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constraint in performance of modern wireless transceivers.
This problem is even more challenging for the fifth genera-
tion (5G) cellular system since 5G signals have extremely
high peak to average power ratio. Nonlinear equalizers that
exploit both deep neural networks (DNNs) and Volterra
series models are provided to mitigate PA nonlinear distor-
tions. The DNN equalizer architecture consists of multiple
convolutional layers. The input features are designed
according to the Volterra series model of nonlinear PAs. This
enables the DNN equalizer to effectively mitigate nonlinear
PA distortions while avoiding over-fitting under limited
training data. The non-linear equalizers demonstrate supe-
rior performance over conventional nonlinear equalization
approaches.
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INTEGRATING VOLTERRA SERIES MODEL
AND DEEP NEURAL NETWORKS TO
EQUALIZE NONLINEAR POWER
AMPLIFIERS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims benefit of priority under 35
US.C. § 119(e) from, and is a non-provisional of, U.S.
Provisional Patent Application No. 62/819,054, filed Mar.
15, 2019, the entirety of which is expressly incorporated
herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of equalization of
nonlinear radio frequency power amplifiers, and more par-
ticularly to a neural network implementation of radio fre-
quency power amplifier equalization

BACKGROUND OF THE INVENTION

Most modern wireless communication systems, including
the fifth generation (5G) cellular systems, use multi-carrier
or OFDM (orthogonal frequency division multiplexing)
modulations whose signals have extremely high peak to
average power ratio (PAPR). This makes it challenging to
enhance the efficiency of power amplifiers (PAs). Signals
with high PAPR need linear power amplifier response in
order to reduce distortion. Nevertheless, PAs have the opti-
mal power efficiency only in the nonlinear saturated
response region. In practice, the PAs in the wireless trans-
ceivers have to work with high output backoff (OBO) in
order to suppress nonlinear distortions, which unfortunately
results in severe reduction of power efficiency [1]. This
problem, originated from the nonlinearity of PAs, has been
one of the major constraints to enhance the power efficiency
of modern communication systems.

Various strategies have been investigated to mitigate this
problem. The first strategy is to reduce the PAPR of the
transmitted signals. Many techniques have been developed
for this purpose, such as signal clipping, peak cancellation,
error waveform subtraction [2]. For OFDM signals, pilot
tones and unmodulated subcarriers can be exploited to
reduce PAPR with some special pre-coding techniques [3].

The second strategy is to linearize the PAs at the trans-
mitters. One of the dominating practices today is to insert a
digital pre-distorter (DPD) before the PA, which distorts the
signals appropriately so as to compensate for the nonlinear
PA response [4] [5] [6]. DPD has been applied widely in
many modern transmitters [2].

The third strategy is to mitigate the nonlinear PA distor-
tions at the receivers via post-distorter equalization [7] [8]
[9]. The solution presented in [10] develops a Bayesian
signal detection algorithm based on the nonlinear response
of the PAs. However, this method works for the simple
“AM-AM AM-PM” nonlinear PA model only. Alternatively,
as a powerful nonlinear modeling tool, artificial neural
networks have also been studied for both nonlinear model-
ing of PAs [11] [12] and nonlinear equalization [13] [14]
[15].

One of the major design goals for the 5G systems is to
make the communication systems more power efficient. This
needs efficient PAs, which is unfortunately more challenging
since 5G signals have much higher PAPR and wider band-
width [16] [17]. This is an especially severe problem for cost
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and battery limited devices in massive machine-type com-
munications or internet of things (IoT). Existing nonlinear
PA mitigation strategies may not be sufficient enough. PAPR
can be reduced to some extent only. DPD is too complex and
costly for small and low-cost 5G devices. Existing DPD and
equalization techniques have moderate nonlinear distortion
compensation capabilities only.

As a matter of fact, the nonlinear equalization strategy is
more attractive to massive MIMO and millimeter wave
transmissions due to the large number of PAs needed [18]
[19] [20]. Millimeter wave transmissions require much
higher transmission power to compensate for severe signal
attenuation. Considering the extremely high requirement on
PA power efficiency and the large number of PAs in a
transmitter, the current practice of using DPD may not be
appropriate due to implementation complexity and cost.

There are various types of intermodulation that can be
found in radio systems, see, Rec. ITU-R SM.1446: Type 1
Single channel intermodulation: where the wanted signal is
distorted by virtue of non-linearities in the transmitter; Type
2 Multichannel intermodulation: where the wanted signals
of multi channels are distorted by virtue of non-linearities in
the same transmitter; Type 3 Inter transmitter intermodula-
tion: where one or more transmitters on a site intermodulate,
either within the transmitters themselves or within a non-
linear component on site to produce intermodulation prod-
ucts; Type 4 Intermodulation due to active antennas: the
multicarrier operating mode of an active antenna, along with
the non-linearity of amplifiers, originates spurious emissions
under the form of intermodulation signals; and Type 5
Intermodulation due to passive circuits: where transmitters
share the same radiating element and intermodulation occurs
due to non-linearities of passive circuits. See, Rep. ITU-R-
SM.2021

An amplifier can be characterized by a Taylor series of the
generalized transfer function [Chadwick, 1986]

igtk eptkotentkaen Hk e ke o+

where i, is the quiescent output current, k1, k2, etc. are
coeflicients and eIN represents the input signal. When two
sinusoidal frequencies w,=2xf; and w,=2xf, of the ampli-
tude a, and a, are applied to the input of the amplifier, the
input signal is:

en=ay COS W+, COS Wyt

and the output i,,,,-may be shown to be the sum of the DC
components:

k k.
iour =g + 72(51% +add) + §4(3a‘1‘ +124% +3ad)

fundamental components:

+(kya+¥akaa, 3435k aa, a7+ Seksa, 1 5ksa, 2,2+
15%ksa 5 )cos ot

+(kya,+¥4k33,>+35K 3, %a,+56ksa, +194ksa, %a, 3+
15%ksa, *as)cos w,t

2nd order components:

+(Vokoa, 2+ ok a, 435k 0,28, )cos 20t
1 2.1 4.3 2,2
+(Y2koay +Yokaa f+32k 8,757 )cos 205t

+(kya,8,+30k,a Part35k,a 8, cos (0, £0,)t
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3rd order components:

+(Vaksa 3+¥%isksa, +aksa, 2a5%)cos 30t
1 3,5 5,5 2, 3
+(Yakza, +716ksa,”+Yaksa “ay”)cos 3wt
3, 24 45 4, 15 2.3
+(¥akza, “ar)+¥aksa, "+ Ykksa, “a,”)cos (0 x2m,)t

+(¥ka,a,2+%4ksa a5 134k sa, 22,2 )cos(m, 20 )t
4th order components:

+lgk,a,? cos 4w t+Yek,a? cos st

+15k,a,%a, cos(3m xm,)t+¥ak,a ey cos(20, £2m,)t+
15k,4a,85°c08 (00 £3m,)t

and 5th order components:

+Vicksa,> cos 5w t+Visksa,® cos Sw,t
+¥ieksa,*a, cos(4Q xm,)t+Vkksa a2 cos(3w 2wt

+3%4ksa,%a,3 cosQm £3m,)t+isksa, a,* cos(w, x4t

The series may be expanded further for terms in IN etc.
if desired. All the even order terms produce outputs at
harmonics of the input signal and that the sum and difference
products are well removed in frequency far from the input
signal. The odd order products, however, produce signals
near the input frequencies f1+2f2 and f2+2f1. Therefore, the
odd order intermodulation products cannot be removed by
filtering, only by improvement in linearity.

Assuming class A operation, a,=a, and k,, ks are very
small, the 3rd order intermodulation product IM3 becomes
proportional to a;. That means that the cube of the input
amplitude and the graph of the intermodulation products will
have a slope of 3 in logarithmic scale while the wanted
signal will have the slope of 1. Second order products IM2
can be similarly calculated, and the graph for these has a
slope of two. The points where these graphs cross are called
3rd order intercept point IP3 and 2nd order intercept point
1P2, respectively. IP3 is the point where the intermodulation
product is equal to the fundamental signal. This is a purely
theoretical consideration, but gives a very convenient
method of comparing devices. For example, a device with
intermodulation products of -40 dBm at 0 dBm input power
is to be compared with one having intermodulation products
of' =70 dBm for -10 dBm input. By reference to the intercept
point, it can be seen that the two devices are equal.

The classical description of intermodulation of analogue
radio systems deals with a two-frequency input model to a
memoryless non-linear device. This non-linear characteristic
can bedescribed by a function f(x), which yields the input-
output relation of the element device. The function, f is
usually expanded in a Taylor-series and thus produces the
harmonics and as well the linear combinations of the input
frequencies. This classical model is well suited to analogue
modulation schemes with dedicated frequency lines at the
carrier frequencies. The system performance of analogue
systems is usually measured in terms of signal-to-noise
(S//V) ratio, and the distorting intermodulation signal can
adequately be described by a reduction of S/N.

With digital modulation methods, the situation is changed
completely. Most digital modulation schemes have a con-
tinuous signal spectrum without preferred lines at the carrier
frequencies. The system degradation due to intermodulation
is measured in terms of bit error ratio (BER) and depends on
a variety of system parameters, e.g. the special modulation
scheme which is employed. For estimation of the system
performance in terms of BER a rigorous analysis of non-
linear systems is required. There are two classical methods

10

15

20

25

30

35

40

45

50

[

0

65

4

for the analysis and synthesis of non-linear systems: the first
one carries out the expansion of the signal in a Volterra series
[Schetzen, 1980]. The second due to Wiener uses special
base functionals for the expansion.

