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Abstract—The nonlinearity of power amplifiers (PAs) has been
one of the severe constraints to the performance of modern
wireless transceivers. This problem is even more challenging
for the fifth generation (5G) cellular system since 5G signals
have extremely high peak to average power ratio. This paper
develops nonlinear equalizers that exploit both deep neural
networks (DNNs) and Volterra series models to mitigate PA
nonlinear distortions. The DNN equalizer architecture consists of
multiple one-dimension convolutional layers. The input features
are designed according to the Volterra series model of nonlinear
PAs. This enables the DNN equalizer to mitigate nonlinear PA
distortions more effectively while avoiding over-fitting under
limited training data. Experiments are conducted with both
simulated data based on a Doherty nonlinear PA model and real
measurement data obtained from a highly nonlinear cable TV PA.
The results demonstrate that the proposed DNN equalizer has
superior performance over conventional nonlinear equalization
approaches.

Index Terms—Nonlinear power amplifier, Volterra series,
equalization, power efficiency, deep neural network

I. INTRODUCTION

Most modern wireless communication systems, including
the fifth generation (5G) cellular systems, use multi-carrier
or OFDM (orthogonal frequency division multiplexing) mod-
ulations whose signals have extremely high peak to average
power ratio (PAPR). This makes it challenging to enhance
the efficiency of power amplifiers (PAs). Signals with high
PAPR need linear power amplifier response in order to reduce
distortion. Nevertheless, PAs have the optimal power efficiency
only in the nonlinear saturated response region. In practice, the
PAs in the wireless transceivers have to work with high output
backoff (OBO) in order to suppress nonlinear distortions,
which unfortunately results in severe reduction of power
efficiency [1]. This problem, originated from the nonlinearity
of PAs, has been one of the major constraints to enhance the
power efficiency of modern communication systems.

Various strategies have been investigated to mitigate this
problem. The first strategy is to reduce the PAPR of the
transmitted signals. Many techniques have been developed for
this purpose, such as signal clipping, peak cancellation, error
waveform subtraction [2]. For OFDM signals, pilot tones and
unmodulated subcarriers can be exploited to reduce PAPR with
some special pre-coding techniques [3].

The second strategy is to linearize the PAs at the trans-
mitters. One of the dominating practices today is to insert a
digital pre-distorter (DPD) before the PA, which distorts the
signals appropriately so as to compensate for the nonlinear PA
response [4] [5] [6]. DPD has been applied widely in many
modern transmitters [2].

The third strategy is to mitigate the nonlinear PA distortions
at the receivers via post-distorter equalization [7] [8] [9]. The
solution presented in [10] develops a Bayesian signal detec-
tion algorithm based on the nonlinear response of the PAs.
However, this method works for the simple “AM-AM AM-
PM” nonlinear PA model only. Alternatively, as a powerful
nonlinear modeling tool, artificial neural networks have also
be studied for both nonlinear modeling of PAs [11] [12] and
nonlinear equalization [13] [14] [15].

One of the major design goals for the 5G systems is to make
the communication systems more power efficient. This needs
efficient PAs, which is unfortunately more challenging since
5G signals have much higher PAPR and wider bandwidth [16]
[17]. This is a especially severe problem for cost and battery
limited devices in massive machine-type communications or
internet of things (IoT). Existing nonlinear PA mitigation
strategies may not be sufficient enough. We can reduce PAPR
to some extent only. DPD is too complex and costly for
small and low-cost 5G devices. Existing DPD and equalization
techniques have moderate nonlinear distortion compensation
capabilities only.

As a matter of fact, the nonlinear equalization strategy
is more attractive to massive MIMO and millimeter wave
transmissions due to the large number of PAs needed [18]
[19] [20]. Millimeter wave transmissions require much higher
transmission power to compensate for severe signal attenua-
tion. Considering the extremely high requirement on PA power
efficiency and the large number of PAs in a transmitter, the
current practice of using DPD may not be appropriate due to
implementation complexity and cost.

