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ABSTRACT Real-time accurate detection of three-dimensional (3D) objects is a fundamental 
necessity for self-driving vehicles. Most existing computer vision approaches are based on 
convolutional neural networks (CNNs). Although the CNN-based approaches can achieve high 
detection accuracy, their high energy consumption is a severe drawback. To resolve this problem, 
novel energy efficient approaches should be explored. Spiking neural network (SNN) is a promising 
candidate because it has orders-of-magnitude lower energy consumption than CNN. Unfortunately, 
the studying of SNN has been limited in small networks only. The application of SNN for large 3D 
object detection networks has remain largely open. In this paper, we integrate spiking convolutional 
neural network (SCNN) with temporal coding into the YOLOv2 architecture for real-time object 
detection. To take the advantage of spiking signals, we develop a novel data preprocessing layer 
that translates 3D point-cloud data into spike time data. We propose an analog circuit to implement 
the non-leaky integrate and fire neuron used in our SCNN, from which the energy consumption of 
each spike is estimated. Moreover, we present a method to calculate the network sparsity and the 
energy consumption of the overall network. Extensive experiments have been conducted based on 
the KITTI dataset, which show that the proposed network can reach competitive detection accuracy 
as existing approaches, yet with much lower average energy consumption. If implemented in 
dedicated hardware, our network could have a mean sparsity of 56.24% and extremely low total 
energy consumption of 0.247mJ only. Implemented in NVIDIA GTX 1080i GPU, we can achieve 
35.7 fps frame rate, high enough for real-time object detection. 

INDEX TERMS spiking convolutional neural network, LiDAR temporal data, energy 
consumption, real-time object detection

I. INTRODUCTION 
        In recent years, increased attention has been paid 
to point cloud data processing for autonomous driving 
applications because of significant improvements in 
automotive light detection and ranging (LiDAR) 
sensors, which deliver three-dimensional (3D) point 
clouds of the environment in real time. Point cloud data 
have highly variant density distributions throughout the 
measurement area [14], which can be exploited for 
object detection [1, 7, 22]. Nevertheless, different from 

camera images, LiDAR point clouds are unordered and 
sparse, which results in some difficulties for real-time 
object detection.  
        To address the point cloud object detection 
challenge, many approaches have been proposed, 
which can be divided into three general classes. The 
first class project point clouds into a perspective view 
and detect objects via image-based algorithms [4, 12]. 
The second class convert point clouds into a 3D voxel 
grid and use hand-crafted features to encode each voxel 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.2990416, IEEE
Access

 

2 
 

[2, 22]. The third class are similar to the second class 
but change the hand-crafted features into machine-
learned features [5].  
        Owing to the machine-learned features, the third-
class can achieve much better object detection 
performance. Qi et al. [14] proposed the PointNet 
which learns point-wise features of point clouds using 
deep neural networks. Qi et al. [15] proposed 
PointNet++ to allow networks to learn local structures 
at different scales. Zhou and Tuzel [24] developed the 
VoxelNet method, which can learn discriminative 
feature representations from point clouds and predict 
accurate 3D bounding boxes in an end-to-end module. 
Simon et al. [19] developed Complex-YOLO, a real-
time 3D object detector that uses an enhanced region-
proposal network (E-RPN) to estimate the orientation 
of objects coded with imaginary and real parts for each 
box. Recently, Simon et al. [20] presented a novel 
fusion (i.e., Complexer-YOLO) of neural networks that 
uses a state-of-the-art 3D detector and visual semantic 
segmentation in the field of autonomous driving. The 
accuracy of these methods has been demonstrated with 
the KITTI vision benchmark dataset [3]. 
        There is much less work that focuses on the energy 
consumption of real-time object detection, although 
low energy consumption is a critical requirement for 
many practical applications such as autonomous 
vehicles. Convolutional neural networks (CNNs) have 
been the most popular techniques for object detection 
[20, 24]. However, their high energy consumption has 
been a challenging issue. By comparison, it is well 
known that spiking neural networks (SNNs) are energy 
efficient and can potentially have orders-of-magnitude 
lower energy consumption than CNNs [21].  

