
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

VOLUME XX, 2019 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number

Deep SCNN-based Real-time Object Detection
for Self-driving Vehicles Using LiDAR Temporal
Data
Shibo Zhou1, Ying Chen2, Xiaohua Li1, Senior Member, IEEE, Arindam Sanyal3, Member,
IEEE
1Department of Electrical and Computer Engineering, Binghamton University, The State University of New York, Binghamton, NY 13902 USA
2Department of Management Science and Engineering, School of Management, Harbin Institute of Technology, Harbin 150000 China
3Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260 USA
Corresponding author: Ying Chen (e-mail: yingchen@hit.edu.cn).

The authors appreciate the valuable suggestions of Prof. Wenfeng Zhao of Binghamton University in the revision process. This research

was partially supported by National Natural Science Foundation of China (Grant No. 91846301)

ABSTRACT Real-time accurate detection of three-dimensional (3D) objects is a fundamental
necessity for self-driving vehicles. Most existing computer vision approaches are based on
convolutional neural networks (CNNs). Although the CNN-based approaches can achieve high
detection accuracy, their high energy consumption is a severe drawback. To resolve this problem,
novel energy efficient approaches should be explored. Spiking neural network (SNN) is a promising
candidate because it has orders-of-magnitude lower energy consumption than CNN. Unfortunately,
the studying of SNN has been limited in small networks only. The application of SNN for large 3D
object detection networks has remain largely open. In this paper, we integrate spiking convolutional
neural network (SCNN) with temporal coding into the YOLOv2 architecture for real-time object
detection. To take the advantage of spiking signals, we develop a novel data preprocessing layer
that translates 3D point-cloud data into spike time data. We propose an analog circuit to implement
the non-leaky integrate and fire neuron used in our SCNN, from which the energy consumption of
each spike is estimated. Moreover, we present a method to calculate the network sparsity and the
energy consumption of the overall network. Extensive experiments have been conducted based on
the KITTI dataset, which show that the proposed network can reach competitive detection accuracy
as existing approaches, yet with much lower average energy consumption. If implemented in
dedicated hardware, our network could have a mean sparsity of 56.24% and extremely low total
energy consumption of 0.247mJ only. Implemented in NVIDIA GTX 1080i GPU, we can achieve
35.7 fps frame rate, high enough for real-time object detection.

INDEX TERMS spiking convolutional neural network, LiDAR temporal data, energy
consumption, real-time object detection

I. INTRODUCTION
 In recent years, increased attention has been paid
to point cloud data processing for autonomous driving
applications because of significant improvements in
automotive light detection and ranging (LiDAR)
sensors, which deliver three-dimensional (3D) point
clouds of the environment in real time. Point cloud data
have highly variant density distributions throughout the
measurement area [14], which can be exploited for
object detection [1, 7, 22]. Nevertheless, different from

camera images, LiDAR point clouds are unordered and
sparse, which results in some difficulties for real-time
object detection.
 To address the point cloud object detection
challenge, many approaches have been proposed,
which can be divided into three general classes. The
first class project point clouds into a perspective view
and detect objects via image-based algorithms [4, 12].
The second class convert point clouds into a 3D voxel
grid and use hand-crafted features to encode each voxel

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

2

[2, 22]. The third class are similar to the second class
but change the hand-crafted features into machine-
learned features [5].
 Owing to the machine-learned features, the third-
class can achieve much better object detection
performance. Qi et al. [14] proposed the PointNet
which learns point-wise features of point clouds using
deep neural networks. Qi et al. [15] proposed
PointNet++ to allow networks to learn local structures
at different scales. Zhou and Tuzel [24] developed the
VoxelNet method, which can learn discriminative
feature representations from point clouds and predict
accurate 3D bounding boxes in an end-to-end module.
Simon et al. [19] developed Complex-YOLO, a real-
time 3D object detector that uses an enhanced region-
proposal network (E-RPN) to estimate the orientation
of objects coded with imaginary and real parts for each
box. Recently, Simon et al. [20] presented a novel
fusion (i.e., Complexer-YOLO) of neural networks that
uses a state-of-the-art 3D detector and visual semantic
segmentation in the field of autonomous driving. The
accuracy of these methods has been demonstrated with
the KITTI vision benchmark dataset [3].
 There is much less work that focuses on the energy
consumption of real-time object detection, although
low energy consumption is a critical requirement for
many practical applications such as autonomous
vehicles. Convolutional neural networks (CNNs) have
been the most popular techniques for object detection
[20, 24]. However, their high energy consumption has
been a challenging issue. By comparison, it is well
known that spiking neural networks (SNNs) are energy
efficient and can potentially have orders-of-magnitude
lower energy consumption than CNNs [21].

Although the investigation of SNNs is far less than
CNNs, numerous studies have shown that SNNs are
able to achieve similarly high image classification
accuracy [8, 9]. One of the major challenges for SNNs
lies in the non-differentiability of spiking activities
which makes the training of large-scale complex
networks difficult. Zhou et al. [23] proposed a direct
training-based spiking-CNN (SCNN) that could
recognize the CIFAR-10 dataset using much less
energy than CNN while reaching the same state-of-the-
art accuracy. Nevertheless, efficient SCNN methods
have not yet been reported over more complex data sets
such as the KITTI 3D point clouds.
 For the point cloud data, a special issue is how to
translate from point-cloud format into a spiking format
suitable for SNNs. If the input data are camera images,
the input image can be converted into spike trains based
on pixel intensity [21] or encoded into spike times [9].