In this paper, we develop a novel deep neural network
(DNN)-based nonlinear equalizer to equalize the PA distorted
signals at the receiver. We exploit the Volterra series non-
linearity model to construct the input features of the DNN,
which can help the DNN converge rapidly to the desired
nonlinear response under limited training data and training



time. Conventionally, Volterra series and neural networks are
studied as two separate techniques for nonlinear PAs [2].
By integrating these two techniques together and exploiting
the recent advancements in DNN, we can develop nonlinear
equalizers with superior equalization performance, which is
demonstrated in this paper by simulations and experiments.

The remainder of this paper is organized as follows. Non-
linear PA models are introduced in Section II. In Section III,
the DNN-based nonlinear equalization scheme is presented.
Experiments and conclusions are given in Sections IV and V,
respectively.

II. NONLINEAR POWER AMPLIFIER MODELS

Consider the baseband discrete model of the PA y(n) =
f(x(n), x(n − 1), · · · ), where x(n) is the input signal, y(n)
is the output signal, and f(·) is some nonlinear function. The
simplest nonlinear PA model is the “AM-AM AM-PM” model.
Let the amplitude of the input signal be Vx = E[|x(n)|], where
E[·] denotes short-term expectation or average. The output
sample y(n)’s amplitude Vy = E[y(n)] and additional phase
change ψy = E[∠y(n)] depend on Vx in nonlinear ways as

Vy =
gVx(

1 + gVx
c

) 1
2σ

, ψy =
αV px

1 +
(
Vx
β

)q , (1)

where g is the linear gain, σ is the smoothness factor, and c
denotes the saturation magnitude of the PA. Typical examples
of these parameters are g = 4.65, σ = 0.81, c = 0.58, α =
2560, β = 0.114, p = 2.4, and q = 2.3, which are used in the
PA models regulated by IEEE 803.11ad task group (TG) [10].

More accurate models should take into consideration the
fact that nonlinearity leads to memory effects. In this case,
Volterra series are typically used to model PAs [4] [21]. A
general model is [5]

y(n) =

D∑
d=0

P∑
k=1

bkdx(n− d) |x(n− d)|k−1 (2)

with up to P th order nonlinearity and up to D step memory.
It can be shown that only odd-order nonlinearity (i.e., odd

k) is necessary because even-order nonlinearity falls outside of
the passband and will be filtered out by the receiver bandpass
filters [2]. To illustrate this phenomenon, we can consider
some simple examples where the input signal x(n) consists
of a few single frequency components only. Omitting the
memory effects, if x(n) is a single frequency signal, i.e.,
x(n) = V0 cos(a0 + φ), where a0 = 2πf0n. Then, the output
signal can be written as

y(n) = c1V0 cos(a0 + φ+ ψ1)+(
3

4
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cos(2a0 + 2φ+ 2ψ2 + 2ψ4) · · ·

(5)

where the first line (3) is the inband response with AM-AM
& AM-PM nonlinear effects, the second line (4) is the DC
bias, and the third line (5) includes all the higher frequency
harmonics. At the receiving side, we may just have (3) left
because all the other items will be canceled by bandpass
filtering.

If x(n) consists of two frequencies, i.e., x(n) = V1 cos(a1+
φ1) + V2 cos(a2 + φ2), where ai = 2πfin, then the inband
response includes many more items, such as the first order
items ciVi cos(ai + φi + ψi), the third order items c3(V 3

i +
ViV

2
j ) cos(ai+φi+ψi), the fifth order items c5(V 5

i +ViV
4
j +

V 3
i V

2
j ) cos(ai + φi + ψi), for i, j ∈ {1, 2}. There are also

intermodulation items that consist of nai ± maj as long as
they are within the passband of the bandpass filter, such as
(V 2
i Vj +V

2
i V

3
j +V 4

1 Vj) cos(2ai−aj +2φi−φj +2ψi−ψj).
There are many other higher order items with frequencies nai,
n(ai±aj), or nai+maj , that can not pass the passband filter.
One of the important observations is that the contents that can
pass the passband filter consist of odd-order nonlinearity only.