Although the investigation of SNNs is far less than 
CNNs, numerous studies have shown that SNNs are 
able to achieve similarly high image classification 
accuracy [8, 9]. One of the major challenges for SNNs 
lies in the non-differentiability of spiking activities 
which makes the training of large-scale complex 
networks difficult. Zhou et al. [23] proposed a direct 
training-based spiking-CNN (SCNN) that could 
recognize the CIFAR-10 dataset using much less 
energy than CNN while reaching the same state-of-the-
art accuracy. Nevertheless, efficient SCNN methods 
have not yet been reported over more complex data sets 
such as the KITTI 3D point clouds.  
        For the point cloud data, a special issue is how to 
translate from point-cloud format into a spiking format 
suitable for SNNs. If the input data are camera images, 
the input image can be converted into spike trains based 
on pixel intensity [21] or encoded into spike times [9]. 

Unfortunately, this approach is not efficient enough for 
point cloud data because of the sparsity and non-even 
density distributions of point clouds. 
        In this paper, similar to [20] and [24], we first 
quantize the point cloud to a 3D voxel representation 
so as to reduce the input data amount. Then, we design 
an innovative data-preprocessing layer that converts 
the 3D voxels into spike signals by adding time 
information to each voxel. Using this special temporal 
coding method, the input data are converted into spike 
times directly, and this permits us to design SCNNs 
with energy-efficient temporal coding. Finally, we use 
such SCNNs to replace the CNNs of the YOLOv2 
architecture [17] to develop a large-scale object 
detection network. Note that similar to [23], the 
network is an end-to-end object detection network that 
combines feature extraction and bounding-box 
prediction. 
        We evaluate our developed network on the bird’s-
eye view and 3D detection tasks provided by the KITTI 
benchmark. Implemented over a NVIDIA GTX 1080i 
graphical processing unit (GPU), experimental results 
show that our network can reach a high frame rate of 
35.7 fps, enough for real-time operation. Additionally, 
the detection accuracies for cars, pedestrians, and 
cyclists can reach the state-of-the-art level. To show the 
potential energy efficiency of our network, we propose 
an analog circuit implementation of the spiking neuron, 
based on which our proposed network would consume 
an average of 0.247 mJ only for processing each frame. 
This connotes our proposed network’s high 
performance and energy efficiency.  

The contributions of this paper are listed as follows: 
1. We develop a novel data preprocessing layer to add 

temporal information to voxel data. With such 
temporal coding, we develop SCNNs with sparse 
spiking patterns to save energy. 

2. We combine the SCNNs with YOLOv2 
architecture to develop an efficient object detection 
network. We propose two variants of the network: 
one with skip connection (SC) and one without SC. 
The network without SC is suitable for the current 
neuromorphic chips, while the one with SC can be 
implemented with future neuromorphic chips that 
support skip connections. 

3. We provide an analog circuit to implement the non-
leaky integrate and fire neuron used in our SCNNs, 
based on which the energy consumption of a spike 
is estimated. We also provide a way to estimate the 
sparsity of the network. Combining low spike 
energy consumption and high network sparsity, the 
overall network energy consumption will be much 
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lower than existing models. Simulation results 
demonstrate the extremely low energy 
consumption of our network.  

II.  NETWORK ARCHITECTURE 
        As shown in Fig. 1, the proposed network 
comprises three functional blocks: a point cloud data 
preprocessing layer (LiDAR spike generation), 
spiking-convolution layers (feature learning), and a 
detection layer. In the following subsections, we 
provide a detailed description of each of these three 
blocks.  
 
A. Preprocessing Layer 
        For the 3D point cloud data such as KITTI data, 
each point 𝑖  is described by a four-number vector 
(𝑥 ,  𝑦 ,  𝑧 , 𝑟 ), where 𝑥 ,  𝑦 , 𝑧  are the 3D position of 
the reflection object point, and 𝑟  is the received laser 
light reflection intensity. The LiDAR device emits a 
pulse, which is reflected from the object and received 
by the LiDAR reception device. If the laser emission 
equipment is the origin of the coordinate system, the 
distance between each reflection point 𝑖 and the laser 
emission equipment can be calculated as: 

𝑑 = 𝑥 +  𝑦 +  𝑧 .                    (1) 

        Considering the volume of the space that LiDAR 
scans, 3D point cloud data set is usually huge and 
sparse. Using the 3D point cloud directly as input to 
deep networks is not computationally efficient. To 
reduce complexity (or to compress the LiDAR data set), 
one of the ways is to quantize the point clouds with a 
3D voxel representation [19]. We adopt this approach 
and consider the 3D region of [0, 60]m ×
[−40, 40]m × [−2.73, 1.27]𝑚 . Specifically, we 
consider all the KITTI data points with 𝑥 ∈ [0, 60]m, 