Unfortunately, this approach is not efficient enough for
point cloud data because of the sparsity and non-even
density distributions of point clouds.
 In this paper, similar to [20] and [24], we first
quantize the point cloud to a 3D voxel representation
so as to reduce the input data amount. Then, we design
an innovative data-preprocessing layer that converts
the 3D voxels into spike signals by adding time
information to each voxel. Using this special temporal
coding method, the input data are converted into spike
times directly, and this permits us to design SCNNs
with energy-efficient temporal coding. Finally, we use
such SCNNs to replace the CNNs of the YOLOv2
architecture [17] to develop a large-scale object
detection network. Note that similar to [23], the
network is an end-to-end object detection network that
combines feature extraction and bounding-box
prediction.
 We evaluate our developed network on the bird’s-
eye view and 3D detection tasks provided by the KITTI
benchmark. Implemented over a NVIDIA GTX 1080i
graphical processing unit (GPU), experimental results
show that our network can reach a high frame rate of
35.7 fps, enough for real-time operation. Additionally,
the detection accuracies for cars, pedestrians, and
cyclists can reach the state-of-the-art level. To show the
potential energy efficiency of our network, we propose
an analog circuit implementation of the spiking neuron,
based on which our proposed network would consume
an average of 0.247 mJ only for processing each frame.
This connotes our proposed network’s high
performance and energy efficiency.

The contributions of this paper are listed as follows:
1. We develop a novel data preprocessing layer to add

temporal information to voxel data. With such
temporal coding, we develop SCNNs with sparse
spiking patterns to save energy.

2. We combine the SCNNs with YOLOv2
architecture to develop an efficient object detection
network. We propose two variants of the network:
one with skip connection (SC) and one without SC.
The network without SC is suitable for the current
neuromorphic chips, while the one with SC can be
implemented with future neuromorphic chips that
support skip connections.

3. We provide an analog circuit to implement the non-
leaky integrate and fire neuron used in our SCNNs,
based on which the energy consumption of a spike
is estimated. We also provide a way to estimate the
sparsity of the network. Combining low spike
energy consumption and high network sparsity, the
overall network energy consumption will be much

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

3

lower than existing models. Simulation results
demonstrate the extremely low energy
consumption of our network.

II. NETWORK ARCHITECTURE
 As shown in Fig. 1, the proposed network
comprises three functional blocks: a point cloud data
preprocessing layer (LiDAR spike generation),
spiking-convolution layers (feature learning), and a
detection layer. In the following subsections, we
provide a detailed description of each of these three
blocks.

A. Preprocessing Layer
 For the 3D point cloud data such as KITTI data,
each point 𝑖 is described by a four-number vector
(𝑥 , 𝑦 , 𝑧 , 𝑟), where 𝑥 , 𝑦 , 𝑧 are the 3D position of
the reflection object point, and 𝑟 is the received laser
light reflection intensity. The LiDAR device emits a
pulse, which is reflected from the object and received
by the LiDAR reception device. If the laser emission
equipment is the origin of the coordinate system, the
distance between each reflection point 𝑖 and the laser
emission equipment can be calculated as:

𝑑 = 𝑥 + 𝑦 + 𝑧 . (1)

 Considering the volume of the space that LiDAR
scans, 3D point cloud data set is usually huge and
sparse. Using the 3D point cloud directly as input to
deep networks is not computationally efficient. To
reduce complexity (or to compress the LiDAR data set),
one of the ways is to quantize the point clouds with a
3D voxel representation [19]. We adopt this approach
and consider the 3D region of [0, 60]m ×
[−40, 40]m × [−2.73, 1.27]𝑚 . Specifically, we
consider all the KITTI data points with 𝑥 ∈ [0, 60]m,

 𝑦 ∈ [−40, 40]m , and 𝑧 ∈ [−2.73, 1.27]m . We
quantize the region into 768 × 1024 × 21 voxels with
the size of each voxel cell approximately equals to
0.08 × 0.08 × 0.19 m3, as shown in Fig. 2. The
voxelated space is a regular 3D coordinate system
(𝑥 , 𝑦 , 𝑧), with length 𝑥 ∈ [0, 767], width 𝑦 ∈
[0, 1023] , and height 𝑧 ∈ [0, 20] . With the voxel
representation, we construct a 3D tensor with shape
768 × 1024 × 21 from each KITTI 3D point cloud
data file and use it as input to the deep networks.
 One of the differences between our work and the
existing voxel-based works is that we use propagation
time as the value of each voxel (i.e., tensor element)
rather than the received light intensity or the number of
data points. As introduced in Behroozpour et al. [25],
the round-trip delay of the LiDAR emitted light for
each point can be calculated using the following
equation:

𝑡 = , (2)

where c is the propagation speed of the laser pulse.
Since 𝑡 is the time information of each point, it can be
used to represent the spike time for SCNN object
detection networks.
 For the voxel (𝑥 , 𝑦 , 𝑧) , the value 𝑡 is
calculated according to 𝑡 of all points inside this voxel.
Due to the sparsity of point cloud, there are a lot of
voxels that have no data points. In this case, we let 𝑡 =0.
For the voxels that have one or more data points, we
randomly select one data point and use its time
information to represent the voxel, i.e., 𝑡 = 𝑡 for a
randomly selected data point 𝑖 in this voxel. Note that
we tried using the average time 𝑡 = ∑ 𝑡

,
for all

the I data points in this voxel, but found that this
averaging method did not lead to obvious performance
gain. Therefore, we adopt the simpler random selection
method.