Both methods lead to a description of the non-linear
system by higher order transfer functions having n input
variables depending on the order of the non-linearity. Two
data signals x,(t) and x,(t), originated from x(t), are linearly
filtered by the devices with the impulse responses h,(t) and
h,(t) in adjacent frequency bands. The composite summed
signal y is hereafter distorted by an imperfect square-law
device which might model a transmit-amplifier. The input-
output relation of the non-linear device is given by: z(t)=y
(H+ay*(t)

The output signal z(t) including the intermodulation noise
is caused by non-linearities of third order. For this reason,
the imperfect square-law device is now replaced by an
imperfect cubic device with the input-output relation: z(t)=
y(O)+ay>(t)

There are several contributions of the intermodulation
noise falling into the used channels near f,.

Linearization of a transmitter system may be accom-
plished by a number of methods:

Feedforward linearization: This technique compares the
amplified signal with an appropriately delayed version
of the input signal and derives a difference signal,
representing the amplifier distortions. This difference
signal is in turn amplified, and subtracted from the final
HPA output. The main drawback of the method is the
requirement for a 2nd amplifier—the technique can,
however, deliver an increase in output power of some
3 dB when used with a TWT.

Feedback linearization: In audio amplifiers, linearization
may readily be achieved by the use of feedback, but this
is less straightforward at high RF frequencies due to
limitations in the available open-loop amplifier gain. It
is possible, however, to feedback a demodulated form
of the output, to generate adaptive pre-distortion in the
modulator. It is clearly not possible to apply such an
approach in a bent-pipe transponder, however, where
the modulator and HPA are rather widely separated.

Predistortion: Rather than using a method that responds to
the actual instantaneous characteristics of the HPA, it is
common to pre-distort the input signal to the amplifier,
based on a priori knowledge of the transfer function.
Such pre-distortion may be implemented at RF, IF or at
baseband. Baseband linearizers, often based on the use
of look-up tables held in firmware memory are becom-
ing more common with the ready availability of VLSI
techniques, and can offer a compact solution. Until
recently, however, it has been easier to generate the
appropriate pre-distortion function with RF or IF cir-
cuitry.

RF amplifier linearization techniques can be broadly

divided into two main categories:

Open-loop techniques, which have the advantage of being
unconditionally stable, but have the drawback of being
unable to compensate for changes in the amplifier
characteristics.

Closed-loop techniques, which are inherently self-adapt-
ing to changes in the amplifier, but can suffer from
stability problems.

Predistortion involves placing a compensating non-linear-
ity into the signal path, ahead of the amplifier to be linear-
ized. The signal is thus predistorted before being applied to
the amplifier. If the predistorter has a non-linearity which is
the exact inverse of the amplifier non-linearity, then the
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distortion introduced by the amplifier will exactly cancel the
predistortion, leaving a distortionless output. In its simplest
analogue implementation, a practical predistorter can be a
network of resistors and non-linear elements such as diodes
or transistors. Although adaptive predistortion schemes have
been reported, where the non-linearity is implemented in
digital signal processing (DSP), they tend to be very com-
putationally or memory intensive, and power hungry.

Feedforward [Black, 1928] is a distortion cancellation
technique for power amplifiers. The error signal generated in
the power amplifier is obtained by summing the loosely
coupled signal and a delayed inverted input signal, so that
the input signal component is cancelled. This circuit is called
the signal cancelling loop. The error signal is amplified by
an auxiliary amplifier, and is then subtracted from the
delayed output signal of the power amplifier, so that the
distortion at the output is cancelled. This circuit is called the
error cancelling loop. It is necessary to attenuate the input
signal component lower than the error signal at the input of
the auxiliary amplifier, so that the residual main signal does
not cause overloading of the auxiliary amplifier, or does not
cancel the main signal itself at the equipment output.

Negative feedback [Black, 1937] is a well-known linear-
ization technique and is widely used in low frequency
amplifiers, where stability of the feedback loop is easy to
maintain. With multi-stage RF amplifiers however, it is
usually only possible to apply a few dB of overall feedback
before stability problems become intractable [Mitchell,
1979]. This is mainly due to the fact that, whereas at low
frequency it can be ensured that the open-loop amplifier has
a dominant pole in its frequency response (guaranteeing
stability), this is not feasible with RF amplifiers because
their individual stages generally have similar bandwidths.
Of course, local feedback applied to a single RF stage is
often used, but since the distortion reduction is equal to the
gain reduction, the improvement obtained is necessarily
small because there is rarely a large excess of open loop gain
available.

At a given center frequency, a signal may be completely
defined by its amplitude and phase modulation. Modulation
feedback exploits this fact by applying negative feedback to
the modulation of the signal, rather than to the signal itself.
Since the modulation can be represented by baseband sig-
nals, we can successfully apply very large amounts of
feedback to these signals without the stability problems that
beset direct RF feedback. Early applications of modulation
feedback used amplitude (or envelope) feedback only,
applied to valve amplifiers [Arthanayake and Wood, 1971],
where amplitude distortion is the dominant form of non-
linearity. With solid-state amplifiers however, phase distor-
tion is highly significant and must be corrected in addition
to the amplitude errors.

For estimation of the system performance in terms of
BER a rigorous analysis of non-linear systems is required.
There are two classical methods for the analysis and syn-
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thesis of non-linear systems: the first one carries out the
expansion of the signal in a Volterra series [Schetzen, 1980].
The second due to Wiener uses special base functionals for
the expansion. These are the Wiener G -functionals which
are orthogonal if white Gaussian noise excites the system. It
is the special autocorrelation property of the white Gaussian
noise which makes it so attractive for the analysis of
non-linear systems. The filtered version of AWGN, the
Brownian movement or the Wiener process, has special
features of its autocorrelation which are governed by the
rules for mean values of the products of jointly normal
random variables.

The non-linear system output signal y(t) can be expressed
by a Volterra series:

y(O)=Hy+H +H,+

where Hi is the abbreviated notation of the Volterra operator
operating on the input x(t) of the system. The first three
operators are given in the following. The convolution inte-
grals are integrated from —oco, to +co.

Holx(®)]=ho
H,\[x()]=fh, (v)x(t-t)dr

Hy[x(0]=lT (v, )= )x(t-T2)dv dv;

The kernels of the integral operator can be measured by
a variation of the excitation time of input pulses, e.g. for the
second order kernel h,(T;, T,): x(1)=3(t—T,)d(t—T,). A better
method is the measurement of the kernel by the cross-
correlation of exciting white Gaussian noise n(t) as input
signal with the system output y,(t). These equations hold, if:

D,,,(1)=48(v)

is the autocorrelation function of the input signal x(t)=n(t)
(white Gaussian noise) where A is the noise power spectral
density. The first three kernels are given then by:

ho = yo(D)
1
hi(e) = 2 yi(onl-o)

)
(1, 02) = 5 y2(Onlt = o n(t — 02)

The overline denotes the expected value, or temporal
mean value for ergodic systems.

The method can be expanded to higher order systems by
using higher order Volterra operators H,. However, the
Volterra operators of different order are not orthogonal and,
therefore, some difficulties arise at the expansion of an
unknown system in a Volterra series.

These difficulties are circumvented by the Wiener G-func-
tionals, which are orthogonal to all Volterra operators with
lower order, if white Gaussian noise excites the system.

TABLE 1

Volterra
kernels

Direct Fourier Transform Laplace transform

Linear
(1° order)

Quadratic
(2" order)

oo
Hy = Hw) = | f hy(r1)- expl= jwry) - dry

+oo oo
H, = |Hy(w)| = ‘f f ha (71, 72)-exp[- jw(T) + T2)]-dT1dTs

Hy() =k, L)

Ho(p) = kyL,(2p)
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TABLE 1-continued

Volterra

kernels Direct Fourier Transform

Laplace transform

Cubic

+oo 0o oo
(3 order) Hz =|H3(w)l = ‘f f f h3(T1, T2, 73) - expl— jw(Ty + 72 + 73)]- dT1dTrdT3

Hs(p) = k3'L,(3p)

See, Panagiev, Oleg. “Adaptive compensation of the
nonlinear distortions in optical transmitters using predistor-
tion.” Radioengineering 17, no. 4 (2008): 55.

The first three Wiener G -functionals are:

Golx(@)]=ko
Gy [k (v x (=7 )ty

Go (@], T)x(=7)x(—=7,)dT dTo~
Alf(xy , ©y)dvy

G x50y, T2, THX(E-T(2-T2)
x(t-v3)dv, d0dty-34 (k5T To, T)
x (t=t)d T, dv,

For these functionals hold:

H, [n({0]G,[#(H)]=0 for m<n

if the input signal n(t) is white Gaussian noise.

The two data signals x, (t) and x,(t), from a single signal
X(t), are linearly filtered by the devices with the impulse
responses h,(t) and h,(t) in adjacent frequency bands. The
composite summed signal y is hereafter distorted by an
imperfect square-law device which might model a transmit-
amplifier. The input-output relation of the non-linear device
is given by:

2Oy +ay ()
The output signal z(t) is therefore determined by:
2O O+h (T (-T)dr+a{ ([, () +h5(T)]
x(t —t)dt}?

The first and second order Volterra-operators H; and H,

for this example are accordingly determined by the kernels:
I (0= (T)+h(T)

and

1y (1, To)=ha (T ) [a(Ta) +h(02) [+h5 (8 ) B (T2) +h4(T5)]

This kernel h,(t,, T,) is symmetric, so that:

hy(Ty, To)=ho(To, Ty)

The second order kernel transform H,(w,, w,) is obtained
by the two-dimensional Fourier-transform with respect to T,
and T,, and can be obtained as:

Hy (01, 0)={H (@ )[H(0)+H(02)]+H,(w))
[ (0x)+H ()]}

by elementary manipulations. H,(w) and H,(w) are the
Fourier-transforms of h,(t) and h,(t). With the transform
X(w) of the input signal x(t), an artificial two dimensional
transform Z,(w,, w,) is obtained:

Zoy 0y, 02)=H5(0, 02)X(0)X(w,)
with the two-dimensional inverse Z,(t,, t,). The output
signal z(t) is:
z(t)=z2(5.1)

The transform Z(w) of z(t) can be obtained by convolu-
tion:
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1
Z(w) = e Z(w, 0 —wp)dw;

where the integration is carried out from —oo to +co.
The output z(t) can be as well represented by use of the
Wiener G-functionals:

z(t)=Gy+G+G+

where G; is the simplified notation of G,[x(t)]. The first
two operators are:

Go[x(8)]|=—Af Tk, (T)+hy(v) Pdfv=const

G X))+, () Ix(-T) e

The operator G, equals H, in this example. For x(t) equal
white Gaussian noise x(ty=n(t) G;[n{®)]h, holds for all h,,
especially:

G.G,=0.

