensive studies on MIMO channels, we know that as long as the distance between Bob and Eve is larger than several carrier wavelengths, then their channels can be considered as independent.
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Note that although we study the secrecy in one direction only, the same scheme can be set up on the other direction. Or, as one direction is secured, the other direction can easily be secured too. In addition, although we consider a single-point to single-point transmission in this paper, the scheme also fits single-point to multi-point transmission (multi-user communication or broadcasting) scenarios. For each specific user, all other ones can be treated as adversaries because different users have different channels.

I.2.3. MIMO transmission procedure
Since we can not depend on noise as the only source of receiving error for Eve, we create some intentional difference between Bob and Eve's signals by exploiting the redundancy of antenna array transmissions. Traditionally, such redundancy is used completely to optimize transmission efficiency. When some of the redundancy is used for secrecy, the optimal transmission efficiency may not be available. This indicates the fundamental trade-off between the transmission efficiency and secrecy. Our objective is not to make our scheme competing against the traditional encryption-based schemes in terms of transmission efficiency. But rather, we are interested in information-theoretic secrecy for a security level higher than the latter. Nevertheless, the efficiency loss can be small.

I.2.3.1 Transmission and receiving from Alice to Bob
As shown in [13], a valid way to guarantee a high error rate for Eve is to prevent Eve from channel estimation. In terms of channel estimation, Bob has no advantage over Eve. Therefore, our objective is to design a transmission scheme so that Bob can detect signals without channel knowledge, which can be realized by shifting the channel estimation task from the receiver Bob to the transmitter Alice. Once Alice has the channel knowledge, she can adjust the MIMO transmission so that Bob does not need to estimate channel in order for symbol estimation.

There are various ways for Alice to estimate the channel 
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 [13]. We use the reciprocity of the forward and backward channels in this paper. Bob first transmits a pilot signal to Alice using the same carrier frequency as the secret channel, during which Alice can estimate the backward channel, and use it for array transmission. Note that this procedure is required only once as an initialization, and gives no useful information to Eve.
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where 
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 can be estimated from the received signal power because 
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 is diagonal with positive elements. Since no channel estimation is required, it is not necessary for Alice to transmit training sequences. As a result, Eve has no training available either, and has to rely on blind deconvolution.

I.2.3.2 Transmission weights design
Although (I.15) looks similar to transmit beamforming, the major difference is that 
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We can subdivide the matrix 
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Then the MIMO processing matrix 
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Therefore, the transmission weights design procedure is to first select 
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with the singular-value decomposition (SVD) 
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I.2.4. Transmission secrecy

I.2.4.1  A randomization scheme
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In particular, 
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From (I.19) and (I.12), we have
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The total transmission power is
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whereas the diagonal entry of 
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From (I.14) and (I.24), Eve’s received signal becomes
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Obviously, for a given symbol vector 
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Then Eve’s signal is 
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Since the distribution (I.28) depends on 
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Proposition 2. For an unknown symbol vector 
[image: image290.wmf]()

n

b

 and unknown 
[image: image291.wmf]H

, 
[image: image292.wmf]μ

 and 
[image: image293.wmf]å

, from the distribution of 
[image: image294.wmf]()

u

n

x

, the channel matrix 
[image: image295.wmf]u

H

 is indistinguishable from 
[image: image296.wmf]u

HP

 with a 
[image: image297.wmf]JJ

´

 matrix


[image: image298.wmf]-

éù

=

êú

ëû

UGVUG

P

0V

,                                                         (I.29)
where 
[image: image299.wmf]U

 and 
[image: image300.wmf]V

 are arbitrary nonsingular 
[image: image301.wmf]KK

´

 and 
[image: image302.wmf]()()

JKJK

-´-

 matrices, respectively.

Proof. See [16].
As a result, there is ambiguity of a 
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Proof. See [16]. 
Note that the distribution defined above is due to the random 
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The only way left for Eve is an exhaustive search of all possible channels 
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I.2.5. Simulations
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Fig. 5. Receiving performance.  
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In this section, we show the performance of the proposed transmission scheme in terms of bit-error-rate (BER) and secret channel capacity. For comparison purpose, we also evaluate the performance of the optimal eigen-beamforming (I.20). Eve is assumed to estimate symbols blindly, which is almost no different from guessing.

Alice transmits QPSK symbol packets. Each packet contains 
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 QPSK symbols. 
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 are used. We use 
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 runs to obtain each BER value. The BER results are shown in Fig. 5, from which we see that Bob can reliably receive signals while Eve can not.
Based on the BER of Bob and Eve, we can derive the secret channel capacity. For comparison purpose, we also plot the secret capacity when noise is considered as the only source of error. In this case, Eve is assumed to have the same BER as Bob. As can be seen from Fig. 6, the proposal scheme gives much higher secret capacity.
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Fig. 6. Secret channel capacity. ╳, ○: proposed

scheme. □: △: traditional transmissions.