 𝑦 ∈ [−40, 40]m , and  𝑧 ∈ [−2.73, 1.27]m . We 
quantize the region into 768 × 1024 × 21 voxels with 
the size of each voxel cell approximately equals to 
0.08 × 0.08 × 0.19  m3, as shown in Fig. 2. The 
voxelated space is a regular 3D coordinate system 
(𝑥 ,  𝑦 ,  𝑧 ), with length  𝑥 ∈ [0, 767], width  𝑦 ∈
[0, 1023] , and height  𝑧 ∈ [0, 20] . With the voxel 
representation, we construct a 3D tensor with shape 
768 × 1024 × 21  from each KITTI 3D point cloud 
data file and use it as input to the deep networks.  
        One of the differences between our work and the 
existing voxel-based works is that we use propagation 
time as the value of each voxel (i.e., tensor element) 
rather than the received light intensity or the number of 
data points. As introduced in Behroozpour et al. [25], 
the round-trip delay of the LiDAR emitted light for 
each point can be calculated using the following 
equation: 

𝑡 =  ,                                 (2) 

where c is the propagation speed of the laser pulse. 
Since 𝑡  is the time information of each point, it can be 
used to represent the spike time for SCNN object 
detection networks. 
        For the voxel (𝑥 ,  𝑦 ,  𝑧 ) , the value 𝑡  is 
calculated according to 𝑡  of all points inside this voxel. 
Due to the sparsity of point cloud, there are a lot of 
voxels that have no data points. In this case, we let 𝑡 =0. 
For the voxels that have one or more data points, we 
randomly select one data point and use its time 
information to represent the voxel, i.e., 𝑡 = 𝑡  for a 
randomly selected data point 𝑖 in this voxel. Note that 
we tried using the average time 𝑡 = ∑ 𝑡

,
for all 

the I data points in this voxel, but found that this 
averaging method did not lead to obvious performance 
gain. Therefore, we adopt the simpler random selection 
method. 

 
Figure 1. Proposed object detection architecture.
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     This propagation time-based encoding method is 
more desirable than other encoding methods. The 
intensity has large variations due to object shapes, 
materials, and environmental conditions such as 
raining, which increases the difficulty of deep network 
generalization. In contrast, the propagation time for 
each voxel is more regular. Compared with using the 
number of data points as voxel value, propagation time 
leads naturally to SCNN with a temporal coding that 
directly uses 𝑡  as spiking time. This temporal coding 
considers short-term stimuli to produce a small number 
of spikes [26], and thus leads to sparse spiking patterns. 
        After the LiDAR data to spike time conversion, 
the input to the first layer of the spiking-convolution is 
the 3D tensor with shape 768 × 1024 × 21 . The 
element value of the tensor is  𝑡 . In the convolutional 
layers, we adopt 2D convolutions rather than 3D 
convolutions, where the filter sliding is conducted over 
the first two dimensions (length and width) only. For 
example, the first spike convolutional layer uses filters 
with shape 3 × 3 × 21. In other words, we take the 
height dimension as the color dimension of the 
conventional images. The reason is that the height 
dimension has a shape 21, which is very small and 
much less than the other two dimensions. Using 2D 
convolution will lead to great reduction of the 
computational complexity but without obvious 
performance loss. 

 
Figure 2. Voxelized point clouds within a 3D 

coordinate system. 

B. Spiking-Convolution Layers 
        Following Mostafa [9], Goltz et al. [28], Comsa et 
al. [29] and Kheradpisheh et al. [30], in the spiking-
convolution layers, we use non-leaky integrate and fire 
neurons with current exponentially decaying synaptic 
kernels. A neuron’s membrane dynamics are described 
by 

 
( )

 =  ∑ 𝑤 ∑ 𝑘(𝑡 −  𝑡 ) ,         (3)                     

where the right-hand side of Eq. (3) is the synaptic 
current, 𝑉  is the membrane potential of neuron 𝑗, 
𝑤  is the weight of the synaptic connection from 
neuron 𝑖  to neuron 𝑗 , 𝑡  is the time of the 𝑟  spike 
from neuron 𝑖, and 𝑘(𝑥) is the synaptic current kernel 
given by 

𝑘(𝑥)  =  𝜃(𝑥)𝑒𝑥𝑝(− ) , where 𝜃(𝑥)  =  
1      if     𝑥 ≥ 0
0      otherwise

    (4)       

The synaptic current jumps immediately when an input 
spike arrives. Then it decays exponentially with a time 
constant 𝜏 . Both 𝑟 𝑎𝑛𝑑 𝜏  are set to 1 for the rest 
of this paper.  
        We assume that a neuron receives N spikes at 
times {𝑡 , … , 𝑡 } with weights {𝑤 , … , 𝑤 } from N 
source neurons, and these spike times accumulate. As 
shown in Fig. 3, the neuron spikes when its membrane 
potential is over the firing threshold. After a spike, the 
membrane potential automatically resets to 0. 