Figure 1. Proposed object detection architecture.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

4

 This propagation time-based encoding method is
more desirable than other encoding methods. The
intensity has large variations due to object shapes,
materials, and environmental conditions such as
raining, which increases the difficulty of deep network
generalization. In contrast, the propagation time for
each voxel is more regular. Compared with using the
number of data points as voxel value, propagation time
leads naturally to SCNN with a temporal coding that
directly uses 𝑡 as spiking time. This temporal coding
considers short-term stimuli to produce a small number
of spikes [26], and thus leads to sparse spiking patterns.
 After the LiDAR data to spike time conversion,
the input to the first layer of the spiking-convolution is
the 3D tensor with shape 768 × 1024 × 21 . The
element value of the tensor is 𝑡 . In the convolutional
layers, we adopt 2D convolutions rather than 3D
convolutions, where the filter sliding is conducted over
the first two dimensions (length and width) only. For
example, the first spike convolutional layer uses filters
with shape 3 × 3 × 21. In other words, we take the
height dimension as the color dimension of the
conventional images. The reason is that the height
dimension has a shape 21, which is very small and
much less than the other two dimensions. Using 2D
convolution will lead to great reduction of the
computational complexity but without obvious
performance loss.

Figure 2. Voxelized point clouds within a 3D

coordinate system.

B. Spiking-Convolution Layers
 Following Mostafa [9], Goltz et al. [28], Comsa et
al. [29] and Kheradpisheh et al. [30], in the spiking-
convolution layers, we use non-leaky integrate and fire
neurons with current exponentially decaying synaptic
kernels. A neuron’s membrane dynamics are described
by

()

 = ∑ 𝑤 ∑ 𝑘(𝑡 − 𝑡) , (3)

where the right-hand side of Eq. (3) is the synaptic
current, 𝑉 is the membrane potential of neuron 𝑗,
𝑤 is the weight of the synaptic connection from
neuron 𝑖 to neuron 𝑗 , 𝑡 is the time of the 𝑟 spike
from neuron 𝑖, and 𝑘(𝑥) is the synaptic current kernel
given by

𝑘(𝑥) = 𝜃(𝑥)𝑒𝑥𝑝(−) , where 𝜃(𝑥) =
1 if 𝑥 ≥ 0
0 otherwise

 (4)

The synaptic current jumps immediately when an input
spike arrives. Then it decays exponentially with a time
constant 𝜏 . Both 𝑟 𝑎𝑛𝑑 𝜏 are set to 1 for the rest
of this paper.
 We assume that a neuron receives N spikes at
times {𝑡 , … , 𝑡 } with weights {𝑤 , … , 𝑤 } from N
source neurons, and these spike times accumulate. As
shown in Fig. 3, the neuron spikes when its membrane
potential is over the firing threshold. After a spike, the
membrane potential automatically resets to 0.

Figure 3. A model of spike neuron involving
accumulating and thresholding operations.

 If the neuron spikes at time 𝑡 , the membrane
potential for 𝑡 < 𝑡 can be derived as

𝑉 (𝑡) = ∑ 𝜃(𝑡 − 𝑡)𝑤 (1 − 𝑒𝑥𝑝(−(𝑡 − 𝑡)). (5)

Assume the thresholding membrane potential be 1.
Then 𝑡 satisfies

1 = ∑ 𝑤 (1 − exp −(𝑡 − 𝑡))∈ , (6)

where C = {i: 𝑡 < 𝑡 }. Therefore,

 𝑒𝑥𝑝(𝑡) =
∑ ()∈

∑ ∈
. (7)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

5

 We use this non-leaky integrate-and-fire neuron
model to implement the convolutional neural networks.
For example, in the first convolutional layer, the input
neuron time (𝑡 of Eq. (7)) is the voxel time 𝑡 . The
convolution kernel consists of weights 𝑤 in Eq. (7).
The output neuron value is 𝑡 , which is calculated by
Eq. (7). As a result, communication between
convolution layers occurs entirely through the temporal
coded spike signals.
 The convolution operation is illustrated in Fig. 4.
Prior to matrix multiplication, we need to sort the
spiking-time values 𝑡 in the small square of the input
data in layer n, from small to large, into a vector T. The
elements 𝑤 in the convolutional kernel are reordered
to generate a matrix W according to the changed
position of spiking-time values. According to Eq. (7),
for 𝑤 ∈ 𝑊 and 𝑡 ∈ 𝑇 , a dot-product is performed
between 𝑤 and exp (𝑡) . The neuron fires when the
accumulated dot products reach the threshold.
Consequently, the value of the mapping element, 𝑡 ,
becomes the output. As noted, after the neuron fires, it
is not allowed to fire again.
 Two important marks are necessary to clarify.
First, the sorting of 𝑡 , which can be computationally
demanding, is not needed when the SCNN is
implemented in dedicated hardware. This is because 𝑡
represents the actual arrival time of the input neuron.
Smaller 𝑡 means a spike arrives earlier and is thus
accumulated earlier. Second, the input neurons with
time 𝑡 > 𝑡 do not participate in dot-product and
accumulation. As a matter fact, these neurons would
never fire spikes when implemented in dedicated
hardware. Therefore, with temporal coding, the fired
spikes can be quite sparse, which greatly conserves
energy.
 Using the SCNN to replace the CNN of the
YOLOv2 backbone in [17], we obtain a new YOLOv2
network that detects and locates objects from spiking-

time data. Combined with the real-time nature of
YOLOv2, the presented network can be implemented
efficiently on a neuromorphic architecture.

