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ABSTRACT In black-box adversarial attacks, attackers query the deep neural network (DNN) and use the
query results to optimize the adversarial samples iteratively. In this paper, we study the method of adding
white noise to the DNN output to mitigate such attacks. One of our unique contributions is a theoretical
analysis of gradient signal-to-noise ratio (SNR), which shows the trade-off between the defense noise level
and the attack query cost. The attacker’s query count (QC) is derived mathematically as a function of noise
standard deviation. This will guide the defender to find the appropriate noise level for mitigating attacks to the
desired security level specified by QC and DNN performance loss. Our analysis shows that the added noise
is drastically magnified by the small variation of DNN outputs, which makes the reconstructed gradient have
an extremely low SNR. Adding slight white noise with a very small standard deviation, e.g., less than 0.01,
is enough to increase QC by many orders of magnitude yet without introducing any noticeable classification
accuracy reduction. Our experiments demonstrate that this method can effectively mitigate both soft-label
and hard-label black-box attacks under realistic QC constraints. We also prove that this method outperforms
many other defense methods and is robust to the attacker’s countermeasures.

INDEX TERMS Deep learning, adversarial machine learning, black-box attack, noise perturbation, perfor-
mance analysis.

I. INTRODUCTION
Along with the rapid development of deep neural networks
(DNNs), there are a lot of online services, such as Clari-
fai API, Google Photos, advertisement detection and fake
news filtering, etc., that highly rely on DNNs. Nevertheless,
an intriguing issue is that DNNs are highly susceptible to
small variations in input data [1]. Online DNN servers suf-
fer from adversarial attacks where the attackers can slightly
change the input data to make DNNs give false results or
misclassification [2].

Depending on the knowledge about the DNNs that the
attackers have, adversarial attacks can be classified into
white-box attacks [1], [3]–[5] and black-box attacks [6]–[13].
The former assumes that the attackers have complete knowl-
edge of the deep network, while the latter assumes that
the attackers have limited knowledge, typically some output
information of the DNNs. Compared with white-box attacks,
black-box attacks are more realistic threats to real-world
practical applications.
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In general, black-box attacks need to estimate certain
gradients via the output information of the deep networks
obtained through querying to optimize iteratively their adver-
sarial samples. This is true even for attacks that are claimed
‘‘gradient-free’’. The query cost is thus a critical constraint
to attackers. Over the recent years, more and more efficient
black-box attack methods have been developed and they can
now generate adversarial samples with only a few hundred of
queries [7], [14]. Considering this fast-increasing threat, it is
the right time to develop effective defense methods [15], [16]
since most existing defense techniques are shown to provide
a false sense of defense [17].

In this paper, we study the performance of the simple out-
put noise perturbation technique as a defense against black-
box attacks, where the defender (or the DNN) adds white
noise to the DNN outputs. Since it is impossible to find a
technique that can completely stop attackers of unlimited
resources, we focus on mathematical analysis of the attack-
defense trade-off in terms of defense noise level and attack
query count (QC). Such a theoretical analysis is critical for
defense study because it is both computationally intractable
and theoretically incredible to guarantee defense just with
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experiments. Specifically, we express QC as a function of
noise standard deviation σ , with which the defender can
easily apply appropriate noise to prevent attacks up to cer-
tain performance loss and security levels. For example, our
results demonstrate that small noise with σ ≤ 0.01 can
prevent black-box attacks with 106 query count budget over
the MNIST, CIFAR10 and IMAGENET datasets without any
noticeable classification accuracy loss.

The major contributions of this paper are outlined as
follows.

• We develop a novel analysis framework to study the
trade-off between defense noise level and attack QC
mathematically instead of heuristically only via exper-
iments. The signal-to-noise ratio (SNR) of the noisy
gradients is derived, and it exhibits that small noise is
magnified by the small DNN outputs. The attacker’s QC
is shown to be increased by many orders of magnitude
even with an extremely small noise perturbation.

• We analyze the properties of the proposed noise per-
turbation method and show that the method is robust
to various countermeasures of the attackers. We also
observe that quantization and output-correlated noise
do not perform well. The latter explains that output
noise perturbation is better than other randomization or
gradient obfuscation methods.

• We experiment with a list of representative black-box
attack algorithms, including both soft-label and hard-
label attacks. The results fit well with the analysis and
demonstrate the effectiveness of the output noise pertur-
bation method against black-box attacks.

This paper is organized as follows. Related works are pre-
sented in Section II. The noise perturbation method is studied
in Section III. Experiments are conducted in Section IV.
Conclusions are given in Section V.

II. RELATED WORK
Black-box attacks can be subdivided into three major
classes: transfer-learning-based attacks, soft-label attacks,
and hard-label attacks [8]. Transfer-learning-based attacks
exploit the fact that an adversarial input to one deep network
may also be adversarial to another deep network [2].

Soft-label attacks assume that the logit information
is available to the attacker, either fully or partially.
Narodytska and Kasiviswanathan [18] used random pertur-
bation and local search to look for adversarial samples.
Hayes and Danezis [19] trained a generator neural net-
work to generate adversarial samples. Chen et al. devel-
oped the zeroth-order optimization (ZOO)-based attacks [6],
where they reconstructed gradients from output logits using
zeroth-order gradient estimators. Ilyas et al. [8] applied the
natural evolution strategies (NES) to estimate the gradients.
Tu et al. [7] improved the ZOO-based attacks with the
AutoZOOM algorithm, which used autoencoders to generate
gradient search directions. Cheng et al. [20] combined the
transfer-learning and ZOO-based attack techniques.

FIGURE 1. The model of black-box attack (both soft-label and hard-label
attack) and output noise perturbation defense. Blue-dashed line shows
defender (or DNN)’s activity, while red-dashed line shows attacker’s
activity.

Hard-label attacks assume that only hard decisions of DNN
outputs are available. Within this class, Brendel et al. [13]
exploited large perturbation to generate adversarial samples
and used fine-tuning to reduce adversarial image distortion.
Ilyas et al. [8] picked a target image and fine-tuned it toward
the original image. Cheng et al. [9], [10] applied randomized
gradient-free ZOO techniques.

On the defense side, a majority of existing studies are
focused on white-box attacks. Most existing black-box
defense techniques are in fact borrowed from their white-box
version. A large number of defense techniques were proposed
based on the idea of gradient masking or gradient obfus-
cation, e.g., defensive distillation [16], non-differentiable
classifiers [21], input randomization [22], network structure
randomization [23], etc. Unfortunately, almost all of them
were defeated shortly after their publications via the so-called
expectation-over-transformation (EOT) technique [17], [24],
[25]. Today, the most effective way is perhaps adversar-
ial training where adversarial samples are used to train the
network [26]–[28], but the performance is not reliable for
unknown attacks.

To the best of our knowledge, the simple output
noise perturbation method has not been studied in-depth.
Dong et al. [14] experimented with a long list of white-
box/black-box attack/defense algorithms, but without this
one. All the other reported noise perturbation techniques
injected noise into the input or the network, not the out-
put [28]–[31]. The reason is perhaps they were obtained from
white-box attacks where adding noise to network outputs was
of no use. Lee et al. [32] used output noise perturbation but
for model stealing attack only and also without mathematical
analysis.

III. ANALYSIS OF OUTPUT NOISE PERTURBATION
A. BLACK-BOX ATTACK AND DEFENSE MODEL
Consider a DNN that classifies an image x0 into class c. The
DNN outputs (softmax) logits F(x0), where F is the DNN’s
nonlinear mapping function. The classification result is c =
argmaxi Fi(x0), where Fi denotes the ith element function
of F .

The objective of the adversarial attacker is to generate an
image x = x0 + 1x such that the DNN classifies it as t =
argmaxi Fi(x) 6= c. The difference 1x should be as small as
possible. For soft-label black-box attacks, the attackers query
the DNN to obtain the input-output pair (x,F(x)), as shown
in Fig. 1, with which they can minimize the following loss
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function to search for the adversarial sample x [7],

f (x) = D(x, x0)+ λL(F(x), t), (1)

where D(·, ·) is a distance function and L(·, t) is the loss
function. Typical distance functions are norms ‖x − x0‖p.
Typical loss functions include the cross-entropy [8] and the
C&W loss [24].