 

 
Figure 3. A model of spike neuron involving 
accumulating and thresholding operations. 

 
        If the neuron spikes at time 𝑡 , the membrane 
potential for 𝑡 < 𝑡  can be derived as 

𝑉 (𝑡)  =  ∑ 𝜃(𝑡 −  𝑡  )𝑤 (1 −  𝑒𝑥𝑝(−(𝑡 −  𝑡 )).  (5) 

Assume the thresholding membrane potential be 1. 
Then 𝑡  satisfies  

1 = ∑ 𝑤 (1 − exp −(𝑡 − 𝑡 ) )∈  ,       (6) 

where C = {i: 𝑡 < 𝑡 }. Therefore, 

 𝑒𝑥𝑝(𝑡 )  =  
∑ ( )∈

∑ ∈   
.                 (7) 
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        We use this non-leaky integrate-and-fire neuron 
model to implement the convolutional neural networks. 
For example, in the first convolutional layer, the input 
neuron time (𝑡  of Eq. (7)) is the voxel time 𝑡 . The 
convolution kernel consists of weights 𝑤  in Eq. (7). 
The output neuron value is 𝑡 , which is calculated by 
Eq. (7). As a result, communication between 
convolution layers occurs entirely through the temporal 
coded spike signals.  
        The convolution operation is illustrated in Fig. 4. 
Prior to matrix multiplication, we need to sort the 
spiking-time values 𝑡  in the small square of the input 
data in layer n, from small to large, into a vector T. The 
elements 𝑤  in the convolutional kernel are reordered 
to generate a matrix W according to the changed 
position of spiking-time values. According to Eq. (7), 
for 𝑤 ∈ 𝑊  and 𝑡 ∈ 𝑇 , a dot-product is performed 
between 𝑤  and exp (𝑡 ) . The neuron fires when the 
accumulated dot products reach the threshold. 
Consequently, the value of the mapping element, 𝑡 , 
becomes the output. As noted, after the neuron fires, it 
is not allowed to fire again.  
        Two important marks are necessary to clarify. 
First, the sorting of 𝑡 , which can be computationally 
demanding, is not needed when the SCNN is 
implemented in dedicated hardware. This is because 𝑡  
represents the actual arrival time of the input neuron. 
Smaller 𝑡  means a spike arrives earlier and is thus 
accumulated earlier. Second, the input neurons with 
time 𝑡 > 𝑡  do not participate in dot-product and 
accumulation. As a matter fact, these neurons would 
never fire spikes when implemented in dedicated 
hardware. Therefore, with temporal coding, the fired 
spikes can be quite sparse, which greatly conserves 
energy. 
        Using the SCNN to replace the CNN of the 
YOLOv2 backbone in [17], we obtain a new YOLOv2 
network that detects and locates objects from spiking- 

time data. Combined with the real-time nature of 
YOLOv2, the presented network can be implemented 
efficiently on a neuromorphic architecture. 
  
C. Detection Layer 
        Following Simon et al. [19], we use E-RPN to 
derive the object’s position {𝑏 , 𝑏 }, length 𝑏 , width 
𝑏 , probability 𝑝 , class scores {𝑝 , …, 𝑝 }, and the 
orientation 𝑏∅ . To achieve proper orientation, we 
exploit the updated Grid-RPN approach from [19] to 
obtain 

𝑏 = 𝜎(𝑡 ) + 𝑐  ,                      (8) 
𝑏 = 𝜎 𝑡 + 𝑐  ,                     (9) 
𝑏 = 𝑝 𝑒 ,                            (10) 

𝑏 = 𝑝 𝑒 ,                              (11) 
𝑏∅ = 𝑎𝑟𝑔 |𝑧|𝑒 ∅ = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑡 , 𝑡 ) ,     (12) 

where  𝑡  ,  𝑡  , 𝑡  ,  𝑡  , 𝑡  and 𝑡  are 6 coordinate 
parameters for each bounding box that the network 
predicts. (𝑐 , 𝑐 ) is the cell offset from the top left 
corner of the image. The bounding box prior has width 
and length 𝑝 , 𝑝 , respectively. In addition,  𝑡  ,  𝑡  , 
𝑡  ,  𝑡  ,  𝑡  and  𝑡  are the responsible regression 
parameters. With 𝑡  ,  𝑡  , 𝑡  ,  𝑡   and 
𝑎𝑟𝑐𝑡𝑎𝑛 (𝑡 , 𝑡 ), we can easily calculate the position, 
width, length and angle of each bounding box.  