C. Detection Layer
 Following Simon et al. [19], we use E-RPN to
derive the object’s position {𝑏 , 𝑏 }, length 𝑏 , width
𝑏 , probability 𝑝 , class scores {𝑝 , …, 𝑝 }, and the
orientation 𝑏∅ . To achieve proper orientation, we
exploit the updated Grid-RPN approach from [19] to
obtain

𝑏 = 𝜎(𝑡) + 𝑐 , (8)
𝑏 = 𝜎 𝑡 + 𝑐 , (9)
𝑏 = 𝑝 𝑒 , (10)

𝑏 = 𝑝 𝑒 , (11)
𝑏∅ = 𝑎𝑟𝑔 |𝑧|𝑒 ∅ = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑡 , 𝑡) , (12)

where 𝑡 , 𝑡 , 𝑡 , 𝑡 , 𝑡 and 𝑡 are 6 coordinate
parameters for each bounding box that the network
predicts. (𝑐 , 𝑐) is the cell offset from the top left
corner of the image. The bounding box prior has width
and length 𝑝 , 𝑝 , respectively. In addition, 𝑡 , 𝑡 ,
𝑡 , 𝑡 , 𝑡 and 𝑡 are the responsible regression
parameters. With 𝑡 , 𝑡 , 𝑡 , 𝑡 and
𝑎𝑟𝑐𝑡𝑎𝑛 (𝑡 , 𝑡), we can easily calculate the position,
width, length and angle of each bounding box.

Our regression parameters are directly linked
to the loss function 𝐿 based on the Complex-YOLO
of [19]. Specifically, the loss function is defined as

𝐿 = 𝐿 + 𝐿 , (13)

where 𝐿 is the sum of squared errors using the
introduced multi-part loss, as shown in [17].
Additionally, according to [19], the Euler regression

Figure 4. Illustration of spiking convolution in layer n.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

6

part of the loss function, 𝐿 , is defined as

𝐿 = 𝜆   ∑ ∑ α [(𝑡 − �̂�) + (𝑡 − �̂�)] , (14)

where α indicates the bth bounding-box predictor in
cell s, which has the highest Intersection over Union
(IoU) in comparison with the ground truth for that
prediction. 𝜆 is a scaling factor used to guarantee
stable convergence during early phases. �̂� and �̂�
are the estimated responsible regression parameters.

III. ENERGY CONSUMPTION
 Similar to [19] and [24], our network is a single-
stage detector that can be trained in an end-to-end
manner. The spike-based time coding strategy we use
in this paper is similar to the scheme of time-to-first-
spike in [13]. Hence, our proposed network will have
lower running time than CNN-based models [5, 18].
Moreover, our network is more energy efficient
because the network signals are transmitted via spikes.
In this section, we analyze the energy consumption by
first proposing an analog circuit of the spiking neuron,
and then pointing out the sparsity of our proposed
network.

A. An Energy-Efficient Analog Neuron Circuit
 To estimate the potential energy consumption of
each spike, we propose an analog circuit as shown in
Fig. 5 to implement the non-leaky integrate and fire
neuron formulated in Eq. (3) and (4).

Figure 5. The analog circuit of the non-leaky integrate

and fire neuron.

 Fig. 5 shows the transistor-level schematic of a
single neuron (neuron j). This neuron circuit comprises
two analog switched-capacitor integrators and a
comparator. The first integrator performs the
summation operation in the right-hand-side of Eq. (3).
When the neuron i spikes, a capacitor 𝐶 is charged to
a fixed-potential 𝑉 , where the ratio of capacitor
𝐶 /𝐶 represents weight of the synaptic connection
from neuron i to neuron j (𝑤). The charge across 𝐶
is dumped onto the feedback capacitor 𝐶 when the

neuron i is not spiking and the capacitor 𝐶 starts
discharging through the switch connected parallel to it
(denoted by 𝑆 in Fig. 5). The second integrator
samples the output of the first integrator and starts
integrating it and stores the charge on the feedback
capacitor 𝐶 . Once the output of the second integrator
exceeds a threshold voltage, 𝑉 , a comparator fires
and produces an output of ‘1’ which represents firing
of neuron j. The comparator output also resets the
second integrator.
 The amplifiers in the integrators are designed
using simple two-stage operational-amplifier structure
with 55dB gain. A strongARM latch architecture is
used to design the comparator. Designed in 65nm
CMOS process, the neuron consumes 19 pJ energy for
1MHz input pulses. Since each neuron is only allowed
to spike no more than once, each spike is thus averaged
to consume 𝑝 = 19 pJ on the analog circuit. Static
power consumed by the amplifiers dominates the
energy consumption of each neuron. However, gain-
bandwidth of the amplifiers scale with frequency of
input spikes, and energy consumption of each neuron
can be reduced for systems with low frequency of input
spikes.
 Since all the computations are done in analog
domain, the proposed neuron does not need digital
memory to store intermediate results [10, 27], and
hence, eliminates frequent data movements between
memory and computation circuits. Thus, the proposed
analog neuron is expected to have significantly lower
energy consumption compared to digital
implementation of the neuron. The weights of the
spiking neural network, i.e, strength of synaptic
connections between neurons, are encoded as
capacitance values which further reduces storage
requirement.
 The implementation shown in Fig. 5 can be used
when the SCNN has been trained and the weights are
fixed. To make the neural weights programmable, we
can apply non-volatile memory (NVM) on chip to
make the capacitors programmable. For each capacitor,
we can split it into several slices and the weights stored
in the NVM can select the number of slices for each
capacitor and set its weight. For a given application, if
the weights are updated only once at start-up then the
energy consumption due to memory access is not an
issue. Memory access energy only becomes
problematic if the memory has to be accessed every
cycle of operation. Therefore, in a programmable deep
network, the major cost would be the area increase
since the memory has to be stored on the chip. The
power increase is not going to be significant.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