Golw (D1 T (0 DA (02 (8 (83)+y (T o (To)+
hp(T)hs(T2)]

X(e=T Dx(t=13)dv, do- AfTh, (v (v )P,
The consequence is:
Gl =hof [T o (02)+h (0 ) (82)+h5 (0 g ()4 (T g (T2)]
AT A=, a0 o= hodf (1 (v )+hy(ty) P,
and
Gohy=0 because of n{t—,)n(I-7,)=46(tt,;~T,)
and similarly:
G,H,==0 for all H,

This equation involves the mean of the product of three
zero mean jointly Gaussian random variables, which is zero.

The Wiener kernels can be determined by exciting the
system with white Gaussian noise and taking the average of
some products of the system output and the exciting noise
process n(t):

ko =z(1)
RPN pe—
(1) = KZ([) nt—1)

)
ka(T1, T2) = mz(t) n(t—7) At —12)

For RF-modulated signals the intermodulation distortion
in the proper frequency band is caused by non-linearities of
third order. For this reason, the imperfect square-law device
is now replaced by an imperfect cubic device with the
input-output relation:

2Oy +ay’©)



US 10,985,951 B2

9

If only the intermodulation term which distorts the signal
in its own frequency band is considered, the kernel trans-
form of the third-order Volterra operator Z 3 (o, w,, 03)
becomes then:

3

Zg) (w1, 02, 03) = a[| | [Halwp) + Hy(@d]X (@)
i=1

The intermodulation part in the spectrum of z(t) is now
given by:

1
Z(w) = — Z — {1, f1 — Mo, p2)dpy d
(w) n? ff )@= (1, — o, 2)dpy diny

For a cubic device replacing the squarer, however, there
are several contributions of the intermodulation noise falling
into the used channels near f,,.

See, Amplifier References, infra.

The Volterra series is a general technique, and subject to
different expressions of analysis, application, and simplify-
ing presumptions. Below is further discussion of the tech-
nique.

A system may have hidden states of input-state-output
models. The state and output equations of any analytic
dynamical system are

X()=flx,u,0)

y(O)=g(x,u,0)+e

X(t) is an ordinary differential equation and expresses the
rate of change of the states as a parameterised function of the
states and input. Typically, the inputs u(t) correspond to
designed experimental effects. There is a fundamental and
causal relationship (Fliess et al 1983) between the outputs
and the history of the inputs. This relationship conforms to
a Volterra series, which expresses the output y(t) as a
generalized convolution of the input u(t), critically without
reference to the hidden states %(t). This series is simply a
functional Taylor expansion of the outputs with respect to
the inputs (Bendat 1990). The reason it is a functional
expansion is that the inputs are a function of time.

y(t):Zf ...fk;(o’l,... ,ou(it—oy), ...,
iy [

u(t—odoy, ... ,do;
e = 9y
P O i =), - L Ou(i— )
were K,(0y, . . ., 0;) is the ith order kernel, and the integrals

are restricted to the past (i.e., integrals starting at zero),
rendering the equation causal. This equation is simply a
convolution and can be expressed as a GLM. This means
that we can take a realistic model of responses and use it as
an observation model to estimate parameters using observed
data. Here the model is parameterized in terms of kernels
that have a direct analytic relation to the original parameters
0 of the physical system. The first-order kernel is simply the
conventional HRF. High-order kernels correspond to high-
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10
order HRFs and can be estimated using basis functions as
described above. In fact, by choosing basis function accord-
ing to

k(o)
a0;

Alo); =

one can estimate the physical parameters because, to a first
order approximation, 3,=0,. The critical step is to start with
a causal dynamic model of how responses are generated and
construct a general linear observation model that allows
estimation and inference about the parameters of that model.
This is in contrast to the conventional use of the GLM with
design matrices that are not informed by a forward model of
how data are caused.

Dynamic causal models assume the responses are driven
by designed changes in inputs. An important conceptual
aspect of dynamic causal models pertains to how the experi-
mental inputs enter the model and cause responses. Experi-
mental variables can illicit responses in one of two ways.
First, they can elicit responses through direct influences on
elements. The second class of input exerts its effect through
a modulation of the coupling among elements. These sorts of
experimental variables would normally be more enduring.
These distinctions are seen most clearly in relation to
particular forms of causal models used for estimation, for
example the bilinear approximation

X0 = fx, )
=Ax+uBx+ Cu
y=gx)+e&
d * d
PURS AP B &
dx dxdu du

This is an approximation to any model of how changes in
one element x(t), are caused by activity of other elements.
Here the output function g(x) embodies a model. The matrix
A represents the connectivity among the regions in the
absence of input u(t). Effective connectivity is the influence
that one system exerts over another in terms of inducing a
response 2x/3x . This latent connectivity can be thought of
as the intrinsic coupling in the absence of experimental
perturbations. The matrix B is effectively the change in
latent coupling induced by the input. It encodes the input-
sensitive changes in A or, equivalently, the modulation of
effective connectivity by experimental manipulations.
Because B is a second-order derivative it is referred to as
bilinear. Finally, the matrix C embodies the extrinsic influ-
ences of inputs on activity. The parameters 6={ A, B, C} are
the connectivity or coupling matrices that we wish to
identify and define the functional architecture and interac-
tions among elements. We can express this as a GLM and
estimate the parameters using EM in the usual way (see
Friston et al 2003). Generally, estimation in the context of
highly parameterized models like DCMs requires con-
straints in the form of priors. These priors enable conditional
inference about the connectivity estimates.

The central idea, behind dynamic causal modelling
(DCM), is to model a physical system as a deterministic
nonlinear dynamic system that is subject to inputs and
produces outputs. Effective connectivity is parameterized in
terms of coupling among unobserved states. The objective is
to estimate these parameters by perturbing the system and
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measuring the response. In these models, there is no
designed perturbation and the inputs are treated as unknown
and stochastic. Furthermore, the inputs are often assumed to
express themselves instantaneously such that, at the point of
observation the change in states will be zero. In the absence
of bilinear effects we have

%=0
=Ax+Cu

x=—A"'Cu

This is the regression equation used in SEM where
A=A'-1and A’ contains the off-diagonal connections among
regions. The key point here is that A is estimated by
assuming u is some random innovation with known cova-
riance. This is not really tenable for designed experiments
when u represent carefully structured experimental inputs.
Although SEM and related autoregressive techniques are
useful for establishing dependence among responses, they
are not surrogates for informed causal models based on the
underlying dynamics of these responses.

The Fourier transform pair relates the spectral and tem-
poral domains. We use the same symbol F, although F(t) and
F(w) are different functions:

o

F(r) = % f dwF(w)e ™, F(w) = f dIF(0)e™ ™

—co —co

Accordingly, a convolution integral is derived:

o

D) = fdllf(h)E(l— n)

—co

where D(t), (1), E(t), are related to D(w), e(-im), E(w),
respectively. Note that D(t) can be viewed as an integral
operation, acting on E(t) is the simplest form of a Volterra
Function Series (VFS). This can also be expressed in the
VDO representation

D()=e(@)EH)=e@)ET)]

The instruction T=t is superfluous in a linear case, but
becomes important for non-linear systems. For example,
consider a harmonic signal clarifying the role of the VDO:

E(1) = Ege ™"
D(1) = Epe ™" f dn E(0)e' " = e(—iw)Eoe ™" = £(8; )Eoe™”

—co

In nonlinear systems, the material relations involve pow-
ers and products of fields, and x(t) can be replaced by a
series involving powers of E(w), but this leads to inconsis-
tencies.

However, the convolution can be replaced by a “super
convolution”, the Volterra function series (VFS), which can
be considered a Taylor expansion series with memory, given
by:
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D(r) = Z D)

D™y = fdtl fdzms‘m)(zl, e S LE@—1) - E(t—1,)

Typically, the VFS contains the products of fields
expected for nonlinear systems, combined with the convo-
lution structure. Various orders of nonlinear interaction are
indicated by m. Theoretically all the orders co-exist (in
practice the series will have to be truncated within some
approximation), and therefore we cannot readily inject a
time harmonic signal. If instead a periodic signal,

E@) = Z E, e et
is provided, we find

D(p) =

Z N—ino, ... — i @)Ey) - Enme"N“” = ZDNE"N“”

Ny Mm N

displaying the essential features of a nonlinear system,
namely, the dependence on a product of amplitudes, and the
creation of new frequencies as sums (including differences
and harmonic multiples) of the interacting signals frequen-
cies. This function contains the weighting function (=
inw, ..., —-in,m) for each interaction mode.

The extension to the nonlinear VDO is given by

D(H=e™(3, LB - - By, .,

In which the instruction t,, . . ., t, =t guarantees the
separation of the differential operators, and finally renders
both sides of the equation to become functions of t.

The VFS, including the convolution integral, is a global
expression describing D(t) as affected by integration times
extending from —oo to co. Physically this raises questions
about causality, i.e., how can future times affect past events.
In the full-fledged four-dimensional generalization causality
is associated with the so called “light cone” (Bohm, 1965).
It is noted that the VDO representation is local, with the
various time variables just serving for book keeping of the
operators, and where this representation is justified, causal-
ity problems are not invoked. In a power amplifier the
physical correlate of this feature is that all past activity leads
to a present state of the system, e.g., temperature, while the
current inputs affect future states. In general, the frequency
constraint is obtained from the Fourier transform of the VES,
having the form

..... pa—

D™ (w) =

o

| .
fdwl oo | dwp 1 € (=i, ..., —iwn)E(w)) - E(wy)

o

W= +...+ Wy
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In which we have m-1 integrations, one less than in the
VFS form. Consequently, the left and right sides of the
Fourier transform are functions of w, w,,, respectively. The
additional o=w, + . . . +,, constraint completes the equation
and renders it self-consistent.