If the logit F(x) is not available, the attackers can adopt
the hard-label attack strategy with the queried input-output
pair (x, c). A common approach is to first find an image xt
in the target class, i.e., argmaxi Fi(xt ) = t . Then, starting
from xt , the attackers iteratively estimate new x in the target
class so as to minimize (1) under the constraint λ = 0 and
argmaxi Fi(x) = t .
In this paper, we consider that the DNN defends itself

by adding noise v to the logit and providing either the
perturbed output F(x) + v or the perturbed class decision
argmaxi[F(x) + v]i. The objective is to prevent the attacker
from optimizing (1). We assume that v is an independent and
identically distributed (i.i.d.) Gaussian random vector with
zero mean and standard deviation σ , i.e., v ∼ N (0, σ 2I ),
where I is an identity matrix. We consider low magnitude or
small noise throughout our analysis.
Definition 1: Small noise is defined as the noise v whose

standard deviation σ is small so that log(1 + v) ≈ v is valid
almost surely.

In other words, the standard deviation σ is several orders-
of-magnitude smaller than 1, i.e., σ � 1. We also assume
that the DNN satisfies ‖F(x) − F(y)‖ ≤ L‖x − y‖ with a
local Lipschitz constant L.

The performance of defense can be measured by three
metrics: attack success rate (ASR), query count (QC),
and input distortion. Robust defense makes the black-box
attacks to have low ASR, high QC, or high distortion. While
reducing ASR to near 0 is the major defense goal, defenses
leading to high query count are also effective. High query
count means the attack is infeasible due to query cost limit.

Since ASR is hard to analyze theoretically, in this paper,
we analyze QC as a function of noise standard deviation σ .
We will show that small σ can lead to prohibitively high
QC to the attacker while introducing minimal classification
performance loss to the DNN. Such analysis results will be
demonstrated by extensive experiments which show that ASR
can be reduced to a very small level under small σ and pre-set
QC limit.

B. OUTPUT NOISE PERTURBATION TO MITIGATE NES
TARGETED ATTACK
In this section, we analyze the defense performance. To save
space, detailed analysis is presented only for the soft-label
targeted attack with the NES method [8]. We will extend the
analysis to other attacks in Section III-C to show that our
analysis framework is general.

In [8], the soft-label NES targeted attack towards class t
is conducted by minimizing the softmax cross-entropy loss
function f (x) = − logFt (x), where Ft (x) is the softmax

value of the target class. We skip the distance term D(x, x0)
from (1) in order to consider the most challenging defense
situation. For the attacker, it is easier to find an adversarial
sample without the distortion constraint. The NES algorithm
uses gradient descent to minimize the loss function. In each
iteration, the attacker conducts J queries with the randomly
perturbed inputs x + βuj, where uj is a random tensor and β
is the search variance. With the so-called antithetic sampling,
both x+βuj and x−βuj are used as query inputs. According
to the NES principle [8], the attacker can estimate the gradient
from the derivative of the average loss f (x) as

ḡ = −
1
J

J/2∑
j=1

[
uj
β
logFt (x + βuj)−

uj
β
logFt (x − βuj)

]
,

(2)

which can be written as

ḡ =
1
J

J/2∑
j=1

gj, gj = uj
1
β
log

Ft (x − βuj)
Ft (x + βuj)

= auj. (3)

See (10)(11) for more explanation. Note that gj can be
expressed as the attacker-generated search-direction tensor uj
multiplying a deterministic scalar multiplication factor a.
Theorem 1: Under white Gaussian noise perturbation with

v ∼ N (0, σ 2I ), the gradient gj = auj becomes gj = Auj,
where A = a+ 1

β
logZ with random variable Z ∼ N (1, σ 2

Z ),

σ 2
Z =

σ 2

F2
t (x − βuj)

+
σ 2

F2
t (x + βuj)

. (4)

With small noise Definition 1, we have A ∼ N (a, σ 2
Z/β

2).
The proof is presented in Appendix A. Theorem 1 tells us

that the noise randomizes the gradient estimation. To under-
stand the degree that v randomizes the estimated gradient,
we can evaluate the signal-to-noise ratio (SNR) of A defined
as SNR = a2

E[|β−1 logZ |2]
, where E[.] denotes mathematical

expectation. We call it the SNR of the noisy gradient.
Lemma 1: Under small β and small noise, the SNR of A is

SNR =

[
Ft (x − βuj)− Ft (x + βuj)

]2 F2
t (x − βuj)

σ 2
[
F2
t (x − βuj)+ F

2
t (x + βuj)

]
≤

2L2β2

σ 2 . (5)

See Appendix B for the proof. Lemma 1 shows that the
SNR is very low because the output variation1Ft = |Ft (x−
βuj)− Ft (x + βuj)| and β are very small in practice. A very
small SNR makes A to have signs opposite to a with high
probability, which changes the gradient descent toward the
wrong direction and thus prevents the attacker’s optimization
from converging.

The ill-convergence can be studied through the attack QC.
To derive QC as a function of noise level σ , we consider the
following approach since it is difficult to find QC expressions
for deep networks. Consider the iterative gradient-descent
minimization of f (x) = 1/2[F(wx) − F(wx∗)]2, where w is
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the weight of the input DNN layer and x is the DNN input.
We assume that the function F(wx) is monotone between the
starting point wx0 and the optimal point wx∗ because other-
wise there is no guarantee of convergence. The minimization
is conducted as xn+1 = xn − a∂f (xn)/∂xn, n = 0, 1, · · · . Our
objective is to find the ratio R, i.e., the ratio of the iteration
number needed when using a constant learning rate a to that
when using the random learning rate A = a +

√
SNRv with

noise v.
Theorem 2: If the learning rate a is small such that (1 −

aλ)n ≈ 1− naλ, then

R =
1
4

(√
K 2 + 4−K

)2
, K =

8−1(ε)
√
aλ

√
SNR(1− η/v0)

, (6)

where η and ε are small probabilities, λ and v0 are constants
related to w, x0 and x∗, and 8−1(ε) is the inverse of the
standard normal cumulative distribution function.

The proof is in Appendix C. From the proof, we also
see that R can be used as an estimation of QC(noise)/
QC(noiseless), i.e., the ratio of QCs between the case with
noise perturbation and the case without noise perturbation.

The relationship between the defense noise level σ and
the attack QC can be readily analyzed based on (5) and (6).
In particular, if σ is small, then R ∼ 1/SNR, i.e., increases
with 1/SNR. As a rule of thumb, R, 1/SNR, and σ/1Ft
change linearly with each other.

Now we can summarize the reasons for the noise perturba-
tion method being effective. First, from Lemma 1, the SNR
of the estimated gradient becomes very low since the noise
power σ 2 is amplified by the small β and small1Ft . Numer-
ical results in Section IV-A show that SNR can be −100 dB
or near 0. Second, from Theorem 1, the gradient becomes so
random that it changes the search direction to the opposite
with high probability, which prevents gradient search from
converge. Finally, according to Theorem 2, low SNR makes
the attack QC prohibitively high. Results in Section IV-A
show R of 1010 and QC of 1015 for attacking IMAGENET
images.

C. PROPERTIES OF OUTPUT NOISE PERTURBATION
In this subsection, we first show that our analysis frame-
work and the noise perturbation method are general
enough for many other black-box attack methods. Then,
we show an important property, i.e., quantization noise and
output-correlated noise are not effective. This will explain
why the output noise perturbation method is better than other
randomization or gradient obfuscation methods.