Our regression parameters are directly linked 
to the loss function 𝐿  based on the Complex-YOLO 
of [19]. Specifically, the loss function is defined as 

𝐿 = 𝐿 + 𝐿  ,                 (13) 

where 𝐿  is the sum of squared errors using the 
introduced multi-part loss, as shown in [17]. 
Additionally, according to [19], the Euler regression 

Figure 4. Illustration of spiking convolution in layer n. 
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part of the loss function, 𝐿 , is defined as 

𝐿 = 𝜆   ∑ ∑ α [(𝑡 − �̂� ) +  (𝑡 − �̂� ) ]  ,      (14) 

where α  indicates the bth bounding-box predictor in 
cell s, which has the highest Intersection over Union 
(IoU) in comparison with the ground truth for that 
prediction. 𝜆  is a scaling factor used to guarantee 
stable convergence during early phases. �̂�  and �̂�  
are the estimated responsible regression parameters. 

III. ENERGY CONSUMPTION 
        Similar to [19] and [24], our network is a single-
stage detector that can be trained in an end-to-end 
manner. The spike-based time coding strategy we use 
in this paper is similar to the scheme of time-to-first-
spike in [13]. Hence, our proposed network will have 
lower running time than CNN-based models [5, 18]. 
Moreover, our network is more energy efficient 
because the network signals are transmitted via spikes. 
In this section, we analyze the energy consumption by 
first proposing an analog circuit of the spiking neuron, 
and then pointing out the sparsity of our proposed 
network. 

A. An Energy-Efficient Analog Neuron Circuit 
        To estimate the potential energy consumption of 
each spike, we propose an analog circuit as shown in 
Fig. 5 to implement the non-leaky integrate and fire 
neuron formulated in Eq. (3) and (4).  
 

 
 
Figure 5. The analog circuit of the non-leaky integrate 

and fire neuron. 
 
        Fig. 5 shows the transistor-level schematic of a 
single neuron (neuron j). This neuron circuit comprises 
two analog switched-capacitor integrators and a 
comparator. The first integrator performs the 
summation operation in the right-hand-side of Eq. (3). 
When the neuron i spikes, a capacitor 𝐶   is charged to 
a fixed-potential 𝑉  , where the ratio of capacitor 
𝐶 /𝐶  represents weight of the synaptic connection 
from neuron i to neuron j (𝑤 ). The charge across 𝐶  
is dumped onto the feedback capacitor 𝐶  when the 

neuron i is not spiking and the capacitor 𝐶  starts 
discharging through the switch connected parallel to it 
(denoted by 𝑆  in Fig. 5). The second integrator 
samples the output of the first integrator and starts 
integrating it and stores the charge on the feedback 
capacitor 𝐶 . Once the output of the second integrator 
exceeds a threshold voltage, 𝑉 , a comparator fires 
and produces an output of ‘1’ which represents firing 
of neuron j. The comparator output also resets the 
second integrator. 
        The amplifiers in the integrators are designed 
using simple two-stage operational-amplifier structure 
with 55dB gain. A strongARM latch architecture is 
used to design the comparator. Designed in 65nm 
CMOS process, the neuron consumes 19 pJ energy for 
1MHz input pulses. Since each neuron is only allowed 
to spike no more than once, each spike is thus averaged 
to consume 𝑝 = 19 pJ on the analog circuit. Static 
power consumed by the amplifiers dominates the 
energy consumption of each neuron. However, gain-
bandwidth of the amplifiers scale with frequency of 
input spikes, and energy consumption of each neuron 
can be reduced for systems with low frequency of input 
spikes.  
        Since all the computations are done in analog 
domain, the proposed neuron does not need digital 
memory to store intermediate results [10, 27], and 
hence, eliminates frequent data movements between 
memory and computation circuits. Thus, the proposed 
analog neuron is expected to have significantly lower 
energy consumption compared to digital 
implementation of the neuron. The weights of the 
spiking neural network, i.e, strength of synaptic 
connections between neurons, are encoded as 
capacitance values which further reduces storage 
requirement.  
        The implementation shown in Fig. 5 can be used 
when the SCNN has been trained and the weights are 
fixed. To make the neural weights programmable, we 
can apply non-volatile memory (NVM) on chip to 
make the capacitors programmable. For each capacitor, 
we can split it into several slices and the weights stored 
in the NVM can select the number of slices for each 
capacitor and set its weight. For a given application, if 
the weights are updated only once at start-up then the 
energy consumption due to memory access is not an 
issue. Memory access energy only becomes 
problematic if the memory has to be accessed every 
cycle of operation. Therefore, in a programmable deep 
network, the major cost would be the area increase 
since the memory has to be stored on the chip. The 
power increase is not going to be significant. 
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B. Network Sparsity for Energy Efficiency 
        As seen in Eq. (6), the neuron spikes only when 
the membrane potential of the neuron reaches the 
threshold. After the neuron spikes, it is not allowed to 
spike again. To recognize the pattern or detect a scene, 
if the first N neurons from the input layer can cause a 
neuron of the next layer to spike, the rest of the M 
neurons in the input layer will not spike, which means 
a lot of neurons will not spike in each layer. Hence, we 
can calculate the sparsity of each layer using the 
following equation: 