See, Volterra Series References, infra.

An alternate analysis of the VFS is as follows. Let x[n]
and y[n] represent the input and output signals, respectively,
of a discrete-time and causal nonlinear system. The Volterra
series expansion for y[n] using x[n] is given by:

ylnl =
ho+ Y mlmilxln—mil+ > > hylmy, maylln - myJxln—ma] +
m=0 my =0my=0
+ZZ hylmy, ma, ..., my]
=0 my=0 "p=0
xln—mylxln—my] ... x[n—mp]+ ...
h, [m;, m,, . .., m,] is known as the p-the order Volterra

kernel of the system. Without any loss of generality, one can
assume that the Volterra kernels are symmetric, i.e., h, [m,,
m, ..., m,] is left unchanged for any of the possible p!
Permutations of the indices m,, m,, . . . , m,,. One can think
of the Volterra series expansion as a Taylor series expansion
with memory. The limitations of the Volterra series expan-
sion are similar to those of the Taylor series expansion, and
both expansions do not do well when there are discontinui-
ties in the system description. Volterra series expansion
exists for systems involving such type of nonlinearity. Even
though clearly not applicable in all situations, Volterra
system models have been successfully employed in a wide
variety of applications.

Among the early works on nonlinear system analysis is a
very important contribution by Wiener. His analysis tech-
nique involved white Gaussian input signals and used
“G-functionals” to characterize nonlinear system behavior.
Following his work, several researchers employed Volterra
series expansion and related representations for estimation
and time-invariant or time variant nonlinear system identi-
fication. Since an infinite series expansion is not useful in
filtering applications, one must work with truncated Volterra
series expansions.

The discrete time impulse response of a first order (linear)
system with memory span is aggregate of all the N most
recent inputs and their nonlinear combinations into one
expanded input vector as

X (m)=[x(m)x(n-1), . ..
x(m-1), ...

, x(n-N+1), X2(n)
, x2n-N+1)17

Similarly, the expanded filter coefficients vector H(n) is
given by

Hn)y=[h,(0), hy(1), . . .
m0.1), . ..

s hy(N=-1), 75(0,0),
ChoN-1, ... N-DIF

The Volterra Filter input and output can be compactly
rewritten as

Ye)=H ()X (%)

The error signal e(n) is formed by subtracting y(n) from
the noisy desired response d(n), i.e.,

e()=d(m)=y(r)=d(m)~H ()i X (n)
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For the LMS algorithm, this may be minimized to
E[(m)]=Eld(m)~-H X ()]

The LMS update equation for a first order filter is
H(n+1)=H(n)+jtle(n) X, ()

where | is small positive constant (referred to as the step
size) that determines the speed of convergence and also
affects the final error of the filter output. The extension of the
LMS algorithm to higher order (nonlinear) Volterra filters
involves a few simple changes. Firstly, the vector of the
impulse response coeflicients becomes the vector of Volterra
kernels coefficients. Also, the input vector, which for the
linear case contained only a linear combination, for nonlin-
ear time varying Volterra filters, complicates treatment.

The RLS (recursive least squares) algorithm is another
algorithm for determining the coeflicients of an adaptive
filter. In contrast to the LMS algorithm, the RLS algorithm
uses information from all past input samples (and not only
from the current tap-input samples) to estimate the (inverse
of the) autocorrelation matrix of the input vector.

To decrease the influence of input samples from the far
past, a weighting factor for the influence of each sample is
used. The Volterra filter of a fixed order and a fixed memory
adapts to the unknown nonlinear system using one of the
various adaptive algorithms. The use of adaptive techniques
for Volterra kernel estimation has been well studied. Most of
the previous research considers 2nd order Volterra filters and
some consider the 3rd order case.

A simple and commonly used algorithm is based on the
LMS adaptation criterion. Adaptive Volterra filters based on
the LMS adaptation algorithm are computational simple but
suffer from slow and input signal dependent convergence
behavior and hence are not useful in many applications. As
in the linear case, the adaptive nonlinear system minimizes
the following cost function at each time:

n

Jinl = Y 0 (dlk] - H [nlatk])

kO

2

where, H(n) and X (n) are the coefficients and the input
signal vectors, respectively, A is a factor that controls the
memory span of the adaptive filter and d(k) represents the
desired output. The solution can be obtained by differenti-
ating J[n] with respect to H[n], setting the derivative to zero,
and solving for H[n]. The optimal solution at time n is given

by

Clnl = Z XX T[A]
k=0

Pln] = Z Ak AT X k]
k=0

H[n] can be recursively updated by realizing that
C[n]=AC[n-1]+X[1#]X 7[#] and P[n]=MP[n-1]+
d[n)XTr]
The computational complexity may be simplified by
making use of the matrix inversion lemma for inverting

C|[n]. The derivation is similar to that for the RLS linear
adaptive filter.

C = -11-A Y n)X TR C -1
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There are a few simple models for basic amplifier non-
linear behavior. A more rigorous model could include the
Volterra series expansion which can model complex non-
linearities such as memory effects. Among the simpler
models are the Rapp model, Saleh model and the Ghorbani
model. Combinations of pure polynomial models and filter
models are also often referred to as fairly simple models,
e.g., the Hammerstein model.

The advantage of the simpler models is usually in con-
nection to for a need of very few parameters to model the
non-linear behavior. The drawback is that such a model only
can be used in conjunction with simple architecture ampli-
fiers such as the basic Class A, AB and C amplifiers.
Amplifiers such as the high efficiency Doherty amplifier can
in general not be modelled by one of these simple models.
In addition, to properly capture the PA behavior for the
envisaged large NR bandwidths, it is essential to use PA
models capturing the memory effects. Such models would
require an extensive set of empirical measurements for
proper parameterization.

The Rapp model has basically two parameters by which
the general envelop distortion may be described. It mimics
the general saturation behavior of an amplifier and lets the
designer set a smoothness of the transition by a P-factor. By
extending this also to model phase distortion, one has in total
six parameters available. The basic simple model may be
found as:

Vi
Vou = T

Vil 2P\ 2P

(1 (52))
This model produces a smooth transition for the envelope
characteristic as the input amplitude approaches saturation.
In the more general model, both AM-AM and AM-PM
distortion can be modelled. In general terms, the model

describes the saturation behavior of a radio amplifier in a
good way.

Gx
Fasoay = ———————
(2l )
1+
Vear
P Ax?
AM-PM =
1+ (f)q
B

where “x” is the envelope of the complex input signal. If
signal measurements are at hand of the input/output rela-
tionship, the parameters of the model may be readily found
for a particular amplifier by for example regression tech-
niques. The strength of the Rapp model is lies in its simple
and compact formulation, and that it gives an estimation of
the saturation characteristics of an amplifier. The drawback
of' this simple model is of course that it cannot model higher
order classes of amplifiers such as the Doherty amplifier. It
also lacks the ability to model memory effects of an ampli-
fier.

The Saleh model is a similar model to the Rapp model. It
also gives an approximation to the AM-AM and AM-PM
characteristics of an amplifier. It offers a slightly fewer
number of parameters (4) that one can use to mimic the
input/output relationship of the amplifier. The AM-AM
distortion relation and AM-PM distortion relation are found
to be as:
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-continued

2
el

FOans-pu = m

where “r” is the envelope of the complex signal fed into the
amplifier, and o/f are real-valued parameters that can be
used to tune the model to fit a particular amplifier.

The Ghorbani model also gives expressions similar to the
Saleh model, where AM-AM and AM-PM distortion is
modeled. Following Ghorbani, the expressions are sym-
metrically presented:

x1F°2
gr) = m +X4F
yur?
=—— 4
f0) = T

In the expressions above, g(r) corresponds to AM-AM
distortion, while f(r) corresponds to AM-PM distortion. The
actual scalars x;_, and y,_, have to be extracted from mea-
surements by curve fitting or some sort of regression analy-
sis.

The next step in the more complex description of the
non-linear behavior of an amplifier is to view the charac-
terization as being subject to a simple polynomial expan-
sion. This model has the advantage that it is mathematically
pleasing in that it for each coefficient reflects higher order of
inter-modulations. Not only can it model third order inter-
modulation, but also fifth/seventh/ninth etc. Mathematically
it can also model the even order intermodulation products as
well, it merely is a matter of discussion whether these
actually occur in a real RF application or not.

() =agra x(D+ax () +ax (@) +ax@)

Aps=VAa,31a;]

Coeflicients may be readily expressed in terms of Third
Order Intercept point IP3 and gain, as described above. This
feature makes this model especially suitable in low level
signal simulations, since it relates to quantities that usually
are readily available and easily understood amongst RF
engineers.

The Hammerstein model consists of a combination of a
Linear+Non-Linear block that is capable of mimicking a
limited set of a Volterra Series. As the general Volterra series
models a nested series of memory and polynomial repre-
sentations, the Hammerstein model separates these two
defining blocks that can in theory be separately be identified
with limited effort. The linear part is often modelled as a
linear filter in the form of a FIR-filter.

K-1
s(n) = Z h(k)x(n — k)

k=0

The non-linear part is then on the other hand simply
modelled as polynomial in the enveloped domain.

y(O=agra x(O+ax(D+ax() +ax(t’*

The advantage of using a Hammerstein model in favor of
the simpler models like Rapp/Saleh or Ghorbani is that it can
in a fairly simple way also model memory effects to a certain
degree. Although, the model does not benefit from a clear
relationship to for example 1IP3/Gain but one has to employ
some sort of regression technique to derive polynomial
coeflicients and FIR filter tap coefficients.