7

B. Network Sparsity for Energy Efficiency
 As seen in Eq. (6), the neuron spikes only when
the membrane potential of the neuron reaches the
threshold. After the neuron spikes, it is not allowed to
spike again. To recognize the pattern or detect a scene,
if the first N neurons from the input layer can cause a
neuron of the next layer to spike, the rest of the M
neurons in the input layer will not spike, which means
a lot of neurons will not spike in each layer. Hence, we
can calculate the sparsity of each layer using the
following equation:

𝑆 = , (15)

where 𝑆 is the sparsity of the ith layer, 𝑁 is the number
of spiking active neurons in the ith layer, and 𝑀 is the
number of non-active neurons in the ith layer. The
overall sparsity of a 𝐾-layer network is

𝑆 = =
∑

∑ ∑
 , (16)

where 𝑀 is the total number of non-active neurons,
and 𝑁 is the total number of active neurons. The
total energy consumption of the network can be
calculated as

𝑃 = 𝑁 × 𝑝 , (17)

where 𝑝 is the energy consumed by each spike.

IV. TRAINING AND EXPERIMENTS
 In this section, we describe the proposed network
and its training for the evaluation of the KITTI data in
details.

A. Training Details
 We evaluated the proposed network using the
challenging KITTI object detection benchmark, which
contained 7481 and 7518 samples for training and
testing, respectively. Because the input was LiDAR
data, we only focused on birds-eye-view and 3D object
detection for cars, pedestrians, and cyclists. Similar to
the literature, each class was evaluated based on three
difficulty levels (i.e., easy, moderate, and hard),
considering the object’s size, distance, occlusion, and
truncation.
 The detailed architecture of the proposed network
is given in Table 1. Although our proposed network
was based on the Complex-YOLO design from [19],
we used only 9 spiking-convolutional layers, 1

traditional convolutional layer, 5 maxpool layers, and
3 intermediate layers. As a comparison, [19] used 18
convolutional layers, 5 maxpool layers, and 3
intermediate layers. Our proposed network was
comparatively simpler than that of [19]. From the
perspective of energy consumption, the simpler the
network architecture, the less energy the network will
consume.
 As a special note, in the last layer, we used a
traditional convolutional layer instead of a spiking-
convolutional layer. Using the spiking-convolutional
layer as the last layer would degrade performance
compared with the current ones, which was a surprising
observation we obtained from our preliminary test. A
heuristic explanation is that because for SCNN the
input values were time information, negative values
were not allowed. But the values of some coordinates
of the real 3D LiDAR data were negative based on the
range presented in Section II. Traditional convolutional
layers could handle negative values with the linear
activation function 𝑓(𝑥) = 𝑥.
 Another special note is that we tested our network
both with skipped connection (SC) or without skipped
connection. As introduced by He et al. [6] and Orhan
and Pitkow [11], SCs are simply extra connections
between nodes at different layers of a neural network
that skip one or more layers of nonlinear processing.
They can improve the training of very deep neural
networks without changing their main structure. Hence,
in our network, we used SCs to improve the
performance. However, latest detection chips (e.g.,
HTPU from CORAL and Akida from BrainChip) do
not support SCs. The main reason is that the nodes of
the hardware do not support event-packet
synchronization across multiple layers. An SC also
consumes extra energy in practice. Due to these
considerations, we also experimented our network
without SC.
 The network was trained from scratch using
stochastic gradient descent with a weight decay of 5e−4
and momentum of 0.9. The implementation was based
on a modified version of the YOLOv2 framework [17].
Because the proposed model was a supervised
learning-based network and the testing samples in the
KITTI dataset had no labels, following the practice of
[1, 19, 24], we divided the training set with an available
ground truth and allocated 85% data for training and 15%
for testing. To train the model well, during the first
epoch, we started with a learning rate at 5e−5 to ensure
convergence. After four epochs, we scaled the learning
rate up to 5e−4 and gradually decreased it up to 1000
epochs.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

8

Table 1. Proposed network architecture

 Based on Eq. (15) and (16), we obtained the
sparsity of each layer and the sparsity of the overall
network for each sample. There were 1122 samples for
validation, and the minimum, maximum, and mean
sparsity values of our networks are given in Table 2.
For the two trained networks (with SC, and without SC),
there was no major difference between their maximum
and minimum sparsity. The mean sparsity of the
networks was 56.24% for the KITTI dataset.
 Assume each spike consume 19 pJ. The energy
consumption of the network was thus 0.247 mJ because
the number of active neurons was about 13 million on
average. Note that the estimated energy consumption
does not include the energy spent in the last layer of the
network and the preprocessing layer because these two
layers do not involve spiking neurons. In CNN-based
networks and many other SNN-based networks, all
neurons are used for object detection or recognition.
Thus, their energy consumption should be much higher
than our obtained one. The small energy consumption
value connotes the energy efficiency of our proposed
network.

Table 2. Sparsity of the network for KITTI dataset.