Part II. STBC-encoded Cooperative Transmissions
II.1. Introduction

Space-time coding and processing are powerful techniques for enhancing transmission efficiency of wireless networks. Among various widely investigated space-time techniques, space-time block codes (STBC) [7, 8] are especially promising because of their low computational complexity, i.e., maximum likelihood performance can be achieved with linear processing at the receivers. As a result, the Alamouti code [7], one of the simplest STBC exploiting two transmitting antennas, has already been adopted in the 3G WCDMA specification for transmission diversity. Since diversity enhances transmission energy efficiency in fading environment, STBC would be desirable for mobile users in wireless networks such as ad hoc and sensor networks where energy efficiency is a critical design criterion. However, traditional STBC require physical antenna arrays that are hardly available in small-sized mobile devices. This is why STBC were proposed for base stations from the beginning [8].

In order to take the benefits of STBC for distributed mobile networks, recently there have been great interests to investigate cooperative communications encoded by STBC. By exploiting the cooperation capability of multiple mobile users, STBC can still be used based on virtual instead of physical antenna array. Ideas of cooperative transmission have been proposed in cellular networks for cooperative diversity [9] and in sensor networks for energy efficiency and fault tolerance [12], where the employment of STBC takes the advantage of high bandwidth efficiency besides the targeted diversity benefits [10].

So far, most existing researches on cooperative transmission assume perfect synchronization among cooperative users, which means that the users' timing, carrier frequency and propagation delay are identical [9]. Under this assumption, there is in fact little diversity difference between cooperative STBC and traditional STBC except certain cooperation overhead. Unfortunately, it is difficult, and in most cases impossible, to achieve perfect synchronization among distributed transmitters. This is even more a reality when low-cost, small-sized transmitters are used, such as tiny sensors [11, 12, 15].

Without perfect synchronization, channels become dispersive even in flat fading environment. Due to the transmitting/receiving pulse shaping filters, if the sampling time instants are not ideal, intersymbol interference (ISI) is introduced. This certainly brings performance degradation or performance loss in cooperative STBC. More important, asynchronism among the transmitters may break the orthogonal STBC signal structure, which makes most of the existing STBC decoders fail instead of performance loss or complexity increase only. Therefore, for the cooperative STBC, one of the major challenges is the synchronization among the distributed nodes. In contrast to classical transmissions where synchronization refers to only that the receiver synchronizes to the transmitter, we have three synchronization issues here, i.e., synchronization among the transmitters, synchronization among the receivers, and synchronization of the receivers to the transmitters.

As far as STBC are concerned, the problem of synchronization among the transmitters is the most challenging one. It is in fact completely new to communications researches. Similar transmitters synchronization problem would happen in multi-access CDMA, but is fortunately avoided by the spreading and single-user detector, i.e., Rake receiver.

The synchronization requirement among the transmitters is different from that between the transmitter and the receiver. For the latter case, the receiver can perform the synchronization task using either pilot or blind methods, and the synchronization can be performed in the physical layer only. However, for the former one, usually hand-shaking has to be conducted among the transmitters, and thus both MAC and physical-layer should be involved. Therefore, the synchronization task becomes a cross-layer design problem.

We have recently addressed partially the problem of imperfect synchronization [11] by introducing a new transmission scheme different from the classical STBC-encoded transmissions, which uses a guard interval between two packets. An alternative method is using OFDM transmission, where certain asynchronism can be tolerated by increasing the cyclic prefix (guard interval) [23]. One of the major problems for these schemes is that the guard interval greatly reduced bandwidth efficiency, especially when the channels are time-varying so that the packet between the guard intervals can not be long. As a matter of fact, channel is very likely time-varying with asynchronous transmitters due to the different carrier frequency drifting and Doppler shifting among the transmitters. Strictly spreading, such techniques address the imperfect synchronization only instead of the complete asynchronism among the transmitters. 
In this section, we consider the complete asynchronous transmitters with STBC-encoded transmissions. However, we consider only the asynchronism caused by different transmission time instants and propagation delays among them. In this case, equalization techniques can be developed to detect symbols from the received asynchronous signals. The advantage is that the traditional STBC-encoded transmission scheme can be directly used whether synchronization can be achieved or not. Because complete asynchronous transmissions are supported, synchronization and cooperation overhead can be much reduced. So does the symbol rate and carrier frequency synchronization. More important, by studying

the performance of distributed STBC with a more practical consideration on asynchronism, we can justify the advantage of cooperative transmissions in distributed wireless networks.