If x(n) consists of three or more frequencies, we can have
similar observations, albeit the expressions are more complex.
Let the input signal x(n) be

x(n) =

3∑
i=1

Vi cos(ai), ai = 2πfin. (6)

Based on [22], the nonlinear distorted output response y(n) =
f(x(n)) can be written as

y(n) =

∞∑
i=1

kix
i(n), (7)

where ki represents the gain coefficients for the ith order
components. The 1st order component is simply k1x(n).
The 2nd order component includes the DC component, the
sum/difference of beat components, and the second-order
harmonic components. Specifically,

k2x
2(n) = g2,0 + g2,1(n) + g2,2(n), (8)

where

g2,0 =

3∑
i=1

V 2
i /2,

g2,1(n) =

3∑
i=1

∑
j 6=i

ViVj cos(ai ± aj),

g2,2(n) =

3∑
i=1

V 2
i cos(2ai)/2.

The 3rd order component includes the third-order har-
monic components g3,1(n), the third intermodulation beat
components g3,2(n), the triple beat components g3,3(n),
the self-compression/expansion components g3,4(n), and the
cross-compression/exansion components g3,5(n). Details are
skipped due to page limits.
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Fig. 1: System block diagram with nonlinear power amplifier
and deep neural network equalizer.

III. DNN-BASED NONLINEAR EQUALIZATION

A. Nonlinear equalizer models

To mitigate the PA nonlinear distortions, we can apply
nonlinear equalizers at the receivers. Obviously, we can still
use the Volterra series model to analyze the response of
nonlinear equalizers. One of the differences from (2) is that the
even order nonlinearity may still be included and may increase
the nonlinear mitigation effects [5].

Consider the system block diagram of nonlinear equaliza-
tion shown in Fig. 1. Let the received signal be

r(n) =

L∑
`=0

h`y(n− `) + v(n), (9)

where h` is the finite-impulse response (FIR) channel coef-
ficients and v(n) is additive white Gaussian noise (AWGN).
With the received sample sequence r(n), a nonlinear equalizer
will generate z(n) as the estimated symbols.

If the PA has only slight nonlinearity as modeled by the
simple “AM-AM AM-PM” model (1), we can stack received
samples r(n) together into M+1 dimensional vectors r(n) =
[r(n), · · · , r(n − M)]T , where (·)T denotes transpose, and
write the received samples in vector form as

r(n) = HG(n)x(n) + v(n), (10)

where H is an (M + 1)× (M + L+ 1) dimensional channel
matrix

H =

 h0 · · · hL
. . . . . .

h0 · · · hL

 (11)

and G(n) = diag{Vy(n)ejψy(n) , · · · , Vy(n−M−L)ejψy(n−M−L)}
is an (M + L + 1) × (M + L + 1) dimensional
diagonal matrix which consists of the nonlinear PA
responses, x(n) = [x(n), · · · , x(n − M − L)]T , and
v(n) = [v(n), · · · , v(n − M)]T . To equalize the received
signal, we apply a nonlinear equalizer with the form

fT = G′(n)[f0, · · · , fM ] (12)

where [f0, · · · , fM ]H ≈ [0, · · · , 1, · · · , 0] is to equalize the
propagation channel, and G′(n) ≈ 1

Vy(n−d)
e−jψy(n−d) is to

equalize the nonlinear PA response. Let r̂(n) be the output
of the first linear equalization step. The second nonlinear
equalization step can be implemented as a maximum likeli-
hood estimation problem, i.e., z(n) = argmin∀x(n) |r̂(n) −
Vye

jψyx(n)|2. This gives the output

z(n) = fT r(n) ≈ x(n− d) (13)

with certain equalization delay d.