The Wiener model describes like the Hammerstein model
a combination of Non-linear+Linear parts that are cascaded
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after each other. The difference to the Hammerstein model
lies in the reverse order of non-linear to linear blocks. The
initial non-linear block is preferably modelled as a polyno-
mial in the envelope of the complex input signal. This block
is the last one in the Hammerstein model as described above.
The polynomial coefficients may themselves be complex,
depending on what fits measured data best. See expressions
for non-linear and linear parts under the Hammerstein
section. The second block which is linear may be modelled
as an FIR filter with a number of taps that describes the
memory depth of the amplifier.

The state-of-the-art approaches consider the so called
Volterra series, and is able to model all weak non-linearity
with fading memory. Common models like, for example, the
memory polynomial can also be seen as a subset of the full
Volterra series and can be very flexible in designing the
model by simply adding or subtracting kernels from the full
series.

The discrete-time Volterra series, limited to causal sys-
tems with symmetrical kernels (which is most commonly
used for power amplifier modelling) is written as

ylnl=Bo+
2p-1

iii ZM: ﬂp,q,rz,_..,rpﬁ x[n_rjl I

: jp=p+1
p=l TI=0 1=y Tp=Tpi 1=l 2=

X[n-14]

in which P is the non-linear order and M is the memory-
depth. There are benefits which the Volterra series hold over
other modelling approaches, including:

It is linear in parameters, meaning that the optimal param-
eters may be found through simple linear regression
analysis from measured data. It further captures fre-
quency dependencies through the inclusion of memory
effects which is a necessity for wideband communica-
tion.

The set of kernels, or basis functions, best suited for
modelling a particular power amplifier may be selected
using methods which rely on physical insight. This
makes the model scalable for any device technology
and amplifier operation class.

It can be extended into a multivariate series expansion in
order to include the effects of mutual coupling through
antenna arrays. This enables the studies on more
advanced algorithms for distortion mitigation and pre-
coding.

It may be observed that other models such as static
polynomials, memory polynomials and combinations of the
Wiener and Hammerstein models are all subsets of the full
Volterra description. As previously stated, empirical mea-
surements are needed to parameterized PA model based on
Volterra series expansion.

A subset of the Volterra Series is the memory polynomial
with polynomial representations in several delay levels. This
is a simpler form of the general Volterra series. The advan-
tage of this amplifier model is its simple form still taking
account of memory effects. The disadvantage is that the
parameters have to be empirically solved for the specific
amplifier in use.

PA emory =¥ [agtay - x(0) l+ax x@) P+ . . ]+
wx(-to) [botb |x(t=to) +bor Ix(t=10) P+ . . . ]+
+x(1-t,) [core; 1x(t-t) ey 1x(-1)P+ . .. 1+
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The equation above shows an expression for a memory
polynomial representation of an amplifier involving two
memory depth layers. Each delayed version of the signal is
associated with its own polynomial expressing the non-
linear behavior.

See Filter References, Infra.

The purpose of a PA behavioral model is to describe the
input-to-output relationship as accurately as possible. State-
of-the-art approaches lean on a fundament of the so called
Volterra series consisting of a sum of multidimensional
convolutions. Volterra series are able to model all weak
nonlinearities with fading memory and thus are feasible to
model conventional PAs aimed for linear modulation
schemes.

The GMP model is given by

Yyomp(n) =

Z Z ak,x(n—l)lx(n—l)lz" + Z Z Z bk,mx(n—l)lx(n—l—m)lz"

keKg lelg keKy IeLy, meM

where yz,» () and x(n) represent the complex baseband
equivalent output and input, respectively, of the model. The
first term represents the double sum of so-called diagonal
terms where the input signal at time shift I, x(n -1); €L, is
multiplied by different orders of the time aligned input signal
envelope Ix(n-1)1%%; k€K . The triple sum represents cross
terms, i.e. the input signal at each time shifts is multiplied by
different orders of the input signal envelope at different time
shifts. The GMP is linear in the coefficients, a,; and by,,,,
which provides robust estimation based on input and output
signal waveforms of the PAs to be characterized. As a
complement to the above, also memoryless polynomial
models have been derived based on:

yem = 3 axmlximl®

kekp

It is thus seen that, while the Volterra series has been
considered generally in a variety of contexts, and for power
amplifier linearization, the particular implementation does
not necessarily follow from broad prescriptions.

See, Volterra Series Patents, infra.

SUMMARY OF THE INVENTION

A deep neural network (DNN)-based equalizer is pro-
vided to equalize the PA distorted signals at a radio fre-
quency receiver. This DNN equalizer exploits both the
Volterra series nonlinearity modeling of PAs, to construct
the input features of the DNN, which can help the DNN
converge rapidly to the desired nonlinear response under
limited training data and training.

Conventionally, Volterra series and neural networks are
studied as two separate techniques for nonlinear PAs [2].
Volterra series has been a popular choice for constructing the
models of nonlinear power amplifiers. Many digital predis-
torters or nonlinear equalizers have been developed based on
such modeling. Similarly, artificial neural networks have
also been applied to model or equalizer the nonlinear PAs.
By integrating these two techniques together, equalizers may
be more efficient and have low-cost implementation than
conventional digital pre-distorters, and have high perfor-
mance in mitigating power amplifier with even severe
nonlinearity.

In particular, conventional shallow feedforward neural
networks using time-delayed inputs have only limited per-
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formance. The present DNN equalizer has much superior
performance and does not need too much training data.

Nonlinear Power Amplifier Models

The nonlinear response of the power amplifiers are usu-
ally described by the baseband discrete model y(n)=t(x(n)),
where x(n) is the input signal and y(n) is the output signal.
The function f{(x(n)) is some nonlinear function.

Consider the baseband discrete model of the PA y(n)=t(x
(n), x(n-1), . .. ), where x(n) is the input signal, y(n) is the
output signal, and f(-) is some nonlinear function. The
simplest nonlinear PA model is the “AM-AM AM-PM”
model. Let the amplitude of the input signal be Vx=E[Ix(n)
1], where E[-] denotes short-term expectation or average. The
output sample y(n)’s amplitude V., =E[y(n)] and additional
phase change 1y =E[/y(n)] depend on V_ in nonlinear ways
as

v, = gV, v, = aVf (1)
(1+ gz/x)w (1+%)q

where g is the linear gain, a the smoothness factor, and ¢
denotes the saturation magnitude of the PA. Typical
examples of these parameters are g=4:65, 0=0:81, ¢=0:58,
a=2560, p=0:114, p=2:4, and q=2:3, which are used in the
PA models regulated by IEEE 803.11ad task group (TG)
[10].

More accurate models should take into consideration the
fact that nonlinearity leads to memory effects. In this case,
Volterra series are typically used to model PAs [4] [21]. A
general model is [5]

D

»
Yy = 37" baln = d)lxin - !

d=0 p=0

@

with up to P” order nonlinearity and up to D step memory.

Because higher order nonlinearity usually has smaller
magnitudes, in order to simplify models, many papers have
considered smaller P only, e.g.,

D
)= 3 (Bpx(n - d) + aax(n - dlx(n - D)
d=0

with only the third-order nonlinearity. It can be shown that
only odd-order nonlinearity (i.e., odd k) is necessary as
even-order nonlinearity disappears during spectrum analy-
sis.

It can be shown that only odd-order nonlinearity (i.e., odd
k) is necessary because even-order nonlinearity falls outside
of the passband and will be filtered out by the receiver
bandpass filters [2]. To illustrate this phenomenon, we can
consider some simple examples where the input signal x(n)
consists of a few single frequency components only. Omit-
ting the memory effects, if x(n) is a single frequency signal,
ie., X(n)=V, cos(ay+¢), where a,=2nf,n. Then, the output
signal can be written as

y()=c, Vo cos(agt@rp )+(acs VP +5kes Vo Jeos(ag+

PHpa+ps) 3

+Yae, VP +%c, V!

Q)

(Ve VP + Y50, Vo Hcos(2agt 20+ 29 +2,) (3)
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where the first line (3) is the inband response with AM-AM
& AM-PM nonlinear effects, the second line (4) is the DC
bias, and the third line (5) includes all the higher frequency
harmonics. At the receiving side, we may just have (3) left
because all the other items will be canceled by bandpass
filtering.

If x(n) consists of two frequencies, i.e., x(n)=V, cos(a,+
¢,)+V, cos(a,+9,), where a,=2xtf,n, then the inband response
includes many more items, such as the first order items c,V,
cos(a+¢,+1;), the third order items ¢, (v,*+V,V ?)cos(a’+¢+
1), the fifth order items c5(V,” +ViVj4+ViVj2)cos(ai+q)l.+1pi),
for 1jE{1,2}. There are also intermodulation items that
consist of na,zma, as long as they are within the passband of
the bandpass filter, such as (V. isz+Vi2Vj3 +V14Vj)cos(2ai—
aj+2¢i_¢j+2wi_wj)'

There are many other higher order items with frequencies
na, n(a,xa,), or na+ma,, that cannot pass the passband filter.
One of the important observations is that the contents that
can pass the passband filter consist of odd-order nonlinearity
only.