𝑆 =  ,                         (15) 

where 𝑆  is the sparsity of the ith layer, 𝑁  is the number 
of spiking active neurons in the ith layer, and 𝑀  is the 
number of non-active neurons in the ith layer. The 
overall sparsity of a 𝐾-layer network is 

𝑆 = =
∑

∑ ∑
  ,     (16) 

where 𝑀  is the total number of non-active neurons, 
and 𝑁  is the total number of active neurons. The 
total energy consumption of the network can be 
calculated as 

𝑃 = 𝑁 × 𝑝 ,                    (17) 

where 𝑝 is the energy consumed by each spike. 

IV. TRAINING AND EXPERIMENTS 
        In this section, we describe the proposed network 
and its training for the evaluation of the KITTI data in 
details.  

A. Training Details 
        We evaluated the proposed network using the 
challenging KITTI object detection benchmark, which 
contained 7481 and 7518 samples for training and 
testing, respectively. Because the input was LiDAR 
data, we only focused on birds-eye-view and 3D object 
detection for cars, pedestrians, and cyclists. Similar to 
the literature, each class was evaluated based on three 
difficulty levels (i.e., easy, moderate, and hard), 
considering the object’s size, distance, occlusion, and 
truncation.  
        The detailed architecture of the proposed network 
is given in Table 1. Although our proposed network 
was based on the Complex-YOLO design from [19], 
we used only 9 spiking-convolutional layers, 1 

traditional convolutional layer, 5 maxpool layers, and 
3 intermediate layers. As a comparison, [19] used 18 
convolutional layers, 5 maxpool layers, and 3 
intermediate layers. Our proposed network was 
comparatively simpler than that of [19]. From the 
perspective of energy consumption, the simpler the 
network architecture, the less energy the network will 
consume. 
        As a special note, in the last layer, we used a 
traditional convolutional layer instead of a spiking-
convolutional layer. Using the spiking-convolutional 
layer as the last layer would degrade performance 
compared with the current ones, which was a surprising 
observation we obtained from our preliminary test. A 
heuristic explanation is that because for SCNN the 
input values were time information, negative values 
were not allowed. But the values of some coordinates 
of the real 3D LiDAR data were negative based on the 
range presented in Section II. Traditional convolutional 
layers could handle negative values with the linear 
activation function 𝑓(𝑥)  =  𝑥.  
        Another special note is that we tested our network 
both with skipped connection (SC) or without skipped 
connection. As introduced by He et al. [6] and Orhan 
and Pitkow [11], SCs are simply extra connections 
between nodes at different layers of a neural network 
that skip one or more layers of nonlinear processing. 
They can improve the training of very deep neural 
networks without changing their main structure. Hence, 
in our network, we used SCs to improve the 
performance. However, latest detection chips (e.g., 
HTPU from CORAL and Akida from BrainChip) do 
not support SCs. The main reason is that the nodes of 
the hardware do not support event-packet 
synchronization across multiple layers. An SC also 
consumes extra energy in practice. Due to these 
considerations, we also experimented our network 
without SC.  
        The network was trained from scratch using 
stochastic gradient descent with a weight decay of 5e−4 
and momentum of 0.9. The implementation was based 
on a modified version of the YOLOv2 framework [17]. 
Because the proposed model was a supervised 
learning-based network and the testing samples in the 
KITTI dataset had no labels, following the practice of 
[1, 19, 24], we divided the training set with an available 
ground truth and allocated 85% data for training and 15% 
for testing. To train the model well, during the first 
epoch, we started with a learning rate at 5e−5 to ensure 
convergence. After four epochs, we scaled the learning 
rate up to 5e−4 and gradually decreased it up to 1000 
epochs.
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Table 1. Proposed network architecture 