B. Experiments

We set up our experiments following the official
KITTI evaluation protocol, where the IoU thresholds
were 0.7 for the Car class, and 0.5 for Pedestrian and
Cyclist classes. The IoU threshold was the same for
both the bird’s-eye view and full 3D evaluation. We
compared the methods using the average precision (AP)
metric.

Evaluation in the Bird’s- Eye View
 Our evaluation results for bird’s-eye view
detection are given in Table 3. Simon et al. [19]
compared their proposed model, Complex-YOLO,
with the first five leading models presented in Table 3
and demonstrated that their model outperformed all
five in terms of running time and efficiency. They were
still able to achieve detection accuracy comparable
with the state of the art. As noted, although Complexer-
YOLO [20] was more complicated than Complex-
YOLO, the detection accuracies for all classes were
lower than that of Complex-YOLO. Hence, we first
focused on the comparison between Complex-YOLO
and our network. As seen, all accuracy values of our
proposed network with SC for detecting the car,
pedestrian, and cyclist were higher than those using
Complex-YOLO. Our network with SC showed better
performance in object detection than our network
without SC. Therefore, in the sequel, we mainly
consider the model with SC and compare it with the
others.

Layer filters size input output
Spike-conv 32 3x3/1 768×1024×21 768×1024×32

max 2x2/2 768×1024×32 384×512×32
Spike-conv 48 3x3/1 384×512×32 384×512×48

max 2x2/2 384×512×48 192×256×48
Spike-conv 64 3x3/1 192×256×48 192×256×64

max 2x2/2 192×256×64 96×128×64
Spike-conv 128 3x3/1 96×128×64 96×128×128

max 2x2/2 96×128×128 48×64×128
Spike-conv 256 3x3/1 48×64×128 48×64×256
Spike-conv 1024 3x3/1 48×64×256 48×64×1024
Spike-conv 512 3x3/1 48×64×1024 48×64×512

max 2x2/2 48×64×512 24×32×512
Spike-conv 1024 3x3/1 24×32×512 24×32×1024

route 9
reorg /2 48×64×256 24×32×1024
route 13

Spike-conv 1024 3x3/1 24×32×2048 24×32×1024
conv 75 1x1/1 24×32×1024 24×32×75
loss 24×32×5×15

 Minimum Maximum Mean

Sparsity 54.08% 58.41% 56.24%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

9

Table 3. Performance comparison for birds-eye-view detection: APs (in %) for our proposed networks
compared with existing leading models.

 Running the experiments with a NVIDIA GTX
1080i GPU, our network achieved frame rate 35.7 fps.
Although this frame rate was lower than the 50.4 fps of
Complex-YOLO, it was still much higher than those of
the other five models. We also compared our detection
results with the latest ones in [31-33]. Even though
Point-RCNN [31] in the Car and Cyclist (easy and
moderate) detection had higher accuracies than the
others, its frame rate was low. As observed in Table 3,
at the hard cyclist level, our proposed model had higher
accuracies than the others. Its accuracies on other levels
were competitive to the others.
 As an ablation study, following the architecture in
Fig. 1, we used CNN instead of SCNN to build the
network. The results of this CNN-based network had
higher frame rate but had much lower accuracy in all
levels than the SCNN network, which indicates the
benefits of using SCNN.

3D Object Detection
 Apart from the bird’s-eye view detection, we
applied our proposed network to 3D object detection.
The results are presented in Table 4. Similar to [19], we
did not directly estimate the height information with
regression but instead used a fixed spatial height
location extracted from ground truth to implement the
3D object detection. As seen in Table 4, the detection
accuracies of our network with SC on the car,
pedestrian, and cyclist were all better than those of
Complex-YOLO. Additionally, the accuracies of the
proposed network with SC were comparable to the
other models. Moreover, our network reached its
highest accuracy with the moderate and hard cyclist
levels. The proposed network with SC in all cases

showed better performance than the network without
SC and the ablation network with CNN only.
 To illustrate the detection performance of our
proposed network with SC, several 3D detection
examples are presented in Fig. 6. For better
visualization, we projected 3D boxes detected using
LiDAR onto the red–green–blue (RGB) images. As
seen in Fig. 6, the proposed network with SC had
highly accurate 3D bounding boxes in all categories.

V. CONCLUSION

Existing LiDAR-based 3D real-time object
detection methods use CNN. Although they can
achieve high detection accuracy, their high energy
consumption is a great concern for practical vehicular
applications. This paper is the first to report the
development of an SCNN-based YOLOv2 architecture
for real-time object detection over the KITTI 3D point-
cloud dataset considering the energy consumption. We
designed a novel data preprocessing layer to translate
the 3D point clouds directly into spike times. To better
show the energy efficiency of the proposed network in
real-time object detection, we built an analog neuron
circuit to obtain the energy cost of each spike. We also
proposed an energy consumption and network sparsity
estimation method. Our proposed network had a mean
spiking sparsity of 56.24% and consumed an average
of 0.247 mJ only, indicating higher energy efficiency.
Experimental results over the KITTI dataset
demonstrated that our proposed network reached the-
state-of-the-art accuracy in the bird’s-eye view and full
3D detection. In some cases, our proposed network
performed better than other typical models reported in
literature.