First, within the black-box attack community, the NES
and ZOO are two major gradient estimation approaches. For
ZOO, we consider the AutoZOOM algorithm [7] that min-
imizes the C&W loss function f (t) = log (Fmax(x)/Ft (x)),
where Fmax(x) = {Fi(x) : i = argmaxj Fj(x),∀j 6= t},
with the gradient estimator gj = β−1(f (x + βuj) − f (x))
uj = auj.
Theorem 3: Under white Gaussian noise perturbation,

the multiplication factor a becomes the noisy factor

A = a + 1
β
log(Z1Z2), where Z1 ∼ N (1, σ 2/F2

max(x) +
σ 2/F2

max(x + βuj)) and Z2 ∼ N (1, σ 2/F2
t (x) + σ

2/F2
t (x +

βuj)). In addition, when σ is small, we have

A ∼ N
(
a, σ

2

β2

(
1

F2
max(x)

+
1

F2
max(x+βuj)

+
1

F2
t (x)
+

1
F2
t (x+βuj)

))
(7)

and the SNR of A satisfies SNR ≤ L2β2

2σ 2
.

See Appendix D for its proof. This theorem tells us that
noise perturbation randomizes the AutoZOOM’s gradient
estimation similarly as it does for NES.

Second, our analysis method represented by Theorem 1
and Theorem 2 can be applied to analyze other black-box
attacks as well. For example, the Nattack algorithm [33]
uses the NES-estimated gradients to learn adversarial dis-
tributions. Assume the adversarial samples have a certain
distribution with mean µ, then theN attack algorithm finds µ
via optimization µt+1 = µt − ηḡ. Obviously, the noise per-
turbed ḡ can hardly make the updating converge. As another
example, for the partial-information NES attack [8], the
authors propose to start from a target image and then apply
the NES algorithm to estimate the gradient so as to modify
the target image to become similar to the original image.
Noise perturbation is still effective to randomize the estimated
gradients.

Third, untargeted attacks can be analyzed similarly with
just a change of loss functions. i.e., change the loss function
to f (x) = logFt (x) for the cross-entropy loss or f (x) =
log Ft (x)

Fmax(x)
for the C&W loss, where Ft (x) is the true logit

value of the input x, and Fmax(x) denotes the maximum logit
value excluding the true logit. Our analysis and conclusions
are still valid. Specifically, we still have noisy multiplication
factor A = a+ β−1 logZ with an extremely low SNR which
leads to high QC and low ASR.

Next, one especially interesting case is the attacks that
claim ‘‘gradient-free’’, i.e., they do not aim to estimate the
DNN’s true gradient. Nevertheless, they still need to estimate
a gradient-like searching direction for iterative optimization.
An example is the SimBA attack [12] which searches over an
orthogonal set of basis u such as Fourier basis. During each
iteration it gets a new sample xn+1 = xn− ηu that minimizes
the loss P(Y |X ). With noise perturbation P(Y |X )+v, it can be
shown that the probability of choosing a basis in each iteration
is randomized by a random variable Z ∼ N (1, σ 2

Z ), where
σ 2
Z = σ

2/P2(Y |X ). The SNR is extremely small since noise

σ 2 is amplified by the small probability P(Y |X ).
Another example is the GenAttack [11] which uses the

genetic algorithm to search for adversarial samples. In each
iteration, it selects the sample xn that maximizes the tar-
get label Ft (xn). Since noise perturbation changes Ft (xn),
it makes such a sample selection procedure unreliable, and
suffers from a noisy random variable Z ∼ N (1, σ 2

Z ) where
σ 2
Z = σ

2/F2
t (xn). The SNR is also very small.

Furthermore, another especially interesting case is the
hard-label attack. The label-only NES attack [8] starts from
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a target image and uses its random variations to query the
DNN. The binary query results are used to construct a
measure similar to Ft (x). Obviously, noise perturbation can
change the hard-label which makes this measure very noisy
and reduces the SNR of the estimated gradients. Our analysis
framework can still be applied. In addition, theBoundaryAt-
tack [13] uses the query results of random updating xn + ηu,
i.e., whether xn + ηu remains as the adversarial sample,
to determine whether using this random u to update xn or
not. Obviously, noise perturbation leads to unreliable query
results so that xn is updated in the wrong direction with high
probability. The unreliable query decision can be expressed as
the SNR of query results following our analysis framework.

Finally, as to the important properties of noise perturbation,
an interesting question is whether output quantization noise
can be used. Another interesting question is whether the noise
must be white.
Lemma 2: Noises created by output quantization (to 2 or

more bits) or noises highly correlated with DNN outputs
make the random variable Z have very small σ 2

Z , and thus
are not effective to mitigate black-box attacks.

The proof is shown inAppendix E. The lemma gives a good
explanation for the limited or failed defending performance
of existing network randomization defenses. For example,
Liu et al. [29] suggest adding noise to each convolutional
layer but not the final output layer, whose net effect is to
create output perturbations that are highly correlated with
the true output logits. Its noise perturbation effect is in fact
reduced by the network. Another drawback is that adding
noise to the DNN input or mid layers makes it harder for the
DNN to maintain classification accuracy since the perturba-
tion effect to DNN output is out of control.

D. ROBUSTNESS TO ATTACKER’s COUNTERMEASURES
AND ADAPTIVE ATTACKS
The output noise perturbation method is robust to vari-
ous counter-defense techniques that the attacker may adopt.
Countermeasures are also called adaptive attack in [34]. First,
the attacker may try to increase 1Ft and β to reduce their
noise amplification effects. However, 1Ft is usually out of
the attacker’s control. Large β leads to worsening gradient
estimation accuracy, which in fact reduces SNR of A.
Second, the attacker may adopt the EOT or gradient aver-

aging strategy that has been shown effective to invalidate
gradient obfuscation defenses in white-box attack scenar-
ios [17]. Nevertheless, EOT is not as effective in our case
as one would expect. In principle, EOT finds the average
gradient ḡ = 1/J

∑
j gj, similar to (3). Transformed images

that the attacker uses to query the DNN can be written as
x + 1xj, where 1xj denotes the difference caused by the
random transform. The attacker still gets a noise perturbed
output F(x+1xj)+vj to construct gj. The estimated gradient
is still random which is worse because of the randomized
1xj. In this scenario, the accuracy of ḡ can not be guaranteed,
even if J is large. In the worst case, independent gj may make
ḡ→ 0.

TABLE 1. Statistical DNN output parameters obtained from validation
datasets (without noise perturbation). ACC: classification accuracy. Mean
Ft (x): average softmax output values (excluding the top-1 pick).
Mean/median/std 1Ft : mean, median, and standard deviation of output
variation 1Ft .

Finally, the best countermeasure is perhaps to estimate
a by querying the DNN repeatedly with the same x. This
is the optimal strategy to estimate a constant from noisy
samples. Note that this is different from finding average ḡ
with different x. Theoretically the attacker can average out
noise and get a reliable estimation with a large number of
repeated queries. We are interested to study the QC in this
case.
Theorem 4: If the attacker conducts N repeated queries

with the same data x, it gets N samples yn = a+ 1/β log zn,
n = 1, · · · ,N . Assume a > 0. The minimum number of
samples N required to estimate a as â with P[â < 0] < ε for
some ε is

N =
2σ 2

F2
t (x)

 8−1(ε)

e
2σ2

F2t (x)
−aβ
− 1

2

, (8)

where 8−1(ε) is the inverse of the standard normal cumula-
tive distribution function.

The proof is shown in Appendix F. We can see that small
Ft (x) leads to large N .

IV. EXPERIMENTS
A. NUMERICAL EVALUATION OF SNR AND QC
To evaluate numerically the tradeoff between performance
loss (specified by σ or SNR) and defense security (speci-
fied by QC), we need to know the averages of output log-
its Ft and its variation 1Ft . For this we trained a 4-layer
CNN model for the MNIST dataset (conv(32), conv(64),
dense(1024), dropout(0.2), dense(10)), a 7-layer CNN model
for the CIFAR10 dataset (conv(64), conv(128), conv(128),
conv(256), conv(256), conv(512), conv(10), averagepool),
and used the Inception V3model for the IMAGENET dataset.
First, using their validation datasets (10,000 images for
MNIST and CIFAR10, and 50,000 images for IMAGENET),
we calculated the statistical parameters of DNN outputs,
which are shown in Table 1.We applied random uj to calculate
output variation1Ft . Second, we added noise with various σ
to the outputs and calculated output SNR and ACC degrada-
tion. The results in Fig. 2(a) clearly show that there is almost
no ACC degradation when noise σ ≤ 0.02. From Fig. 2(b)
we also find that the output SNR is high.