  Based on Eq. (15) and (16), we obtained the 
sparsity of each layer and the sparsity of the overall 
network for each sample. There were 1122 samples for 
validation, and the minimum, maximum, and mean 
sparsity values of our networks are given in Table 2. 
For the two trained networks (with SC, and without SC), 
there was no major difference between their maximum 
and minimum sparsity. The mean sparsity of the 
networks was 56.24% for the KITTI dataset.  
        Assume each spike consume 19 pJ. The energy 
consumption of the network was thus 0.247 mJ because 
the number of active neurons was about 13 million on 
average. Note that the estimated energy consumption 
does not include the energy spent in the last layer of the 
network and the preprocessing layer because these two 
layers do not involve spiking neurons. In CNN-based 
networks and many other SNN-based networks, all 
neurons are used for object detection or recognition. 
Thus, their energy consumption should be much higher 
than our obtained one. The small energy consumption 
value connotes the energy efficiency of our proposed 
network. 
 

Table 2. Sparsity of the network for KITTI dataset. 

 

B. Experiments 

We set up our experiments following the official 
KITTI evaluation protocol, where the IoU thresholds 
were 0.7 for the Car class, and 0.5 for Pedestrian and 
Cyclist classes. The IoU threshold was the same for 
both the bird’s-eye view and full 3D evaluation. We 
compared the methods using the average precision (AP) 
metric. 

Evaluation in the Bird’s- Eye View  
        Our evaluation results for bird’s-eye view 
detection are given in Table 3. Simon et al. [19] 
compared their proposed model, Complex-YOLO, 
with the first five leading models presented in Table 3 
and demonstrated that their model outperformed all 
five in terms of running time and efficiency. They were 
still able to achieve detection accuracy comparable 
with the state of the art. As noted, although Complexer-
YOLO [20] was more complicated than Complex-
YOLO, the detection accuracies for all classes were 
lower than that of Complex-YOLO. Hence, we first 
focused on the comparison between Complex-YOLO 
and our network. As seen, all accuracy values of our 
proposed network with SC for detecting the car, 
pedestrian, and cyclist were higher than those using 
Complex-YOLO. Our network with SC showed better 
performance in object detection than our network 
without SC. Therefore, in the sequel, we mainly 
consider the model with SC and compare it with the 
others.

Layer filters size input output 
Spike-conv 32 3x3/1 768×1024×21 768×1024×32 

max  2x2/2 768×1024×32 384×512×32 
Spike-conv 48 3x3/1 384×512×32 384×512×48 

max  2x2/2 384×512×48 192×256×48 
Spike-conv 64 3x3/1 192×256×48 192×256×64 

max  2x2/2 192×256×64 96×128×64 
Spike-conv 128 3x3/1 96×128×64 96×128×128 

max  2x2/2 96×128×128 48×64×128 
Spike-conv 256 3x3/1 48×64×128 48×64×256 
Spike-conv 1024 3x3/1 48×64×256 48×64×1024 
Spike-conv 512 3x3/1 48×64×1024 48×64×512 

max  2x2/2 48×64×512 24×32×512 
Spike-conv 1024 3x3/1 24×32×512 24×32×1024 

route 9    
reorg  /2 48×64×256 24×32×1024 
route 13    

Spike-conv 1024 3x3/1 24×32×2048 24×32×1024 
conv 75 1x1/1 24×32×1024 24×32×75 
loss   24×32×5×15  

 Minimum Maximum Mean 

Sparsity 54.08% 58.41% 56.24% 
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Table 3. Performance comparison for birds-eye-view detection: APs (in %) for our proposed networks 
compared with existing leading models.