If x(n) consists of three or more frequencies, we can have
similar observations, albeit the expressions are more com-
plex. Let the input signal x(n) be

3 (6
x(n) = Z Vicos(a;), a; =2nfin

i-1

Based on [22], the nonlinear distorted output response
y(n)=f(x(n)) can be written as

= %)
Y = Y kixim)

i-1

where k, represents the gain coefficients for the i order
components. The 1st order component is simply k,x(n). The
2nd order component includes the DC component, the
sum/difference of beat components, and the second-order
harmonic components. Specifically,

ko xP (1) = ga0 + 82,1 (1) + g22() ®

where

3
&20= Z V22(n)

i=1

3
82,1 = Z Z ViVjcos(a; £ a;)

=1 ji

3
g20 = Z Vfcos(Za;)/Z.
=1

The 3rd order component includes the third-order har-
monic components g, ;(n), the third intermodulation beat
components g ,(n), the triple beat components g, 5(n), the
self-compression/expansion components g ,(n), and the
cross-compression/expansion components g; s(n).
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This gives

5
ks = " g3i(m)

i=1

Where

1& o,
g31(n) = Z; A7 cos(3a;)/4

33
ZZ Z A?Ajcos(Za; +2a;)

=1 j#i

3 3 3
g33(n) = 5[1_[ Aj]cos[z (£ a;)]
i=1 i=1

g3po(n) =

g34(n) =

33
ZZ A?cos(a;)
i=1

33
g3s(n) = EZ Z AjAlcos(a;)

=1 j#i

The 4th order component includes the DC components
240, the fourth-order harmonic components g,, (n) , the
fourth intermodulation beat components g, ,(n), the sum/
difference beat components g, ;(n), the second harmonic
components g, s(n). This gives

5
kyxtn) = )" gas(n)

i=0

where

R WS W

=1 j#
13
8a1 = §Z A?cos(4aj)
=1

842 =

ZZA Ajcos(3a; taj)+ —Z AZ[]_[A

[ i

3
6
8§43 =7 cos(a;  Amod(i+1,3))

i=1

el )

JF

[A A2 iis1.3) + Ai o1 3) + A} Amodr13) + 1_[ Ai ]
-

3

3 2
814 =5 cos(2a ;)| A;

i=1

5

J-1

The 5th order component includes the fifth-order har-
monic components g5 ,(n), the fifth intermodulation beat
components gs,(n), the self-compression/expansion com-
ponents gs ;(n), the cross-compression/expansion compo-
nents gs ,(n), the third harmonic components g; 5(n), the
third intermodulation beat components g 4(n), and the triple
beat components gs ,(n). This gives
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5
ksx'(n) = ) gsiln)

i=1

Where

gs1(n) =

13
§ZA?COS(5a;)
i=1
53
EZZA;A‘}-COS(@- +da;) +

(=T

gs2(n) =
A?Ai-cos(Za; +3a;) + A?A?cos(?;aj +2a;) + A?Ajcos(4aj +aj)

53
3 Z A?cos(a;)
i=1

8s3(n) =
3
g5a(n) = Zcos(a‘ [Z (A3A +A;A‘J‘-)+Aj]_[ Aﬁ]

i JH
3
5
gss(n) = 7 cos(3a;)

i=1
g5.6(n) = chos(za‘ +aj)><(A AT ala;+A2A; ]_[ Ak]]

kij

et = Sao 300 ][Z T4+ ZAS]—[A]

JF JFE

5

J=1

These nonlinear spectrum growth expressions can be
similarly applied if the signal x(n) is the QAM or OFDM
signal. Especially, the harmonics provides us a way to design
the input signal vectors for DNN equalizers. Note that some
of the spectrums that are deviated too much from the
transmitted signal bandwidth will be attenuated by the
receiver bandpass filters.

DNN-Based Nonlinear Equalization

A. Nonlinear Equalizer Models

To mitigate the PA nonlinear distortions, nonlinear equal-
izers can be applied at the receivers. Obviously, the Volterra
series model can still be used to analyze the response of
nonlinear equalizers. One of the differences from (2) is that
the even order nonlinearity may still be included and may
increase the nonlinear mitigation effects [5].

Consider the system block diagram of nonlinear equal-
ization shown in FIG. 1, which shows a signal x(n) entering
a nonlinear power amplifier, to produce a distorted signal
y(n), which passes through a channel hi, which produces a
response r(n), which is fed to a neural network equalizer to
produce a corrected output z(n).

Let the received signal be

L ©)
rmy= )" hey(n -6 + (),

=0

where h, is the finite-impulse response (FIR) channel coef-
ficients and v(n) is additive white Gaussian noise (AWGN).
With the received sample sequence r(n), a nonlinear equal-
izer will generate z(n) as the estimated symbols.

If the PA has only slight nonlinearity as modeled by the
simple “AM-AM AM-PM” model (1), the received samples
r(n) may be stacked together into M+1 dimensional vectors
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r(n)=[r(n), . . ., r(a-M)]%, where () denotes transpose, and
write the received samples in vector form as
() =HG#m)x(n)+v(n) (10)

where H is an (M+1)x(M+L+1) dimensional channel matrix

ho o by (1D
H= and
hy o
G(n) = diag{Vyme? 700, -ov | Viyy—pyel?yo-M-D)}

is an (M+L+1)x(M+L+1) dimensional diagonal matrix
which consists of the nonlinear PA responses, x(n)=
[x(n), . . ., x(n-M-L)]%, and v(n)=[v(n, . . . v(n-M)]". To
equalize the received signal, we apply a nonlinear equalizer
with the form

=6l . ... Jadl

where [{,, . .., f/H~[0, ..., 1, ..., 0] is to equalize
the propagation channel, and

12

e

G'(n) ~
Vin-d)

is to equalize the nonlinear PA response. Let t(n) be the

output of the first linear equalization step. The second

nonlinear equalization step can be implemented as a maxi-

mum likelihood estimation problem, i.e., z(n)=arg miny,,,

IF(n)-V e x(n)l> This gives the output
2~ rm)=x(n-d)

with certain equalization delay d.

Both the channel coefficients /£, and the nonlinear PA
responses V,, }, can be estimated via training, as can the
channel equalizer f7. Because the PA nonlinearity is signifi-
cant for large signal amplitude only, we can apply small-
amplitude training signals x(n) first to estimate the channel
h, and the channel equalizer [f,, . . . , f,,]. We can then
remove the channel H from (10) with the first step linear
channel equalization. Because the matrix G(n) is diagonal,
we can easily estimate G(n) with regular training and then
estimate the transmitted symbols as outlined in (13).

For more complex nonlinear PA responses, such as (2), we
can conduct channel equalization similarly as (12). First, we
can still apply small-amplitude training signals to estimate
[fo, - - ., £/ so as to equalize the channel /. This linear
channel equalization step gives t(n)=~y(n). We can then focus
on studying the equalization of nonlinear distortion of the
PA, which can in general be conducted with the maximum
likelihood method,

13)

N ) 14)
&) =0, , N} = argmig}; Fm) - 3w,

x(n

where t(n) is the sequence after the linear channel equal-
ization, y(n) is the sequence reconstructed by using the
sequence x(n) and the nonlinear PA response parameters b,
based on (2), and N is the total number of symbols. The
optimization problem (14) can be solved with the Viterbi
sequence estimation algorithm if the memory length of the
PA is small enough and the PA nonlinear response is known
to the receiver.
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In case the PA nonlinear response cannot be estimated, the
equalization of nonlinear PA response is challenging. In this
case, one of the ways is to use the conventional Volterra
series equalizer, which approximates G'(n) with a Volterra
series model. Similar to (2), this gives

D
am =33 gt =l - .

P (15)
=0 v=0

The objective of the Volterra series equalizer design is to
design g, such that z(n)=x(n-¢) for some equalization
delay .

Similarly, as the DPD design of [5], based on the Volterra
series model (15), we can estimate the coefficients g;, by
casting the estimation into a least squares problem

N

min E
{8rat

n=L

P 2 (16)
D sabin-dlin -l

0 k=1

x(n—L)—

D
d=

with training symbols x(n) and received samples t(n).
Note that only the coefficients g, are needed to be esti-
mated, and these coefficients are linear with respect to t(n)
and x(n).

Define the vector a=[g,0, 20,5 - - - » 22p]°, and the vector
x=[x(0); . .., x(N-L)]”. Define the (N-L+1)xDP data matrix

ML) HDIHL) HL-DIHL- D) an

HN) FNFN) -+ FNV = DR - D)

Then, (16) becomes

min||x — Bal|? (18)

Solution to (18) is

a=B*x 19
(19),

where B*=(B¥B)™'B is the pseudo-inverse of the matrix B.
From (19), we can obtain the Volterra series equalizer
coefficients g, ;. One of the major problems for the Volterra
series equalizer is that it is hard to determine the order sizes,
i.e., the values of D and P. Even for a nonlinear PA with
slight nonlinear effects (i.e., small D and P in (2)), the length
of D and P for Volterra series equalizer may be extremely
long in order for (15) to have sufficient nonlinearity miti-
gation capability.

A potential way to resolve this problem is to apply
artificial neural networks to fit the nonlinear equalizer
response (15). Neural networks can fit arbitrary nonlinearity
and can realize this with potentially small sizes. Neverthe-
less, in conventional neural network equalizers such as [14]
[15], the input (features) to the neural networks was simply
a time-delayed vector [r(n), . . ., r(n—-M)]. Although neural
networks may have the capability to learn the nonlinear
effects specified in (15), in practice the training may not
necessarily converge to the desirable solutions due to local
minimum and limited training data. In addition, conven-
tional neural network equalizers were all feed-forward net-
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works with fully connected layers only, which often suffer
from problems like shallow network architecture and over-
fitting.

It is therefore an object to provide a radio receiver,
comprising: an input configured to receive a transmitted
radio frequency signal representing a set of symbols com-
municated through a communication channel; a Volterra
series processor configured to decompose the transmitted
radio frequency signal as a Volterra series expansion; an
equalizer, comprising a deep neural network trained with
respect to channel distortion, receiving the Volterra series
expansion; and an output, configured to present data corre-
sponding to a reduced distortion of the received distorted
transmitted radio frequency signal.

It is also an object to provide a radio reception method,
comprising: receiving a transmitted radio frequency signal
representing a set of symbols communicated through a
communication channel; decomposing the transmitted radio
frequency signal as a Volterra series expansion; equalizing
the Volterra series expansion with a deep neural network
trained with respect to channel distortion, receiving the
Volterra series expansion; and presenting data correspond-
ing to a reduced distortion of the received transmitted radio
frequency signal.

It is a further object to provide an equalization method for
a radio signal, comprising: storing parameters for decom-
position of a received radio frequency signal as a Volterra
series expansion; processing the Volterra series expansion in
a deep neural network comprising a plurality of neural
network hidden layers and at least one fully connected
neural network layer, trained with respect to radio frequency
channel distortion; and presenting an output of the deep
neural network. The method may further comprise demodu-
lating the output of the deep neural network, wherein a bit
error rate of the demodulator is reduced with respect to an
input of the received radio frequency signal to the demodu-
lator.