Furthermore, using themean1Ft data in Table 1, we calcu-
lated the SNRs of A of the NES attack (Lemma 1) and showed
them in Fig. 2(b). The SNRs were drastically reduced to very
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FIGURE 2. (a) Classification accuracy degradation due to noise
perturbation. (b) SNR of noisy model outputs F (x)+ v (Output) and SNR
of gradient multiplication factor A (Grad).

small numbers. At σ = 0.01, the SNRs were−66dB,−34dB
and −106dB for the MNIST, CIFAR10 and IMAGENET
models, respectively. Such low SNRs made A completely
different from a.

Next, to evaluate the QC ratio R with (6), we assume
η = ε = 0.01, a = 0.1, λ = 2, v0 = 1. The increase of
R as a function of σ is shown in Fig. 3(a). At σ = 0.01,
we have R = 9×106, 5×103, 9×1010 for the three models,
respectively. Considering that today’s state-of-the-art attack
methods need around 103 queries to attack MNIST/CIFAR10
images and 105 queries to attack IMAGENET images, small
noise perturbation with σ = 0.01 would increase the number
of queries to 106 to 1015, prohibitively high to attackers. Note
that the much smaller median 1Ft values shown in Table 1
will lead to even higher QCs.

From Fig. 3(a), for attackers with 1 million query bud-
get, the defender can simply add very small noise with
σ = 0.001, 0.01, and 0.0001 to mitigate them over the
MNIST, CIFAR10 and IMAGENET datasets, respectively.
Even smaller noise, such as σ ≤ 10−4, is effective for
well-trained models (such as MNIST) or models with a large
number of classes (such as IMAGENET) that have very small
1Ft . The defender can conveniently apply appropriate small
noise according to its output parameters and required security
level.

FIGURE 3. (a) Ratio R of query counts of noisy case to noiseless case.
(b) Number of repeated queries N required to estimate a so that
P[â < 0] < 0.3 when a > 0.

Finally, to evaluate the QC of EOT-based countermeasure,
we would like to calculateN of (8). Adopting mean Ft (x) and
β data in Table 1, ε = 0.3 and a = 1, theN values as function
of σ are shown in Fig. 3(b). A huge number of repeated
queries was needed to estimate each gradient gj, which made
this countermeasure technique impractical. Especially, when
σ ≥ 10−4, no realistic N could be found to estimate the
gradient gj to the correct direction with 70% probability.

B. EXPERIMENTS OVER TARGETED ATTACKS
From Section III-B, the QC needed for generating an adver-
sarial image under our noise perturbation defense can be 1015

or more. This means that it is computationally prohibitive to
conduct experiments to search for the limit of QC. Consid-
ering this, as an alternative, instead of looking for QC limit,
we followed the common practice to look for ASR under a
pre-set realistic QC in our subsequent experiments.

We conducted experiments on the three widely used
benchmark datasets in adversarial machine learning:
MNIST, CIFAR10 and IMAGENET. We randomly sampled
1, 000 images from the validation dataset for both MNIST
and CIFAR10 to evaluate the performance of attack and
defense algorithms. For IMAGENET, we randomly sampled
200 images from the validation dataset. We stuck to the
default MNIST and CIFAR10 models used in the original
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TABLE 2. Targeted soft-label attacks: Attack success rate (ASR%) versus defense noise standard deviation σ . ZOO [6], ZOO+AE and AZ+AE and AZ+Bi
(AutoZOOM) [7], GenAttack [11], SimBA-pixel and SimBA-DCT [12], NES [8] and NES/PI (NES Partial Information attack where only the top-1 pick’s
confidence score is available [8]). QC limit is the maximum number of iterations the attack algorithms run.

attack source code. For IMAGENET, all the attack algorithms
used the pretrained Inception V3 model with a clean ACC
of 0.78.

We experimented with a list of state-of-the-art black-box
attack algorithms. For soft-label attacks, we experimented
with ZOO [6], ZOO+AE and AZ+AE and AZ+Bi
(AutoZOOM) [7], GenAttack [11], SimBA-pixel and
SimBA-DCT [12], P-RGF [20], NES [8] and NES/PI (NES
Partial Information attack where only the top-1 pick’s
confidence score is available [8]). For hard-label attacks,
we experimented with OPT attack [9], Sign-OPT attack [10],
NES/Label-Only attack [8], Boundary attack [13], and Hop-
SkipJump attack [35]. We considered only the `2 attack
version of these algorithms. Noise with standard deviation
σ from 1e-6 to 0.1 was added to the softmax logit in the
range of [0, 1]. We compared the performance of our defense
algorithm with the JPEG Compression [15] and Input Ran-
domization [22] defense algorithms.

For fair comparison, we used the original source code
of the attack algorithms with their default hyper-parameter
settings (represented as no-noise results). Especially, default
QC limit was kept, which was in fact set as the maximum
number of attack iterations. We inserted our noise addition
defense subroutine to the source code. In practice, we could
not add truly i.i.d. noise since the DNN should have softmax
outputs in [0, 1]. We replaced negative elements with their
absolute values and clipped the values over 1. The ACC of
the noise perturbed DNN is not shown because the model
accuracy degrades very little as shown in Fig. 2(a).

1) ASR OF TARGETED ATTACKS
Table 2 shows the ASR of the soft-label attack methods under
our proposed noise perturbation defense method. Compared
with near 100% ASR of the original noiseless case, the ASR
of all the attack methods reduced significantly in presence of

the proposed defense. On MNIST, small noise with standard
deviation as small as σ = 0.001 was enough to degrade ASR
from 100% to below 20%. On CIFAR10, small noise with σ
as small as 0.01 was enough to degrade ASR to below 20%.
Note that ASR can not be smaller than 10% theoretically for
these two datasets because a random guess among 10 classes
will result to 10% correctness. On IMAGENET, even smaller
noise with σ as small as 10−4 was enough to reduce ASR
to below 20%. Note that adding such small noise to DNN’s
output would lead to negligible (near 0%) ACC degradation
according to Fig. 2(a). All these results fit well with our anal-
ysis in Section III-B and numerical results in Section IV-A.
By all means, QC over 1015 is needed to break our noise
perturbation defense over IMAGENET, which is much higher
than the preset QC limits in these attack algorithms.

For hard-label attacks, experiment results in Table 3
showed that a low noise standard deviation σ = 0.001 was
effective and σ = 0.01 successfully reduced ASR to below
25%. Note that the observation in Fig. 2(b), i.e., the ACC
did not degrade for such small σ , was for normal images
with high enough classification confidence only. The added
noise could change the top-1 labels in case the classification
confidence was not high enough, which happened frequently
in the mid of the attacker’s optimization procedure. This
prevented the attack algorithm from converging. We should
also note that in hard-label attacks, the attacker needs a large
number of queries, over 2.5 million queries, to generate an
adversarial image even when there is no noise perturbation.
This is because the gradient is already very noisy with low
SNR.

2) ASR COMPARISON WITH EXISTING DEFENSE METHODS
In Table 4 we compare the output noise perturbation defense
method with two existing defense algorithms: JPEG Com-
pression [15] and Input Randomization [22]. As seen from
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TABLE 3. Targeted hard-label attacks: Attack success rate (ASR%) of the hard-label OPT attack [9], Sign-OPT attack [10], NES/Label-Only attack [8],
Boundary attack [13], and HopSkipJump attack [35].

TABLE 4. ASR (%) comparison of three defense methods: output noise
perturbation method, and two input randomization methods. Soft-label
targeted attack.

the table, the proposed output noise perturbation method had
the best defense result with the lowest ASR. Specifically, the
two existing methods could not mitigate NES and GenAttack
attacks on IMAGENET data satisfactorily, while our output
noise perturbation method could reduce the ASR to near 0%.