 
        Running the experiments with a NVIDIA GTX 
1080i GPU, our network achieved frame rate 35.7 fps. 
Although this frame rate was lower than the 50.4 fps of 
Complex-YOLO, it was still much higher than those of 
the other five models. We also compared our detection 
results with the latest ones in [31-33]. Even though 
Point-RCNN [31] in the Car and Cyclist (easy and 
moderate) detection had higher accuracies than the 
others, its frame rate was low. As observed in Table 3, 
at the hard cyclist level, our proposed model had higher 
accuracies than the others. Its accuracies on other levels 
were competitive to the others.  
        As an ablation study, following the architecture in 
Fig. 1, we used CNN instead of SCNN to build the 
network. The results of this CNN-based network had 
higher frame rate but had much lower accuracy in all 
levels than the SCNN network, which indicates the 
benefits of using SCNN.  

 
3D Object Detection  
        Apart from the bird’s-eye view detection, we 
applied our proposed network to 3D object detection. 
The results are presented in Table 4. Similar to [19], we 
did not directly estimate the height information with 
regression but instead used a fixed spatial height 
location extracted from ground truth to implement the 
3D object detection. As seen in Table 4, the detection 
accuracies of our network with SC on the car, 
pedestrian, and cyclist were all better than those of 
Complex-YOLO. Additionally, the accuracies of the 
proposed network with SC were comparable to the 
other models. Moreover, our network reached its 
highest accuracy with the moderate and hard cyclist 
levels. The proposed network with SC in all cases  
 

 
showed better performance than the network without 
SC and the ablation network with CNN only.  
        To illustrate the detection performance of our 
proposed network with SC, several 3D detection 
examples are presented in Fig. 6. For better 
visualization, we projected 3D boxes detected using 
LiDAR onto the red–green–blue (RGB) images. As 
seen in Fig. 6, the proposed network with SC had 
highly accurate 3D bounding boxes in all categories. 

 
V. CONCLUSION 

Existing LiDAR-based 3D real-time object 
detection methods use CNN. Although they can 
achieve high detection accuracy, their high energy 
consumption is a great concern for practical vehicular 
applications. This paper is the first to report the 
development of an SCNN-based YOLOv2 architecture 
for real-time object detection over the KITTI 3D point-
cloud dataset considering the energy consumption. We 
designed a novel data preprocessing layer to translate 
the 3D point clouds directly into spike times. To better 
show the energy efficiency of the proposed network in 
real-time object detection, we built an analog neuron 
circuit to obtain the energy cost of each spike. We also 
proposed an energy consumption and network sparsity 
estimation method. Our proposed network had a mean 
spiking sparsity of 56.24% and consumed an average 
of 0.247 mJ only, indicating higher energy efficiency. 
Experimental results over the KITTI dataset 
demonstrated that our proposed network reached the-
state-of-the-art accuracy in the bird’s-eye view and full 
3D detection. In some cases, our proposed network 
performed better than other typical models reported in 
literature.

Method Data FPS 
Car Pedestrian Cyclist 

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard 
MV3D [1] LiDAR + Mono 2.8 71.09 62.35 55.12 - - - - - - 

F-PointNet [16] LiDAR +Mono 5.9 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39 
AVOD [7] LiDAR + Mono 12.5 73.59 65.78 58.38 38.28 31.51 26.98 60.11 44.90 38.80 

AVOD-FPN [7] LiDAR + Mono 10.0 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61 
VoxelNet [24] LiDAR 4.3 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11 

Complex-YOLO [19] LiDAR 50.4 67.72 64.00 63.01 41.79 39.70 35.92 68.17 58.32 54.30 
PointRCNN [31] LiDAR 10 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 

MLOD [32] LiDAR + Mono 8.3 77.24 67.76 62.05 47.58 37.47 35.07 68.81 49.43 42.84 
SCNet [33] LiDAR 25 83.34 73.17 67.93 47.83 38.66 35.70 67.98 50.79 45.15 

Our network with CNN LiDAR 51.2 65.13 61.82 59.57 37.93 34.76 31.03 64.79 55.52 51.29 
Our network with SC LiDAR 35.7 71.76 67.43 65.63 47.07 42.53 39.36 69.16 59.24 55.25 

Our network without SC LiDAR 35.7 68.94 66.65 65.39 38.03 32.43 28.64 58.40 50.61 45.75 
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Table 4. Performance comparison for 3D object detection: APs (in %) for our proposed networks compared with 
existing leading models.

 
 

Figure 6. Qualitative results. 3D boxes detected with LiDAR are projected onto the RGB images. 
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