Both the channel coefficients h` and the nonlinear PA
responses Vy , ψy can be estimated via training. So does
the channel equalizer fT . Because the PA nonlinearity is
significant for large signal amplitude only, we can apply small-
amplitude training signals x(n) first to estimate the channel h`
and the channel equalizer [f0, · · · , fM ]. We can then remove
the channel H from (10) with the first step linear channel
equalization. Because the matrix G(n) is diagonal, we can
easily estimate G(n) with regular training and then estimate
the transmitted symbols as outlined in (13).

For more complex nonlinear PA responses, such as (2), we
can conduct channel equalization similarly as (12). First, we
can still apply small-amplitude training signals to estimate
[f0, · · · , fM ] so as to equalize the channel h`. This linear
channel equalization step gives r̂(n) ≈ y(n). We can then
focus on studying the equalization of nonlinear distortion of
PA, which can in general be conducted with the maximum
likelihood method,

{x̂(n) : n = 0, · · · , N} = arg min
{x(n)}

N∑
n=0

|r̂(n)−ŷ(n)|2, (14)

where r̂(n) is the sequence after the linear channel equal-
ization, ŷ(n) is the sequence reconstructed by using the
sequence x(n) and the nonlinear PA response parameters bkd
based on (2), and N is the total number of symbols. The
optimization problem (14) can be solved with the Viterbi
sequence estimation algorithm if the memory length of the
PA is small enough and the PA nonlinear response is known
to the receiver.

In case the PA nonlinear response can not be estimated,
the equalization of nonlinear PA response is challenging. In
this case, one of the ways is to use the conventional Volterra
series equalizer, which approximates G′(n) with a Volterra
series model. Similar to (2), this gives

z(n) =

D∑
d=0

P∑
k=1

gkdr̂(n− d) |r̂(n− d)|k−1 . (15)

The objective of the Volterra series equalizer design is to
design gkd such that z(n) ≈ x(n − `) for some equalization
delay `.

Similarly as the DPD design of [5], based on the Volterra
series model (15), we can estimate the coefficients gkd by
casting the estimation into a least squares problem

min
{gkd}

N∑
n=L

∣∣∣∣∣x(n− L)−
D∑
d=0

P∑
k=1

gkdr̂(n− d)|r̂(n− d)|k−1
∣∣∣∣∣
2

,

(16)
with training symbols x(n) and received samples r̂(n). Note
that only the coefficients gkd are needed to be estimated, and
these coefficients are linear with respect to r̂(n) and x(n).
Define the vector a = [g00, g01, · · · , gPD]T , and the vector



x = [x(0), · · · , x(N − L)]T . Define the (N − L + 1) ×DP
data matrix

B =

 r̂(L) r̂(L)|r̂(L)| · · · r̂(L−D)|r̂(L−D)|P−1
...

...
r̂(N) r̂(N)|r̂(N)| · · · r̂(N −D)|r̂(N −D)|P−1

 .
(17)

Then (16) becomes

min
a
‖x−Ba‖2 . (18)

The solution to (18) is

a = B+x, (19)

where B+ = (BHB)−1B is the pseudo-inverse of the matrix
B. From (19), we can obtain the Volterra series equalizer
coefficients gkd.

One of the major problems for the Volterra series equalizer
is that it is hard to determine the order sizes, i.e., the values
of D and P . Even for a nonlinear PA with slight nonlinear
effects (i.e., small D and P in (2)), the length of D and P
for Volterra series equalizer may be extremely long in order
for (15) to have sufficient nonlinearity mitigation capability.

A potential way to resolve this problem is to apply artificial
neural networks to fit the nonlinear equalizer response (15).
Neural networks can fit arbitrary nonlinearity and can realize
this with potentially small sizes. Nevertheless, in conventional
neural network equalizers such as [14] [15], the input (fea-
tures) to the neural networks was simply a time-delayed vector
[r(n), · · · , r(n−M)]. Although neural networks may have the
capability to learn the nonlinear effects specified in (15), in
practice the training may not necessarily converge to the desir-
able solutions due to local minimum and limited training data.
In addition, conventional neural network equalizers were all
feed-forward networks with fully connected layers only, which
often suffer from problems like shallow network architecture
and over-fitting.