3) QUANTIZATION AND OUTPUT-CORRELATED NOISE
For quantization noise, we quantized the outputs from 32-bit
to 2-, 4-, and 8-bit. For output-correlated noise, the noise was
generated as v = αF(x) + ε, where α was the correlation
coefficient and ε ∼ N (0, 10−16I ) was the residual noise
with a very small standard deviation 10−8. Results in Table 5
clearly show that quantization did not mitigate the attacks.
There was no change in ASR between the original (32-bit
float) and the quantized cases. Similarly, correlated noise
could not mitigate the attacks as well. The slight reduction
in ASR at α = 0.001 and α = 0.1 was solely caused by the
small residual noise ε.

TABLE 5. ASR (%) of the ZOO and AutoZOOM black-box attack algorithms
under quantization noise and output-correlated noise. Soft-label targeted
attack.

Robust to Attacker’s Countermeasures: We evaluated the
performance of the output noise perturbation method under
attacker’s countermeasures or adaptive attacks. We consid-
ered that the attackers changed the parameter β of (4) or
took EOT-like countermeasures, where the attackers used

N repeated queries to average each gj (8), or used more
non-repeated queries (large J ) to look for better average
gradients (3).

First, we experimented with the NES targeted attack where
the attackers chose various β to optimize attacks. Results
shown in Table 6 clearly demonstrate that if β was deviated
from the default (optimal) value of 1e-3, the ASR degraded.
Thismeans that our defensewas robust to this type of adaptive
attack.

TABLE 6. Attack success rate (ASR%) of the NES targeted attack [8] under
noise perturbation defense along with the countermeasure where the
attacker used different β. IMAGENET dataset. β =1e-3 is the default value.

Second, for the countermeasure with N repeated queries,
from the results in Table 7, we can say that our method
was robust against this type of EOT-like countermeasures.
There was no drastic change in ASR even when queries
were increased to N = 1000, which means 3 orders of
magnitude more QCs. Finally, for the countermeasure with

TABLE 7. Attack success rate (ASR) of the AutoZOOM targeted attack [7]
under noise perturbation defense along with the countermeasure where
the attacker used N repeated queries to average gradients.

TABLE 8. Attack success rate (ASR) of the NES [8] and P-RGF [20] under
noise perturbation defense along with the countermeasure where the
attacker used higher J non-repeated queries to average gradients. Noise
standard deviation σ = 10−4. IMAGENET.
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TABLE 9. Untargeted soft-label attacks: Attack success rate (ASR%) versus defense noise standard deviation σ . ZOO [6], AZ+AE [7], SimBA-pixel,
SimBA-DCT [12], and P-RGF attack [20].

TABLE 10. Untargeted hard-label attacks: Attack success rate (ASR%) of the hard-label OPT attack [9], Sign-OPT attack [10], Boundary attack [13], and
HopSkipJump attack [35].

larger J values, while the original NES and P-RGF attack
algorithms both used J = 50, we experimented with J =
100 and the results are summarized in Table 8. We can see
that using a higher J did not necessarily lead to better ASR.
The results demonstrated that our noise perturbation method
was also robust to this type of countermeasures. Note that the
ASR of the untargeted attack (P-RGF) critically depends on
the distortion threshold. We used the original relatively high
distortion threshold for P-RGF which resulted in relatively
high ASR.

C. EXPERIMENTS OVER UNTARGETED ATTACKS
For untargeted attacks, we also used their original source code
with their default hyperparameters and just inserted our noise
addition subroutine to the source code. The ASR results are
shown in Table 9 for soft-label attacks and Table 10 for hard-
label attacks. As can be seen, the additive noise with σ =
0.01 successfully mitigated all these attack methods.

A special note is that although the noise perturbation
method could not be applied to mitigate transfer-learning
attacks, this experiment demonstrated that the method was
effective against the transfer-learning strengthened attack P-
RGF [9]. The P-RGF attack applied a transfer-learning model
to assist gradient estimation. Experimental data in Table 9
showed that the P-RGF had ASR reduced from 98% to 36%
under σ = 0.01. The relatively high ASR of 36% was due to
the strong transfer model and the larger L2 distortion thresh-
old used in the original source code. It is well known that

TABLE 11. ASR (%) comparison of three defense methods in untargeted
attack setting.

untargeted attacks can be always successful as long as large
distortion can be allowed. The ASR would drop to very low
levels if the transfer model did not fit well with the black-box
DNN or a small L2 distortion level was used. As a matter
of fact, the ASR of pure transfer-learning attacks, especially
targeted attacks, is very low in practical applications [36].

In Table 11 we compare the noise perturbation defense
method with two existing defense algorithms: JPEG Com-
pression [15] and Input Randomization [22]. As seen from
the table, the proposed noise perturbationmethod had the best
defense result.

D. DISTORTION AND SAMPLE IMAGES OF
TARGETED/UNTARGETED ATTACKS
There were some successful adversarial images depending
on the level of noise perturbations. We are interested to
check whether these images were truly successful attacks.
A successful attack requires low enough distortion. There-
fore, we checked the L2 distortion of these adversarial images.
The comparison of L2 distortion between the noiseless attacks
and noise defenses is shown in Table 12. We can see that
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TABLE 12. Per-pixel L2 distortion (×10−4) versus noise perturbation standard deviation σ .

FIGURE 4. IMAGENET successful adversarial samples. From top to
bottom: Samples obtained by NES (targeted), AutoZOOM (untargeted),
P-RGF (untargeted) attack algorithms, respectively. From left to right:
Original images and adversarial images obtained at
σ = 0,10−6,10−5,10−4,10−3,10−2,10−1, respectively.

the L2 distortion increased with noise level σ . The distortion
under σ = 0.01 was several times larger than those of
noiseless attack. This means that even if the attacks were con-
sidered successful, the adversarial samples had high distor-
tion. On the IMAGENET dataset, the ZOO and AutoZOOM
algorithms had no data in targeted attacks because their ASR
was 0. P-RGF, NES, AutoZOOM, and ZOO had L2 distortion
thresholds ranked from large to small. Their ASR also ranked
from high to low under noise perturbation.

FIGURE 5. MNIST and CIFAR10 successful adversarial samples obtained
by AutoZOOM. Top: targeted attack. Bottom: untargeted attack. From left
to right: Original images, Adversarial outputs at
σ = 0,10−6,10−5,10−4,10−3,10−2,10−1.

Fig. 4 shows some sample IMAGENET images generated
by the adversarial algorithms. Heavier distortions can be
seen when σ ≥ 10−4. Especially, some images obtained
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by the NES targeted attacks were black-out but were still
classified as successful attacks. Fig. 5 shows the visual effects
of adversarial MNIST and CIFAR10 images. Similarly, the
adversarial examples at higher σ could no longer deceive
human perception, especially in targeted attacks.

V. CONCLUSION
In this paper, we studied the addition of white noise to DNN’s
output as a defense against black-box adversarial attacks.
Noisy gradient is theoretically analyzed, which shows that
the added noise is drastically amplified by the small logit
variation. Small noise is thus effective to mitigate attacks
while without degrading the DNNperformance. The trade-off
between the defender’s noise level and the attacker’s query
count is analyzedmathematically. Extensive experiments ver-
ified the theoretical analysis and demonstrated that white
noise perturbation can effectively mitigate black-box attacks
under realistic query cost constraints.

APPENDIX A
PROOF OF THEOREM 1
As outlined in Section III-B, the NES targeted attack algo-
rithm minimizes the cross-entropy loss

f (x) = − logFt (x) (9)

assuming the label is hot-one coded, where Ft (x) is the DNN
output corresponding to the target class t . The NES algorithm
minimizes the loss iteratively via gradient descent and in each
iteration the gradient is estimated as

ḡ =
1
J

J∑
j=1

1
β
ujf (x + βuj), (10)

where J queries with random direction tensors uj are con-
ducted to obtain DNN output Ft (x + βuj) as well as loss
f (x + βuj). Antithetic sampling is adopted in [8] which
changes (10) to (3). Antithetic sampling means that both
x + βuj and x − βuj are used to query the DNN.