Method Data FPS
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
MV3D [1] LiDAR + Mono 2.8 71.09 62.35 55.12 - - - - - -

F-PointNet [16] LiDAR +Mono 5.9 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
AVOD [7] LiDAR + Mono 12.5 73.59 65.78 58.38 38.28 31.51 26.98 60.11 44.90 38.80

AVOD-FPN [7] LiDAR + Mono 10.0 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61
VoxelNet [24] LiDAR 4.3 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11

Complex-YOLO [19] LiDAR 50.4 67.72 64.00 63.01 41.79 39.70 35.92 68.17 58.32 54.30
PointRCNN [31] LiDAR 10 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53

MLOD [32] LiDAR + Mono 8.3 77.24 67.76 62.05 47.58 37.47 35.07 68.81 49.43 42.84
SCNet [33] LiDAR 25 83.34 73.17 67.93 47.83 38.66 35.70 67.98 50.79 45.15

Our network with CNN LiDAR 51.2 65.13 61.82 59.57 37.93 34.76 31.03 64.79 55.52 51.29
Our network with SC LiDAR 35.7 71.76 67.43 65.63 47.07 42.53 39.36 69.16 59.24 55.25

Our network without SC LiDAR 35.7 68.94 66.65 65.39 38.03 32.43 28.64 58.40 50.61 45.75

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

10

Table 4. Performance comparison for 3D object detection: APs (in %) for our proposed networks compared with
existing leading models.

Figure 6. Qualitative results. 3D boxes detected with LiDAR are projected onto the RGB images.

REFERENCES
[1] Chen, X., Ma, H., Wan, J., Li, B., Xia, T. (2016) “Multi-view 3D object

detection network for autonomous driving,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
6526–6534.

[2] Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., Posner. I. (2017)
“Vote3deep: fast object detection in 3d point clouds using efficient
convolutional neural networks,” 2017 IEEE International Conference
on Robotics and Automation (ICRA), 1355–1361, May.

[3] Geiger, A., Lenz, P., Urtasun, R. (2012) “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), 128.

[4] Gonzalez, A., Villalonga, G., Xu, J., Vazquez, D., Amores, J., Lopez, A.
(2015) “Multiview random forest of local experts combining RGB and
LIDAR data for pedestrian detection,” 2015 IEEE Intelligent Vehicles
Symposium (IV), July, Seoul, South Korea.

[5] Girshick, R., Donahue, J., Darrell, T., Malik. J. (2013) “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), 580–587.

[6] He, K., Zhang, X., Ren, S., Sun, J. (2015) “Deep residual learning for
image recognition,” arXiv: 1512.03385.

[7] Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S. (2017) “Joint
3d proposal generation and object detection from view aggregation,”
arXiv:1712.02294.

[8] Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., Masquelier, T. (2018)
“STDP-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, 99, 56–67.

[9] Mostafa, H. (2018) “Supervised learning based temporal coding in
spiking neural networks,” IEEE Transactions on Neural Networks and
Learning Systems. 29(7), 3227-3235.

[10] Valavi, H., Ramadge, P. J., Nestler, E., Verma, N. (2018) “A mixed-
signal binarized convolutional neural network accelerator integrating

Method Modality FPS
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [1]
LiDAR +

Mono
2.8 86.02 76.90 68.49 - - - - - -

F-PointNet [16] LiDAR +Mono 5.9 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68

AVOD [7]
LiDAR +

Mono
12.5 86.80 85.44 77.73 42.51 35.24 33.97 63.66 47.74 46.55

AVOD-FPN [7]
LiDAR +

Mono
10.0 88.53 83.79 77.90 50.66 44.75 40.83 62.39 52.02 47.87

VoxelNet [24] LiDAR 4.3 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49

Complex-YOLO [19] LiDAR 50.4 85.89 77.40 77.33 46.08 45.90 44.20 72.37 63.36 60.27

Point-RCNN [31] LiDAR 10 92.13 87.39 82.72 54.77 46.13 42.84 82.56 67.24 60.28
MLOD [32] LiDAR +

Mono
8.3 90.25 82.68 77.97 55.09 45.40 41.42 73.03 55.06 48.21

SCNet [33] LiDAR 25 90.07 86.48 81.30 56.87 46.73 42.74 73.73 56.39 49.99
Our network with
CNN

LiDAR 51.2 83.48 72.41 72.39 43.81 42.91 41.12 68.39 59.15 55.98

Our network with SC LiDAR 35.7 86.54 81.97 79.11 50.27 48.21 46.47 75.57 65.48 63.21
Our network without SC LiDAR 35.7 86.93 82.70 82.23 38.34 36.43 35.52 62.40 55.97 55.34

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

11

dense weight storage and multiplication for reduced data movement,”
IEEE Symposium on VLSI Circuits.

[11] Orhan, A. E., Pitkow, X. (2018) “Skip connections eliminate
singularities,” arXiv:1701.09175.

[12] Premebida, C., Carreira, J., Batista, J., Nunes, U. (2014) “Pedestrian
detection combining RGB and dense LIDAR data,” 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sept 14-
18.

[13] Ponulak, F., Kasinski, A. (2011) “Introduction to spiking neural
networks: Information processing, learning and applications,” Acta
Neurobiologiae Experimentalis 71(4): 409-433.

[14] Qi, C.R., Su, H., Mo, K., Guibas, L. J. (2016) “Pointnet: Deep learning
on point sets for 3d classification and segmentation,”
arXiv:1612.00593.

[15] Qi, C.R., Yi, L., Su, H., Guibas, L. J. (2017) “Pointnet++: deep
hierarchical feature learning on point sets in a metric space,”
arXiv:1706.02413.

[16] Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L. J. (2017) “Frustum
pointnets for 3d object detection from RGB-D data,” arXiv:1711.08488.