II.2. System model 

Consider an ad hoc wireless network where a source node needs to transmit a data packet to a destination node through multi-hop relaying as shown in Fig. 7. In each intermediate hop, the data packet is received by multiple nodes, e.g., nodes 1 to 
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 in hop 
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. Then these nodes can re-transmit it to the next hop in a cooperative manner with STBC encoding. Another scenario is that the source node may first transmit the packet to nearby relay nodes (with low transmission power), then they will transmit the packet cooperatively to the nodes in hop 
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.
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Fig. 7.  Multi-hop ad hoc network model with cooperative transmissions.
Without loss of generality, we consider the cooperative transmission among nodes 1 to 
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 in hop 
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. Consider first the passband signal. The passband signal to be transmitted by each transmitter has a general form 
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We assume flat-fading propagation in this paper. The received passband signal at a receiver is
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where 
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II.2.1. Signal models with asynchronous transmitters
Considering the asynchronous transmissions and assuming flat fading propagation, to simplify the problem, in this paper we consider only the asynchronism in transmission time and propagation delays, which means that 
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 are different for different transmitters.

Without loss of generality, we can demodulate (II.2) by 
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 to obtain the continuous-time complex baseband signal
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where 
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If 
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 are different among the transmitters, it is impossible to achieve timing synchronization. Then without loss of generality, we perform baseband sampling at time instant 
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where 
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 is the noise sample, and the channel coefficients are
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The baseband channel length 
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 and coefficients 
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 are determined by both fading and asynchronism.

On the other hand, the dispersive channel model in this case is different from that due to multipath propagations. One of the major differences is that we can make the channel of one of the transmitters to be single tap. Another difference is that the channel length can be deterministic, and can be rather small with certain approximation.

As a special case, it can be shown that it is approximately sufficient to consider only several channel taps [19], where the signals become

[image: image366.wmf][

]

1

12222

22

()

()(0)(0)(1)()()

(1)

sm

xmhhhsmdvm

smd

éù

êú

=-+

êú

êú

--

ëû

.                              (II.6)
The feasibility of making such an approximation of considering only two-tap channel models can be demonstrated by the numerical evaluations using raised-cosine pulse-shaping filter. Note that (II.6) is simplified because 
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, and we consider only the un-modeled taps as residual ISI beyond channel model. Because of the dispersion of the channel of the second transmitter, there is heavy ISI. However, the ISI drastically reduces when the roll-off factor increases. The 2-tap channel model is a relatively good approximation when the roll-off factor is not too small.
II.3. Viterbi equalizer and linear prediction blind equalizer
Without loss of generality, assume that the first transmitter (Tx 1) advances the second one by 
[image: image368.wmf]d

 during transmission. The receiver can perform sampling with timing synchronized to that of Tx 2. Therefore, the signal model (II.6) becomes
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Define 
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First, consider the case with even delay difference 
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. When the receiver knows the delays, it can perform sampling with respect to the one that falls behind. The received even numbered samples are
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In general, we have the following rule to change 
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In other words, the even numbered sample 
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On the other hand, the received odd numbered samples are
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which means that symbols 
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II.3.1. Viterbi equalizer
It is well known that one of the major advantages of STBC is that computationally efficient maximum likelihood detection is available with flat fading propagation. However, in case of asynchronous transmissions, since the channels become dispersive, we have to use the Viterbi equalizer for the maximum likelihood performance. 
Consider the received signal models developed in the above section, we find that the maximum number of symbols contained in a sample can be 
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 states. If each transmitter transmits 
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 rounds of trellis updating. Of course, when 
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 is large, we usually use a truncated trellis for immediate symbol estimation in order to reduce complexity. Detail can be found in [19].
II.3.2. Linear prediction-based blind equalizer
It is interesting to consider the computationally more efficient linear equalization schemes for the STBC-encoded transmissions when the transmitters are not synchronized in time. Due to the suboptimal performance of the linear equalizers, we would like to verify the advantage of applying cooperative transmissions in this case. Flat-fading is assumed, but the channels can be dispersive due to timing mismatch. We have outlined the traditional MMSE equalizer and proposed a new linear-prediction based equalizer which exploits the special property of this transmission scheme. Interestingly, the linear prediction method is effectively a blind equalizer, but is immune from the severe limits of traditional linear prediction-based blind equalizers used in fractional-space equalization. Note that in our case, we consider single-input single-out system with only one receiver, and without over-sampling. Details can be found in [19].
II.4. Simulations
In this section, we use simulations to evaluate the proposed equalization algorithms. We compare the Viterbi equalizer with the classical STBC decoder when the latter works in perfect synchronization, which gives the optimal maximum likelihood performance with linear complexity. In addition, we compare this algorithm when it works with asynchronous transmissions. All these algorithms are compared with the case without diversity. They are labelled as, respectively, ``Asyn'', ``SynSTBC'', ``w/o Equ'' and ``noDvst''. This simulation tries to see how the new method compared with the optimal diversity case.