To study the noise perturbation effect on the estimated
gradient, it is sufficient to focus on just

gj = uj
1
β
log

Ft (x − βuj)
Ft (x + βuj)

. (11)

To simplify notation, we canwrite gj as the attacker-generated
tensor uj multiplying a scalar multiplication factor a, i.e.,

gj = auj, a =
1
β
log h(x), h(x) =

Ft (x − βuj)
Ft (x + βuj)

. (12)

With white Gaussian noise v added to the DNN output F(x),
the equation (12) becomes

gj = Auj, A =
1
β
log h̃(x) (13)

where

h̃(x) =
Ft (x − βuj)+ vt (j+ J/2)

Ft (x + βuj)+ vt (j)
. (14)

The variables vt (j) and vt (j+ J/2) are the noises added to the
target class logits Ft (x + βuj) and Ft (x − βuj), respectively.
Note that in antithetic sampling, we denote the noise added
to the query Ft (x−βuj) as vt (j+J/2), where j+J/2 denotes
the (j+ J/2)th query.
The connection between the noiseless h(x) and the noisy

h̃(x) is

h̃(x) = h(x)
1+ vt (j+J/2)

Ft (x−βuj)

1+ vt (j)
Ft (x+βuj)

4
= h(x)Z , (15)

where we use the random variable Z to include all the noise
terms. As a result, we have

A = a+
1
β
logZ . (16)

Since Z is the ratio of two independent Gaussian random
variables, from [37] we can readily see that it can be approx-
imated as a single Gaussian random variable Z ∼ N (1, σ 2

Z )
with unit mean and variance σ 2

Z described by (4).
Furthermore, let Z = 1 + S, where S ∼ N (0, σ 2

Z ). From
the small noise Definition 1, we have that σ 2 is small enough
so that log Z = log(1+ S) ≈ S. Therefore, from (16) we can
get A ∼ N (a, σ 2

Z/β
2). Theorem 1 is proved.

Remark 1: To understand why the noisy gj can prevent
the NES attack, it is helpful to have some idea about the
value distribution of h(x), log h(x) and Z . Since β is very
small, we expect that h(x) is near 1 due to the bounded local
Lipschitz constant L. Then, log h(x) is around 0 and can be
positive or negative. The value of a can also be positive and
negative, and |a| is usually small. This means that the factor a
controls the gradient descent direction. The noise Z and thus
A make the estimated gradient gj = Auj randomized, with
the gradient descent direction randomized in particular. For
example, even if a is positive,Amay become negative (see the
numerical example in Remark 2). The random multiplication
factor A has an accurate probability density function

pA(x) = βeβ(x−a)
1

√
2πσZ

e
−

1
2σ2Z

e2β(x−a)

(17)

according to (16). However, (17) is too complex to conduct
our subsequent SNR and QC analysis. Therefore, we have
applied a further simplification to approximate A as a Gaus-
sian random variable.
Remark 2: As an example, let β = 10−3 as [8]. For a

well designed DNN, Ft (x) is usually around 1/C for a total
of C classes. We consider Ft (x) = 0.1, 0.01, respectively.
For positive a, we evaluate the probability that A becomes
negative, which means that the gradient search direction
becomes opposite to the true direction. With the cumulative
distribution function (CDF) PA[A < x] = PZ [Z < e−β(x−a)],
we can calculate PA[A < 0]. From the results shown in
Fig. 6, we can see that a very small noise standard deviation
σ = 10−3 is enough to make P[A < 0] ≈ 0.5.
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FIGURE 6. Probability of noisy multiplication factor A becoming negative
when the true value a is positive. β = 10−3.

APPENDIX B
PROOF OF LEMMA 1
From (3), i.e., the definition

a =
1
β
log

Ft (x − βuj)
Ft (x + βuj)

, (18)

we have

a2 =
1
β2

log2
(
1+

Ft (x − βuj)− Ft (x + βuj)
Ft (x + βuj)

)
≈

[
Ft (x − βuj)− Ft (x + βuj)

]2
β2F2

t (x + βuj)
. (19)

We have applied the approximation log(1 + x) ≈ x for
small x when deriving the approximation in (19). Because
‖Ft (x−βuj)−Ft (x+βuj)‖ ≤ 2β‖uj‖L, under the assumption
of small β, we can guarantee ‖Ft (x−βuj)−Ft (x+βuj)‖ �
Ft (x + βuj) and thus the validity of (19). From (19) and
utilizing the approximation logZ = Z − 1, the SNR is then

SNR =
a2

1
β2
E[(Z − 1)2]

=

[
Ft (x − βuj)− Ft (x + βuj)

]2
F2
t (x + βuj)σ

2
Z

. (20)

Replacing σ 2
Z with (3), after some straightforward deductions

we can get (5).
Next, to derive the simplified upper bound in (5), consider

the Lipschitz constraint assumption. From the left hand side
of (5), we get

SNR ≤
L24β2‖uj‖2F2

t (x − βuj)

σ 2[F2
t (x − βuj)+ F

2
t (x + βuj)]

. (21)

Without loss of generality, assuming ‖uj‖ = 1 and using
Ft (x − βuj) ≈ Ft (x + βuj), we get the SNR upper bound
in the right hand side of (5). The lemma is proved.
Remark 3: Note that the SNR can be calculated numeri-

cally without applying the approximation in (19). The rea-
son we apply the approximation here is to get a simplified
SNR expression that outlines the major contribution factor

1Ft = |Ft (x − βuj) − Ft (x + βuj)|. Note also that the
assumption of small β is not a severe constraint at all in
practice. In most black-box attacks, such as [7], β is selected
(and proved) to be less than or equal to the inverse of DNN
input dimension d . Obviously, d is much larger than the DNN
output dimension C (class number). Since Ft (x + βuj) on
average is around 1/C , β is thus much less than Ft (x + βuj)
in most cases. This may be violated occasionally, but such
occasional violations do not affect the SNR because the SNR
is the average over all possible DNN outputs Ft (x).

APPENDIX C
PROOF OF THEOREM 2
Consider the problem of minimizing

f (x) =
1
2
‖F(wx)− F(wx∗)‖2 (22)

with iterative gradient descent

xn+1 = xn−a
∂f (xn)
∂xn

, (23)

where a is a constant and small learning rate. In F(wx),
F denotes the mapping of DNN, w denotes the weight of the
input layer, and x denotes the input. For notation simplicity,
w and x are treated as matrix and vector. x∗ denotes the
optimal solution. In order for the gradient descent to converge
to x∗ from a starting point x0 so we can count the total
number of iterations, we have to assume that F(wx) is a
monotone function between the starting point wx0 and the
optimal point wx∗.

To further simplify our notation, without loss of general-
ity, we assume F(wx) is a monotonously decreasing func-
tion from wx0 to wx∗. We also assume wxn ≤ wx∗ for
n = 0, 1, · · · , which can be guaranteed with a small enough
learning rate a and a starting point wx0 ≤ wx∗. Our sub-
sequent deduction can be easily extended to include other
cases such as F(wx) monotonously increasing, or some ele-
ments of F(wx) monotonously increasing and others decreas-
ing, or some elements of wxn becomes greater than wx∗.
In these cases, we just need to treat each element in each case
individually.