It is another object to provide an equalizer for a radio
receiver, comprising: a memory configured to store param-
eters for decomposition of a received radio frequency signal
as a Volterra series expansion; a deep neural network com-
prising a plurality of neural network hidden layers and at
least one fully connected neural network layer, trained with
respect to radio frequency channel distortion, receiving the
Volterra series expansion of the received radio frequency
signal; and an output configured to present an output of the
deep neural network. The system may further comprise a
demodulator, configured to demodulate the output, wherein
a bit error rate of the demodulator is reduced with respect to
an input of the received radio frequency signal to the
demodulator.

The Volterra series expansion may comprise at least third
or fifth order terms.

The deep neural network may comprise at least two or
three convolutional network layers. The deep neural net-
work may comprise at least three one-dimensional convo-
Iutional network layers. The convolutional layers may be
hidden layers. The deep neural network may comprise at
least three one-dimensional layers, each layer having at least
10 feature maps. The radio receiver may further comprise a
fully connected layer subsequent to the at least three layers.

The distorted transmitted radio frequency signal com-
prises an orthogonal frequency multiplexed (OFDM) signal,
a quadrature amplitude multiplexed (QAM) signal, a QAM-
16 signal, a QAM-64 signal, a QAM-256 signal, a quadra-
ture phase shift keying (QPSK) signal, a 3G signal, a 4G
signal, a 5G signal, a WiFi (IEEE-802.11 standard family)
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signal, a Bluetooth signal, a cable broadcast signal, an

optical transmission signal, a satellite radio signal, etc.
The radio receiver may further comprise a demodulator,

configured to demodulate output as the set of symbols.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system block diagram with nonlinear
power amplifier and deep neural network equalizer.

FIG. 2 shows a block diagram of DNN equalizer.

FIGS. 3A-3D show constellations of 16QAM over a
simulated PA. FIG. 3A: received signal. FIG. 3B: Volterra
equalizer output. FIG. 3C: time-delayed NN output. FIG.
3D: Volterra+NN output.

FIGS. 4A-4D show constellation of 16QAM over a real
PA. FIG. 4A: received signal. FIG. 4B: Volterra equalizer
output. FIG. 4C: time-delayed NN output. FIG. 4D: Volt-
erra+NN output.

FIG. 5 shows a comparison of three equalization methods
for 16-QAM under various NLD levels.

FIG. 6: shows a table comparing MSE/SER improvement
in percentage for the three equalization methods.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Volterra-Based DNN Equalizer

The present technology therefore employs deep neural
networks to implement the nonlinear equalizer in the
receiver, which can mitigate the nonlinear effects of the
received signals due to not only PAs but also nonlinear
channels and propagations. The architecture of the DNN
equalizer is shown in FIG. 2, which shows an input X, which
undergoes a series of three 1-d convolutions, am FC dropout,
to produce the output Y.

Different from [10] B. Li, C. Zhao, M. Sun, H. Zhang, 7.
Zhou, and A. Nallanathan, “A Bayesian approach for non-
linear equalization and signal detection in millimeter-wave
communications,” IEEE Transactions on Wireless Commu-
nications, vol. 14, no. 7, pp. 3794-3809, 2015, multi-layer
convolutional neural networks (CNNs) are employed. Dif-
ferent from conventional neural network predistorters pro-
posed in [6] M. Rawat, K. Rawat, and F. M. Ghannouchi,
“Adaptive digital predistortion of wireless power amplifiers/
transmitters using dynamic realvalued focused time-delay
line neural networks,” IEEE Transactions on Microwave
Theory and Techniques, vol. 58, no. 1, pp. 95-104, 2010.,
neural networks are used as equalizers at the receivers.
Different from conventional neural network equalizers such
as those proposed in [14] [15] D.-C. Park and T.-K. J. Jeong,
“Complex-bilinear recurrent neural network for equalization
of a digital satellite channel,” IEEE Transactions on Neural
Networks, vol. 13, no. 3, pp. 711-725, 2002; A. Uncini, L.
Vecci, P. Campolucci, and F. Piazza, “Complex-valued neu-
ral networks with adaptive spline activation function for
digital-radio-links nonlinear equalization,” IEEE Transac-
tions on Signal Processing, vol. 47, no. 2, pp. 505-514, 1999,
in the present DNN equalizer, not only the linear delayed
samples r(n), but also the CNN and the input features in X
are used. The Volterra series models are applied to create
input features.

We can assume that the linear channel H has already been
equalized by a linear equalizer, whose output signal is r(n).
In fact, this equalization is not required, but simplifies the
presentation of the analysis.
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According to Volterra series representation of nonlinear
functions, the input-output response of the nonlinear equal-
izer can be written as

20

One of major problems is that the number of coefficients
_____ 4, increases exponentially with the increase of
memory length D and nonlinearity order P. There are many
different ways to develop more efficient Volterra series
representations with reduced number of coefficients. For
example, [23] J. Staudinger, J.-C. Nanan, and J. Wood,
“Memory fading volterra series model for high power infra-
structure amplifiers,” in Radio and Wireless Symposium
(RWS), 2010 IEEE. IEEE, 2010, pp. 184-187, exploits the
fact that higher-order terms do not contribute significantly to
the memory effects of PAs to reduce the memory depth d
when the nonlinearity order k increases.

This technique can drastically reduce the total number of
coeflicients. In [24] [25] [26] A. Zhu, ]. C. Pedro, and T. J.
Brazil, “Dynamic deviation reduction-based volterra behav-
ioral modeling of rf power amplifiers,” IEEE Transactions
on microwave theory and techniques, vol. 54, no. 12, pp.
4323-4332, 2006; A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil,
D. F. Kimball, and P. M. Asbeck, “Open-loop digital pre-
distorter for rf power amplifiers using dynamic deviation
reduction-based volterra series,” IEEE Transactions on
Microwave Theory and Techniques, vol. 56, no. 7, pp.
1524-1534, 2008; L. Guan and A. Zhu, “Simplified dynamic
deviation reduction-based volterra model for doherty power
amplifiers,” in Integrated Nonlinear Microwave and Milli-
metre-Wave Circuits (INMMIC), 2011 Workshop on. IEEE,
2011, pp. 1-4, developed a dynamic deviation model to
reduce the full Volterra series model (20) to the following
simplified one:

2n) = z5(n) + 24(n) =

D

Z feor )+ Z Zk: ,H(n)Z

k=1 =1 d;=0

Jﬁr(n d;)

i=1
dj=dj-1

where z(n) is the static term, and z,(n) is the dynamic
term that includes all the memory effects. We can see that the
total number of coefficients can be much reduced by con-
trolling the dynamic order j which is a selectable parameter.

We construct the input features of the DNN based on the
model (21). Corresponding to the static term z/(n), we
change it to:

> Formlrmlt.

l=k=P

Zsm) =

The reason that (22) changes r*(n) to r(n)lr(n)/*~* is that
only the signal frequency within the valid passband is
interested. This means the input feature vector X should
include terms r(n)ir(n)/*~*. Similarly, corresponding to the
dynamic term zd(n), we need to supply *~(0)IL,_/r(n—-d,) in
the features where half of the terms r(n) and r(n—d,) should
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be conjugated. For simplicity, in the DNN equalizer, the
vector X includes r(n—q)lr(n-q)*~* for some q and k.

By applying Volterra series components directly as fea-
tures of the input X, the DNN can develop more complex
nonlinear functions with a fewer number of hidden layers
and a fewer number of neurons. This will also make the
training procedure converge much faster with much less
training data.

In FIG. 2, the input X is a tensor formed by the real and
imaginary parts of r(n-q)lr(n-q)I*~* with appropriate num-
ber of delays q and nonlinearities k. There are three single
dimension convolutional layers, each with 20 or 10 feature
maps. After a drop-out layer for regularization, this is
followed by a fully connected layer with 20 neurons. Finally,
there is a fully-connected layer to form the output tensor Y
which has two dimensions. The output Y is used to construct
the complex z(n), where z(n)=X(n—d) for some appropriate
delay d. All the convolutional layers and the first fully
connected layer use the sigmoid activation function, while
the output layer uses the linear activation function. The
mean square error loss function L*=E[Ix(n-d)-z(n)I?] is
used, where z(n) is replaced by Y and x(n-d) is replaced by
training data labels.

Experiment Evaluations

Experiments are presented on applying the Volterra series
based DNN equalizer (Volterra+NN) for nonlinear PA equal-
ization. The (Volterra+NN) scheme with the following
equalization methods: a Volterra series-based equalizer (Vol-
terra) and a conventional time-delay neural network equal-
izer (NN). The performance metrics are mean square error
(MSE)

VE[1z(0)—x(n—d) PYE[Ix(n—d) 2]

and symbol error rate (SER). Both simulated signals and
real measurement signals were employed. To generate simu-
lated signals, a Doherty nonlinear PA model consisting of
3rd and 5th order nonlinearities was employed. Referring to
(2), the coeflicients b, , were

bo,02~{1.0513+0.0904j, 0.068-0.0023/, 0.0289—
0.00547}

by 0:2={-0.0542-0.29j, 0.2234+0.2317}, 0.0621-
0.09327}

by 0.2={~0.9657-0.7028], ~0.2451-0.3735/, 0.1229+
0..15087},

which was used in [5] to simulate a 5th order dominant
nonlinear distortion derived from PA devices used in the
satellite industry. For real measurement, our measurement
signals were obtained from PA devices used in the cable TV
(CATV) industry, which are typically dominated by 3" order
nonlinear distortion (NLD). Various levels of nonlinear
distortion, in terms of dBc, were generated by adjusting the
PAs.