For the Viterbi equalizer experiments, the delay
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, and a trellis with 
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 states are used. 
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 randomly generated symbols are transmitted and detected during each run. Simulation results are shown in Fig. 8. The proposed Viterbi equalizer can achieve almost the optimal performance of the synchronous STBC. The slight performance gap may be due to the channel dispersion rather than the optimality of the detector. Both the two cases provide diversity advantage beyond the case transmissions without diversity. On the other hand, if no equalization is conducted, then the asynchronous transmission induced ISI brings severe symbol detection error.
[image: image392.wmf]
Fig. 8. Symbol-error-rate (SER) as function of SNR.▽(w/o Equ): using standard STBC receiver in asynchronous transmission. ╳(noDvst): no diversity case with flat-fading single-tap channels. ○(Asyn): Viterbi equalizer proposed for STBC with asynchronous transmitters. △(SynSTBC): standard STBC for synchronous STBC transmissions.
Part III. Testbed Development
III.1. Introduction

             In this section, we describe the implementation of BPSK and QPSK transmissions using ComBlock modules. We have implemented two single-antenna transmission branches and two single-antenna receiving branches. However, due to time limit, we have only tested the single-antenna to single-antenna transmissions. More work is required to resolve the synchronization problem in order to implement cooperative transmission, which is under way though. The major work is the receiver programming which addresses especially the frequency synchronization problem. Some discussions for cooperative array transmission will be given at the end.

III.2. Testbed hardware

We use the communication modules from ComBlock.com to build our testbed. A single transmission branch (a single antenna) is built with the following components:

       Com5001: LAN/IP network interface ($295)

       Com8001: arbitrary waveform generator (256 MB), 40 Msamples/s ($345)

       Com2001: Dual 10-bit D/A converter (baseband, 40Msamples) ($295)

       Com4001: Dual-band 915MHz/2.4 GHz Quadrature modulator ($345)

       Com4102: 2.4 GHz transceiver (25dBm power) ($295)

       2.4 GHz antenna, 

       110V/4A power source.

A single receiving branch (a single antenna) is built with the following components:

       Com4102: 2.4 GHz transceiver (25dBm power) ($295)

       Com3001: Dual-band 915MHz/2.4GHz receiver ($345)

       Com8002: High speed data acquisition (256MB, 40M samples/s) ($345)

       Com5001: LAN/IP network interface ($295)

       2.4 GHz antenna, 

       110V/4A power source.

The transmitter block diagram:

[image: image393.wmf]
The receiver block diagram:
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The photos of the transmitter and the receiver are shown below:
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   [image: image396.jpg]



               Both the transmitter and the receiver are connected to the LAN, and are assigned with a unique IP address. The IP address, gateway address must be written into the transmitter and receiver before they can be accessed via the LAN. Before LAN setting up, such parameters can be written into the modules via serial cable.

III.3. Preliminary results

               BPSK and QPSK transmissions are implemented. Some channel estimation results have been obtained. Experiments are conducted in two or three places (only about 2 or 3 feet away), in each place several runs of the experiments are performed. Simulation data and preliminary results are available online at: http://ucesp.ws.binghamton.edu/~xli/ComBlockSource.zip.
               From the preliminary results, we have found that channels appear effectively random and time-varying, which is required for the secure transmission scheme. The randomness is due to two major reasons: multipath fading, and residue carrier. Multipath fading contributes to both magnitude and phase of the channel response. Residue carrier contributes to channel time-variation. The difference of the residue carrier between the two transmitters will be a major issue for experimenting cooperative transmission array. But timing/clock does not seem a problem. It is accurately identical between the transmitter and the receiver during transmitting a sufficiently long packet. For array transmission, however, a problem is that it may not be possible to ask two transmitters to transmit at the same time. The ComBlock modules have relatively long delay during communication with the PC. We are working on resolving such problems.
Part IV. Conclusions
This report summarizes the research results obtained during the Summer 2005 VFRP term. Physical-layer secure transmission techniques are proposed and proved. Cooperative communications are proposed as tools to realize wireless information assurance as well as to enhance the performance of wireless sensor networks. A testbed is in developing to demonstrate the proposed techniques.
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