The gradient is

∂f (xn)
∂xn

= wTF ′[F(wxn)− F(wx∗)] (24)

where F ′ denotes the derivative of F with respect to its
argument wxn and wT denotes the transposition of w. Then,
the gradient updating is

xn+1 = xn−awTF ′[F(wxn)− F(wx∗)]. (25)

Next, we consider

wxn+1 = wxn−awwTF ′[F(wxn)− F(wx∗)] (26)

instead to exploit the assumption of wxn ≤ wx∗. From the
Lipschitz assumption and monotonicity, we have F(wxn) −
F(wx∗) ≤ L(wx∗ − wxn) for some constant L. Therefore,

wxn+1 ≥ wxn−awwTF ′L(wx∗ − wxn). (27)
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Using wx∗ to subtract both sides, we get

wx∗ − wxn+1 ≤ wx∗ − wxn + aLwwTF ′(wx∗ − wxn)

= (I + aLwwTF ′)(wx∗ − wxn)

= (I + aLwwTF ′)n+1(wx∗ − wx0). (28)

Denote the largest eigenvalue of the matrix LwwTF ′ as−λ
where λ is a positive value. Note that the eigenvalues must
be negative because otherwise (28) does not converge, which
contradicts with the convergence assumption. In this special
case, F ′ is negative because F is assumed monotonously
decreasing. Let vn = ‖wx∗ − wxn‖. From (28), we have

vn ≤ |1− aλ|nv0, (29)

where v0 = ‖wx∗ − wx0‖ or the initial distance from wx∗.
If a is small so that (1 − aλ)n ≈ 1 − naλ, then, in order to
guarantee vn ≤ η where η is a small constant, the number of
iterations n must satisfy

Na ≥
1− η/v0

aλ
. (30)

Next, consider the case when the learning rate a is replaced
by the noisy learning rate A = a +

√
SNRv with noise v ∼

N (0, 1). Equation (28) becomes

wx∗ − wxn+1 ≤

(
n∏
i=0

(I + AiLwwTF ′)

)
(wx∗ − wx0) (31)

where Ai denotes the learning rate in the ith iteration.
Similarly, (29) becomes

vn ≤ v0
n−1∏
i=0

|1− Aiλ|. (32)

In order to guarantee vn ≤ η, a sufficient condition is

n−1∏
i=0

|1− Aiλ| ≤
η

v0
. (33)

If both a and SNR is small, then (33) can be simplified to

1− λ
n−1∑
i=0

Ai ≤
η

v0
, (34)

which leads to
n−1∑
i=0

Ai ≥
1− η/v0

λ
. (35)

Since Ai ∼ N (a, SNR) are independent Gaussian random
variables, in order to make

P

[
n−1∑
i=0

Ai <
1− η/v0

λ

]
≤ ε (36)

for some small probability ε, we need

(1− η/v0)/λ− na
√
nSNR

≤ 8−1(ε). (37)

Solving (37) for n, we get that the number of iterations needed
when the learning rate becomes random A must satisfy

NA ≥
1
4

[
−

1
√
SNR

8−1(ε)

+

√
1

SNR
8−2(ε)+ 4

1− η/v0
aλ

]2
. (38)

Using the lower bound of (30) and (38), we can get the ratio
of required iterations between the case of a and the case of A
as

R =
NA
Na

=

[
−

1
√
SNR

8−1(ε)+
√

1
SNR8

−2(ε)+ 4 1−η/v0
aλ

]2
4 1−η/v0

aλ

(39)

which is just (6). The theorem is proved.
Remark 4: First, the proof is easier to understand if we con-

sider w as a row vector and F as a scalar nonlinear monotone
function. We present the general case with the matrix w in
the proof. One can actually treat each row of w separately to
get the same result. Second, although R is defined as the ratio
of iterations, it equals to the ratio of query counts because
there are a fixed number of queries conducted to estimate the
gradients in each iteration.

Third, we argue that R can be used as an approximate
estimation ofQC(noise)/QC(noiseless), i.e., the ratio of QCs
between the case with noise perturbation and the case without
noise perturbation in our black-box attack and defense mod-
els. It is well known that the QC expression is hard or impos-
sible to derive for black-box attack to general DNNs because
F(x) is highly nonlinear/nonconvex and the black-box esti-
mated gradient is not the true gradient. The key concept of our
approach is that we consider a fixed optimization trajectory
of the attacker from a starting input x0 to the final adversarial
input x∗. This trajectory is obtained by the attack’s gradient
descent minimization without noise perturbation. Along this
trajectory, the mapping F(x) can approximately be assumed
as monotonously decreasing or piece-wise monotonously
decreasing from x0 to x∗. The attacker’s estimated gradients
can also be looked as true gradients with a on this trajectory.
The effect of noise perturbation is changing the value a in
each iteration to a random value A with certain SNR. As a
result, the model and assumptions we made for deriving
R in this theorem are valid for analyzing the DNN attack-
defense models. Therefore, it is reasonable to claim that if
the attacker uses Na iterations to get the adversarial input x∗,
it would needsR timesmore iterations in case the output noise
perturbation changes a to A.

Finally, based on theQC(noiseless) needed by the attackers
when there is no noise perturbation (which can be obtained by
experiments), we can estimate the QC(noise) needed when
there is noise perturbation by multiplying QC(noiseless)
with R. By this way, we can avoid the difficulty of find-
ing the QC(noise) directly with experiments. As shown by
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our analysis, noise perturbation may increase QC(noise) to
some computationally prohibitive level, such as 1015 or more.
When calculatingR numerically, we can use a very small η/v0
(because η is the desired small distance of final results wxn
to the targeting result wx∗ and v0 is the initial distance), and
a very small ε (because 1− ε is the confidence probability).
We can use the average of a defined in (3) as aλ in R. As a
matter of fact, because SNR is usually small, the valueR is not
very sensitive to these parameters. From (6), it can be easily
seen that R ≈ C0/SNR where C0 is a small constant.

APPENDIX D
PROOF OF THEOREM 3
Consider the targeted attack toward class t that is conducted
by minimizing the loss function

f (x) = log
Fmax(x)
Ft (x)

, (40)

where Fmax(x) = {Fi(x) : i = argmaxj Fj(x),∀j 6= t} is
the logit (softmax) value of the largest non-target element,
and Ft (x) is the logit value of the target element. Note that
this is just the C&W loss function max{0,maxj6=t logFj(x)−
logFt (x)}. The first max is skipped because we consider the
adversarial search stage when the target has not been reached
yet.

If the DNN adds noise v ∼ N (0, σ 2I ) to its output, then
the attacker’s loss becomes

f (x) = log
[F(x)+ v]max

[F(x)+ v]t
, (41)

where [F(x) + v]max and [F(x) + v]t denotes the
maximum-valued element (exclude the tth element) and
the tth element, respectively. According to the AutoZOOM
attack algorithm [7], the gradient estimator used by the
attacker is

gj =
1
β
uj
(
f (x + βuj)− f (x)

)
=

1
β
uj log

[F(x+βuj)+vj]max
[F(x+βuj)+vj]t
[F(x)+v]max
[F(x)+v]t

. (42)

where uj is the vector of gradient direction which is pre-set
and fixed, β is the smoothing parameter, vj is the noise added
by the DNN when the attacker queries with x + βuj.
The estimated gradient equals to the vector uj multiplying

a scalar multiplication factor A, i.e.,

gj = Auj, A =
1
β
log h̃(x), (43)

where

h̃(x) =
[F(x + βuj)+ vj]max/[F(x + βuj)+ vj]t

[F(x)+ v]max/[F(x)+ v]t
. (44)

Define the noiseless term

h(x) =
Fmax(x + βuj)/Ft (x + βuj)

Fmax(x)/Ft (x)
. (45)

Since the noise is small, the location of the maximum element
does not change almost surely. We have

h̃(x) = h(x)×
1+ vj,max/Fmax(x + βuj)

1+ vmax/Fmax(x)

×
1+ vt/Ft (x)

1+ vj,t/Ft (x + βuj)
, (46)

where vt and vj,t are the tth entry of the noise vectors v and vj,
respectively. The random variables vmax and vj,max are the
noises added to the maximum-valued elements of F(x) and
F(x + βuj), respectively.
Define

Z1 =
1+ vj,max/Fmax(x + βuj)

1+ vmax/Fmax(x)
, (47)

Z2 =
1+ vt/Ft (x)

1+ vj,t/Ft (x + βuj)
. (48)

Each of Z1 and Z2 is the ratio of two independent Gaussian
random variables and can be approximated as a single Gaus-
sian random variable [37]. Specifically,

Z1 ∼ N
(
1,

σ 2

F2
max(x)

+
σ 2

F2
max(x + βuj)

)
(49)

Z2 ∼ N
(
1,

σ 2

F2
t (x)
+

σ 2

F2
t (x + βuj)

)
(50)

The probability density function (PDF) pZ (z) of the product
Z = Z1Z2 can be found based on [38].
Define a = 1

β
log h(x). Then from (43) and (46) we have

A = a+
1
β
logZ1Z2. (51)

Therefore, we can see that noise perturbation randomizes
the AutoZOOM’s gradient estimation similarly as it does for
NES-based attack method.