B. Volterra-based DNN equalizer

We propose to use deep neural network to implement the
nonlinear equalizer in the receiver, which can mitigate the non-
linear effects of the received signals due to not only PAs but
also nonlinear channels and propagations. The architecture of
the DNN equalizer is shown in Fig. 2. Different from [10], we
use multi-layer convolutional neural networks (CNNs). Differ-
ent from conventional neural network predistorters proposed
in [6], we use neural networks as equalizers at the receivers.
Different from conventional neural network equalizers such
as those proposed in [14] [15], in our DNN equalizer, we
use CNN and the input features in X are not only the linear
delayed samples r(n). But rather, we apply the Volterra series
models to create input features.

To simplify presentation, according to Section III-A, we as-
sume that the linear channel H has already been equalized by a
linear equalizer, whose the output signal is r(n). According to

(10)

Input

X

1−d
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1−d
Conv

1−d
Conv

FC
drop

out

output
Y

(20) (10)

Fig. 2: Block diagram of DNN equalizer.

Volterra series representation of nonlinear functions, the input-
output response of the nonlinear equalizer can be written as

z(n) =

P∑
k=1

D∑
d1=0

· · ·
D∑

dk=0

fd1,··· ,dk

k∏
i=1

r(n− di). (20)

One of major problems is that the number of coefficients
fd1,··· ,dk increases exponentially with the increase of memory
length D and nonlinearity order P . There are many different
ways to develop more efficient Volterra series representations
with reduced number of coefficients. For example, in [23],
the authors exploit the fact that higher-order terms do not
contribute significantly to the memory effects of PAs to reduce
the memory depth d when the nonlinearity order k increases.
This technique can drastically reduce the total number of
coefficients. In [24] [25] [26], the authors developed the
dynamic deviation model to reduce the full Volterra series
model (20) to the following simplified one

z(n) =zs(n) + zd(n) =

P∑
k=1

fk,0r
k(n) (21)

+

P∑
k=1

k∑
j=1

rk−j(n)

D∑
d1=0

· · ·
D∑

dj=dj−1

fk,j

j∏
i=1

r(n− di)

where zs(n) is the static term, and zd(n) is the dynamic term
that includes all the memory effects. We can see that the total
number of coefficients can be much reduced by controlling
the dynamic order j which is a selectable parameter.

We construct the input features of the DNN based on the
model (21). Corresponding to the static term zs(n), we change
it to

ẑs(n) =
∑

1≤k≤P

fk,0r(n) |r(n)|k−1 . (22)

The reason that (22) changes rk(n) to r(n)|r(n)|k−1 is that
only the signal frequency within the valid passband is inter-
ested. This means the input feature vector X should include
terms r(n)|r(n)|k−1. Similarly, corresponding to the dynamic
term zd(n), we need to supply rk−j(n)

∏j
i=1 r(n− di) in the

features where half of the terms r(n) and r(n−di) should be
conjugated. For simplicity, in our DNN equalizer, the vector
X includes r(n− q)|r(n− q)|k−1 for some q and k.

By applying Volterra series components directly as features
of the input X , the DNN can develop more complex nonlinear
functions with less number of hidden layers and less number of
neurons. This will also make the training procedure converge
much faster with much less training data.

In Fig. 2, the input X is a tensor formed by the real and
imaginary parts of r(n − q)|r(n − q)|k−1 with appropriate



number of delays q and nonlinearities k. There are three one-
dimension convolutional layers, each with 20 or 10 feature
maps. After a drop-out layer for regularization, this is followed
by a fully connected layer with 20 neurons. Finally there is a
fully-connected layer to form the output tensor Y which has
two dimensions. The output Y is used to construct the complex
z(n), where z(n) = x̂(n−d) for some appropriate delay d. All
the convolutional layers and the first fully connected layer use
the sigmoid activation function, while the output layer uses
the linear activation function. We use the mean square error
loss function Lloss = E[|x(n − d) − z(n)|2], where z(n) is
replaced by Y and x(n−d) is replaced by training data labels.