For the Volterra equalizer, the approximate response of
the nonlinear equalizer with delays including 8 pre- and
post-main taps and with nonlinearities including even and
odd order nonlinearity up to the 5th order was employed. To
determine the values of the Volterra coefficients, N=4; 096
training symbols were transmitted through the PA and then
collected the noisy received samples r(n).

For the conventional time-delay NN equalizer, a feedfor-
ward neural network with an 80-dimensional input vector X
and 5 fully-connected hidden layers with 20, 20, 10, 10, 10
neurons, respectively, was applied.
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FIG. 3 shows the constellation and MSE of the equalizer’s
outputs. It can be seen that the proposed scheme provides the
best performance.

FIG. 4 shows the constellation of 16 QAM equalization
over the real PA. The corresponding SER were 0.0067,
0.0027, 0.00025, respectively. It can be seen that the Volt-
erra+NN scheme has the best performance.

FIG. 5 provides MSE measurements for 16-QAM under
various nonlinear distortion level dBc. For each 1 dB
increase in NLD, the resultant MSE is shown for the
“Measured”, “Volterra”, “NN”, and the proposed “Volterra+
NN cases. MSE reduction diminishes appreciably as modu-
lation order increases from QPSK to 64-QAM, but small
improvements in MSE have been observed lead to appre-
ciable SER improvement, especially for more complex
modulation orders. The 4,096 symbol sample sizes have
limited the measurements to a minimum measurable
0.000244 SER, which represents 1 symbol error out of 4,096
symbols.

FIG. 6 summarizes equalization performance, which
shows the averaged percent reduction/improvement in MSE
and SER from the NLD impaired data for multiple modu-
lation orders. Note that 0% SER improvement for QPSK
was because the received signal’s SER was already very
low.

The nonlinear equalization scheme presented by integrat-
ing the Volterra series nonlinear model with deep neural
networks yields superior results over conventional nonlinear
equalization approaches in mitigating nonlinear power
amplifier distortions. It finds application for many 5G com-
munication scenarios.

The technology may be implemented as an additional
component in a receiver, or within the digital processing
signal chain of a modern radio. A radio is described in US
20180262217, expressly incorporated herein by reference.

In an implementation, a base station may include a SDR
receiver configured to allow the base station to operate as an
auxiliary receiver. In an example implementation, the base
station may include a wideband receiver bank and a digital
physical/media access control (PHY/MAC) layer receiver.
In this example, the SDR receiver may use a protocol
analyzer to determine the protocol used by the source device
on the uplink to the primary base station, and then configure
the digital PHY/MAC layer receiver for that protocol when
operating as art auxiliary receiver. Also, the digital PHY/
MAC layer receiver may be configured to operate according
to another protocol when operating as a primary base station.
In another example, the base station may include a receiver
hank for a wireless system, for example, a fifth Generation
(5G) receiver bank, and include an additional receiver
having SDR configurable capability. The additional receiver
may be, for example, a digital Wi-Fi receiver configurable to
operate according to various Wi-Fi protocols. The base
station may use a protocol analyzer to determine the par-
ticular Wi-Fi protocol used by the source device on the
uplink to the primary base station. The base station may then
configure the additional receiver as the auxiliary receiver for
that Wi-Fi protocol.

Depending on the hardware configuration, a receiver may
be used to flexibly provide uplink support in systems oper-
ating according to one or more protocols such as the various
IEEE 802.11 Wi-Fi protocols, 317 Generation Cellular (3G),
4™ Generation Cellular (4G) wide band code division mul-
tiple access (WCDMA), Long Term Evolution (LTE) Cel-
lular, and 5% generation cellular (5G).

See, 5G References,linfra.

Processing unit may comprise one or more processors, or
other control circuitry or any combination of processors and
control circuitry that provide, overall control according to
the disclosed embodiments. Memory may be implemented
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as any type of as any type of computer readable storage
media, including non-volatile and volatile memory.

The example embodiments disclosed herein may be
described in the general context of processor-executable
code or instructions stored on memory that may comprise
one or more computer readable storage media (e.g., tangible
non-transitory computer-readable storage media such as
memory). As should be readily understood, the terms “com-
puter-readable storage media” or “non-transitory computer-
readable media” include the media for storing of data, code
and program instructions, such as memory, and do not
include portions of the media for storing transitory propa-
gated or modulated data communication signals.

While the functionality disclosed herein has been
described by illustrative example using descriptions of the
various components and devices of embodiments by refer-
ring to functional blocks and processors or processing units,
controllers, and memory including instructions and code, the
functions and processes of the embodiments may be imple-
mented and performed using any type of processor, circuit,
circuitry or combinations of processors and or circuitry and
code. This may include, at least in part, one or more
hardware logic components. For example, and without limi-
tation, illustrative types of hardware logic components that
can be used include field programmable gate arrays (FP-
GAs), application specific integrated circuits (ASICs), appli-
cation specific standard products (ASSPs), system-on-a-chip
systems (SOCs), complex programmable logic devices
(CPLDs), etc. Use of the term processor or processing unit
in this disclosure is mean to include all such implementa-
tions.

The disclosed implementations include a receiver, one or
more processors in communication with the receiver, and
memory in communication with the one or more processors,
the memory comprising code that, when executed, causes
the one or more processors to control the receiver to imple-
ment various features and methods according to the present
technology.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example embodi-
ments, implementations, and forms of implementing the
claims and these example configurations and arrangements
may be changed significantly without departing from the
scope of the present disclosure. Moreover, although the
example embodiments have been illustrated with reference
to particular elements and operations that facilitate the
processes, these elements, and operations may be combined
with or, be replaced by, any suitable devices, components,
architecture or process that achieves the intended function-
ality of the embodiment. Numerous other changes, substi-
tutions, variations, alterations, and modifications may be
ascertained to one skilled in the art and it is intended that the
present disclosure encompass all such changes, substitu-
tions, variations, alterations, and modifications a falling
within the scope of the appended claims.
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The invention claimed is:

1. A radio receiver, comprising:

an input configured to receive a distorted transmitted
radio frequency signal representing a set of symbols
communicated through a communication channel;

a Volterra series processor configured to decompose the
distorted transmitted radio frequency signal as a Volt-
erra series expansion;

an equalizer, comprising a deep neural network trained
with respect to channel distortion of training symbols,
receiving the Volterra series expansion; and

an output, configured to present data corresponding to a
reduced distortion of the received distorted transmitted
radio frequency signal, dependent on the equalizer.

2. The radio receiver according to claim 1, wherein the
Volterra series expansion comprises at least third order
terms.

3. The radio receiver according to claim 1, wherein the
Volterra series expansion comprises at least fifth order terms.

4. The radio receiver according to claim 1, wherein the
deep neural network comprises at least two convolutional
network hidden layers.

5. The radio receiver according to claim 1, wherein the
deep neural network comprises at least three one-dimen-
sional hidden layers, each layer having at least 10 feature
maps.

6. The radio receiver according to claim 5, wherein the
deep neural network further comprises a fully connected
layer subsequent to the at least three one-dimensional layers.

7. The radio receiver according to claim 1, wherein the
distorted transmitted radio frequency signal comprises an
orthogonal frequency multiplexed signal.

8. The radio receiver according to claim 1, wherein the
distorted transmitted radio frequency signal comprises a
QAM signal having at least 64 modulation states.

9. The radio receiver according to claim 1, wherein the
distorted transmitted radio frequency signal comprises a
quadrature phase shift keying (QPSK) signal.

10. The radio receiver according to claim 1, further
comprising a demodulator, configured to demodulate the
output as the set of symbols.

11. An equalizer for a radio receiver, comprising:

a memory configured to store parameters for decomposi-
tion of a received radio frequency signal as a Volterra
series expansion, the received radio frequency signal
comprising symbols distorted by radio frequency chan-
nel distortion;

a deep neural network comprising a plurality of neural
network hidden layers and at least one fully connected
neural network layer, the deep neural network being
trained with respect to the radio frequency channel
distortion with training data comprising symbols dis-
torted by radio frequency channel distortion labelled
with their respective training symbols, the deep neural
network, the deep neural network receiving the Volterra
series expansion of the received radio frequency signal;
and

an output configured to present an output of the deep
neural network.

12. A radio reception method, comprising:

receiving a radio frequency signal representing a set of
symbols communicated through a communication
channel, the radio frequency signal having channel
distortion with respect to the represented set of sym-
bols;

decomposing the distorted radio frequency signal as a
Volterra series expansion;
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equalizing the Volterra series expansion with a deep
neural network trained with respect to the channel
distortion with training data comprising training sym-
bols and corresponding training symbols having chan-
nel distortion with respect to training symbols; and

presenting data corresponding to a representation of the
received transmitted radio frequency signal having
reduced channel distortion.

13. The method according to claim 12, wherein the
Volterra series expansion comprises at least third order
terms.

14. The method according to claim 12, wherein the deep
neural network comprises at least two convolutional net-
work hidden layers.

15. The method according to claim 12, wherein the deep
neural network comprises at least three one-dimensional
convolutional network hidden layers, each layer having at
least 10 feature maps, and a fully connected layer subse-
quent to the at least three one-dimensional convolutional
network hidden layers.

16. The method according to claim 12, wherein the
transmitted radio frequency signal comprises an orthogonal
frequency multiplexed signal.

17. The method according to claim 12, wherein the
transmitted radio frequency signal comprises a quadrature
amplitude multiplexed (QAM) signal.
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18. The method according to claim 12, wherein the
distorted transmitted radio frequency signal comprises a
quadrature phase shift keying (QPSK) signal.

19. The method according to claim 12, further comprising
demodulating the set of symbols.

20. The radio receiver according to claim 1, wherein the
Volterra series expansion models a nonlinearity of a radio
frequency power amplifier, wherein the Volterra series has a
general model

D P
Y =7 buaxtn - dlxin - I,
d=

0 p=0

wherein:

x(n) is the input signal,

and y(n) is the output signal,

b, are optimized coefficients,

k is a non-linearity order,

P is the order of nonlinearity, and
D is a step value.