To derive A’s distribution and SNR bound, when noise
variance σ 2 is small enough, we have logZ1 ≈ Z1 − 1 and
logZ2 ≈ Z2− 1. Therefore, A ≈ a+ 1

β
(Z1− 1)+ 1

β
(Z2− 1),

fromwhich we can verify (7). In addition, the SNR bound can
be proved following strictly the proof of (5). The theorem is
proved.
Remark 5:When deriving (46), we have assumed [F(x)+

v]max = Fmax(x) + vmax and also [F(x + βuj) + vj]max =

Fmax(x + βuj) + vj,max, which means small noise does not
change the index of the maximum-valued elements. This is
true almost surely under small noise perturbation. On the
other hand, the noisemay accidentally change the index of the
maximum-valued element. In this case, the two elements, old
Fmax(x) and new Fnewmax(x), have similar (almost identical)
values since even tiny noise can switch their order. Therefore,
(46) is still valid.

APPENDIX E
PROOF OF LEMMA 2
First, for output quantization, instead of outputting the full
precision 32-bit logit values, the DNN can output Q ≥ 2 bit
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quantized logit values. Note that 1-bit quantization is actually
hard-label outputs, and only the special hard-label attack
methods can work. It is well known that quantization method
introduces quantization noise. Under coarse quantization,
attacks with the cross-entropy loss do not work because a =
1/β log(Ft (x − βu)/Ft (x + βu)) quite often results in a = 0.
However, the attacks with the C&W loss still work well.
In other words, the quantization noise can not mitigate such
attacks. To explain it, let us look at the proof of Theorem 4 and
consider the noise term Z2. The noises are the quantization
residues of Ft (x) and Ft (x+βuj), whose quantized values are
the same, say Q, almost surely. This means vt = Ft (x) − Q
and vj,t = Ft (x + βuj)− Q. We then have

Z2 =
2− Q

Ft (x)

2− Q
Ft (x+βuj)

. (52)

Obviously, logZ2 is no longer randomly positive and nega-
tive. In other words, the variance of Z2 is zero. Therefore,
quantization noise can not mitigate the attacks.

Second, for output-correlated noise, let us look at the proof
of Theorem 1. If the noise v is correlated to the output Ft (x),
then we have vt (j) =

∑
i αiF

i
t (x + βuj) + ε for a very small

ε → 0, where αi are correlation coefficients. From (15), it is
easy to see that Z is now randomized by ε only, which means
a very small σ 2

Z with much-reduced noise perturbation effect.
The attack mitigation effect is also reduced.

APPENDIX F
PROOF OF THEOREM 4
Let us re-iterate the problem setting first. In order to improve
the accuracy of the estimation of gj, or specifically, the esti-
mation of

a =
1
β
log

Ft (x − βuj)
Ft (x + βuj)

, (53)

the attacker can repeatedly query the DNNwith inputs x−βuj
and x + βuj. The noisy outputs are Ft (x − βuj) + vt1,n and
Ft (x + βuj) + vt2,n in the nth query, where vt1,n and vt2,n
are independent Gaussian random variables N (0, σ 2), n =
1, · · · ,N . The attacker uses the query results to calculate yn
as

yn =
1
β
log

Ft (x − βuj)+ vt1,n
Ft (x + βuj)+ vt2,n

, (54)

for each n. From Theorem 1, we have

yn = a+
1
β
log zn, (55)

where zn ∼ N (1, σ 2
Z ). To simplify notation, we let

σ 2
Z = σ

2

(
1

F2
t (x − βuj)

+
1

F2
t (x + βuj)

)
≈

2σ 2

F2
t (x)

(56)

becauseFt (x−βuj) ≈ Ft (x+βuj). The problem is to estimate
a from yn, n = 1, · · · ,N . We would like to find the N that is
needed for estimating a reliably.

Lemma 3:Under small noise perturbation, the optimal esti-
mator for the attacker to estimate a from yn is the maximum
likelihood estimator

â =
1
N

N∑
n=1

yn −
1
β
σ 2
Z . (57)

Proof: The distribution of yn is

pY (yn) = βeβ(yn−a)pZ
(
eβ(yn−a)

)
. (58)

From the joint distribution p(y1, · · · , yN ) = 5N
n=1pY (yn),

we can obtain the maximum likelihood estimator by mak-
ing the derivative ∂log p(y1, · · · , yN )/∂a = 0. With some
straightforward deductions, we have

N∑
n=1

(
e2β(yn−a) − eβ(yn−a) − σ 2

Z

)
= 0. (59)

For small σ , log zn is close to 0. Therefore, β(yn − a) is also
very close to 0. We can apply the approximation ex ≈ 1+ x
to simplify (59) to

N∑
n=1

(
(1+2β(yn − a))−(1+ β(yn − a))−σ 2

Z

)
=0. (60)

Then (57) is readily available. �
Now we are ready to prove Theorem 3. From (57), after

some deductions, we can get

P[â < 0] = P

[
1
N

N∑
n=1

(
a+

1
β
log zn

)
<
σ 2
Z

β

]

= P

[
1
N

N∑
n=1

log zn < σ 2
Z − aβ

]
. (61)

According to Jensen’s inequality, 1/N
∑

n log zn ≤

log 1/N
∑

n zn. Therefore,

ε > P[â < 0]

≥ P

[
log

1
N

N∑
n=1

zn < σ 2
Z − aβ

]

= P

[
1
N

N∑
n=1

zn < eσ
2
Z−aβ

]
. (62)

Because 1/N
∑N

n=1 zn ∼ N
(
1, σ 2

Z/N
)
, (8) can be easily

found from (62). Theorem 3 is thus proved.
Remark 6: There are two ways for the attacker to esti-

mate â. Besides (57), the second way is that the attacker
calculates first

F̂1 =
1
N

N∑
n=1

(
Ft (x − βuj)+ vt1,n

)
, (63)

F̂2 =
1
N

N∑
n=1

(
Ft (x + βuj)+ vt2,n

)
, (64)
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and then estimates

ˆ̂a =
1
β
log

F̂1
F̂2
. (65)

In this case, we have the following result:
Lemma 4: Under small noise perturbation, we have
ˆ̂a ≈ â ≈ 1

N

∑N
n=1 yn if N is large.

Proof: First, from (57), if noise standard deviation σ 2
�

βF2
t (x), then â ≈

1
N

∑N
n=1 yn. Next, starting from (65), with

the definition of yn in (54), we have

ˆ̂a = a+
1
β
log

1
N

∑N
n=1

(
1+ vt1,n/Ft (x − βuj)

)
1
N

∑N
n=1

(
1+ vt2,n/Ft (x + βuj)

) . (66)

If the noise is small, we can apply the first-order Taylor series
approximation E[X/Y ] ≈ E[X ]/E[Y ] to get

ˆ̂a ≈ a+
1
β
log

(
1
N

N∑
n=1

zn

)
. (67)

Next, further applying first-order Taylor series approximation
logE[X ] ≈ E[X ]− 1, we have

ˆ̂a ≈ a+
1
β

(
1
N

N∑
n=1

zn − 1

)

= a+
1
Nβ

N∑
n=1

(zn − 1)

≈ a+
1
Nβ

N∑
n=1

log zn

=
1
N

N∑
n=1

(
a+

1
β
log zn

)

=
1
N

N∑
n=1

yn, (68)

which proves the lemma. �
Therefore, if σ 2 is small enough and N is large enough, the

estimator â in (57) and the estimator ˆ̂a in (65) give the same
result, both equal to 1/N

∑N
n=1 yn. As a result, this second

way needs the similar N repeated queries as (8) in order to
estimate the gradient up to certain accuracy.
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