IV. EXPERIMENT EVALUATIONS

In this section, we present our experiments on applying
the Volterra series based DNN equalizer (Volterra+NN) for
nonlinear PA equalization. We compared the proposed scheme
with the following equalization methods: a Volterra series
based equalizer (Volterra) and a conventional time-delay neu-
ral network equalizer (NN). The performance metrics are mean
square error (MSE)

√
E[|z(n)− x(n− d)|2]/E[|x(n− d)|2]

and symbol error rate (SER).
We used both simulated signals and real measurement

signals. To generate simulated signals, we used a Doherty
nonlinear PA model consists of 3rd and 5th order nonlinearity.
Referring to (2), the coefficients bk,q were

1.0513 + .0904j,−.068− .0023j, .0289− .0054j,
− .0542− .29j, .2234 + .2317j,−.0621− .0932j,
− .9657− .7028j,−.2451− .3735j, .1229 + .1508j,

which was used in [5] to simulate a 5th order dominant
nonlinear distortion derived from PA devices used in the
satellite industry. For real measurement, our measurement
signals were obtained from PA devices used in the cable
TV (CATV) industry, which are typically dominated by 3rd
order nonlinear distortion (NLD). Various levels of nonlinear
distortion, in terms of dBc, were generated by adjusting the
PAs.

For the Volterra equalizer, we approximate the response of
the nonlinear equalizer with delays including 8 pre- and post-
main taps and with nonlinearities including even and odd order
nonlinearity up to the 5th order. To determine the values of
the Volterra coefficients, we transmitted N = 4, 096 training
symbols through the PA and then collected the noisy received
samples r(n).

For the conventional time-delay NN equalizer, we applied a
feedforward neural network with 80-dimensional input vector
X and 5 fully-connected hidden layers with 20, 20, 10, 10,
10 neurons, respectively.

Fig. 3 shows the constellation and MSE of the equalizers
outputs. It can be seen that the proposed scheme provides the
best performance.

Fig. 4 shows the constellation of 16 QAM equalization
over the real PA. The corresponding SER were 0.0067,
0.0027, 0.00025, respectively. It can be seen that the proposed
Volterra+NN scheme has the best performance.
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Fig. 3: Constellation of 16QAM over a simulated PA. Top-
left: received signal. Bottom-left: Volterra equalizer output.
Top-right: time-delayed NN output. Bottom-right: proposed
Volterra+NN output.
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Fig. 4: Constellation of 16QAM over a real PA. Top-
left: received signal. Bottom-left: Volterra equalizer output.
Top-right: time-delayed NN output. Bottom-right: proposed
Volterra+NN output.

Fig. 5 provides MSE measurements for 16-QAM under
various nonlinear distortion level dBc. For each 1 dB increase
in NLD, the resultant MSE is shown for the “Measured”,
“Volterra”, “NN”, and the proposed “Volterra+NN” cases.
MSE reduction diminishes appreciably as modulation order
increases from QPSK to 64-QAM, but small improvements
in MSE have been observed lead to appreciable SER im-
provement, especially for more complex modulation orders.
Unfortunately, 4, 096 symbol sample sizes have limited our
measurements to a minimum measurable 0.000244 SER,
which represents 1 symbol error out of 4, 096 symbols.

Fig. 6 summarizes equalization performance, which shows
the averaged percent reduction/improvement in MSE and SER



Fig. 5: Comparing three equalization methods for 16-QAM
under various NLD levels.

from the NLD impaired data for multiple modulation orders.

Fig. 6: Comparing MSE/SER improvement in percentage for
the three equalization methods. Note that 0% SER improve-
ment for QPSK was because the received signal’s SER was
already very low.

V. CONCLUSIONS

This paper develops a new nonlinear equalization scheme
by integrating the Volterra series nonlinear model with deep
neural networks. The Volterra series based deep neural net-
work equalizer yields promising results over conventional non-
linear equalization approaches in mitigating nonlinear power
amplifier distortions. It can be potentially useful for many 5G
communication scenarios.
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