[17] Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A. (2015) “You
only look once: Unified, real-time object detection,” arXiv:1506.02640.

[18] Ren, S., He, K., Girshick, R.B., Sun, J. (2015) “Faster R-CNN: towards
real-time object detection with region proposal networks,” arXiv:
1506.01497.

[19] Simon, M. Milz, S., Amende, K., Gross, H. M. (2019) “Complex-
YOLO: Real-time 3D object detection on point clouds,” arXiv:
1803.06199.

[20] Simon, M., Amende, K., Kraus, A., Honer, J., Gross, H. M. (2019)
“Complexer-YOLO: Real-time 3D object detection and tracking on
semantic point clouds,” arXiv:1904.07537.

[21] Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., Maida,
A. (2019) “Deep learning in spiking neural networks,” Neural
Networks, 111, 47-63.

[22] Wang, D. Z., Posner, I. (2015) “Voting for voting in online point cloud
object detection,” In Proceedings of Robotics: Science and Systems,
Rome, Italy, July.

[23] Zhou, S., Chen, Y., Ye, Q., Li, J. (2019) “Direct training based spiking
convolutional neural networks for object recognition,” arXiv:
1909.10837

[24] Zhou, Y., Tuzel, O. (2018) “VoxelNet: end-to-end learning for point
cloud based 3D object detection,” 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 18-23, Salt
Lake City.

[25] Behroozpour, B., Sandborn, P. A. M., Wu, M. C., Boser, B. E. (2017)
“Lidar system architectures and circuits,” IEEE Communications
Magazine, 55(10): 135-142.

[26] Dayan, P., Abbott, L. F. (2001). “Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural Systems,”
Massachusetts Institute of Technology Press. ISBN 978-0-262-
04199-7.

[27] Biswas, A., Chandrakasan, A. P. (2018) “Conv-RAM: An energy-
efficient SRAM with embedded convolution computation for low-
power CNN-based machine learning applications”, IEEE
International Solid-State Circuits Conference.

[28] Goltz, J., Billaudelle, S., Breitwieser, O., Dold, D., Kriener, L., Kungl,
A. F., Senn, W., Schemmel, J., Meier, K., Petrovici, M. A. (2019)
“Fast and deep neuromorphic learning with time-to-first-spike
coding,” arXiv: 1912.11443.

[29] Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A.,
Alakuijala, J. (2019) “Temporal coding in spiking neural networks
with alpha synaptic function,” arXiv: 1907.13223.

[30] Kheradpisheh, S. R., Masquelier, T. (2020) “S4NN: temporal
backpropagation for spiking neural networks with one spike per
neuron,” arXiv: 1910.09495.

[31] Shi, S., Wang, X., Li, H. (2019) “Pointrcnn: 3d object proposal
generation and detection from point cloud,” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
770–779.

[32] Deng, J., Czarnecki, K. (2019) "MLOD: A multi-view 3D object
detection based on robust feature fusion method." In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 279-284.
IEEE, 2019.

[33] Wang, Z., Fu, H., Wang, L., Xiao, L., Dai, B. (2019) "SCNet:
Subdivision coding network for object detection based on 3D point
cloud," IEEE Access 7 (2019): 120449-120462.

Shibo Zhou received the B.S. degree in
Mechatronic Engineering from Hebei
University of Architecture, Hebei, China, in
2013 and the M.S. degree in Mechanical
Engineering from University of Texas at
Arlington, Arlington, TX, USA, in 2016. He
is currently pursuing the Ph.D. degree in
Electrical Engineering at Binghamton
University State University of New York,
Binghamton, NY, USA. His research

interest includes the low-power neuromorphic ASIC simulation and
development, novel unsupervised learning algorithm, spiking
neural network for object recognition and detection, computer
vision and machine learning, deep neural network and 3D
perception of self-driving car.

Ying Chen received the Ph.D. degree in
Industrial Engineering from University of
Texas at Arlington. He is currently an
Assistant Professor in the School of
Economics and Management at Harbin
Institute of Technology. His research
interests include data mining, machine
learning, decision-making under uncertainty
and optimization.

Xiaohua Li (M’00, SM’06) received the B.S.
and M.S. degrees from Shanghai Jiao Tong
University, Shanghai, China, in 1992 and
1995, respectively. He received the Ph.D.
degree in Electrical Engineering
from the University of Cincinnati, Cincinnati,
OH, in 2000. He was an assistant professor
from 2000 to 2006, and has been an
Associate Professor since 2006, both with the
Department of Electrical and

Computer Engineering, State University of New York at
Binghamton, Binghamton, NY. His research interests are in the
fields of signal processing, machine learning, deep learning,
wireless communications, and wireless information assurance.

Arindam Sanyal (M’14) received his Ph.D.
from The University of Texas at Austin in
2016, his M.Tech from The Indian Institute
of Technology, Kharagpur in 2009 and B.E
from Jadavpur University, India in 2007. He
is an Assistant Professor in the Electrical
Engineering Department at The State
University of New York at Buffalo. Prior to
this, he was a Design Engineer working on

low jitter PLLs at Silicon Laboratories, Austin. His research
interests include analog/mixed signal design, bio-medical sensor
design, analog security and on-chip artificial neural network. He is
the recipient of National Science Foundation CISE Research
Initiation Initiative (CRII) award in 2020, Intel/Texas
Instruments/Catalyst Foundation CICC Student Scholarship Award
in 2014 and Mamraj Agarwal Award in 2001.

