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Using Joint Generalized Eigenvectors of a Set of
Covariance Matrix Pencils for Deflationary

Blind Source Extraction
Mingjian Zhang , Member, IEEE, Xiaohua Li , Senior Member, IEEE, and Jun Peng , Member, IEEE

Abstract—In this paper, we develop a new deflationary blind
source extraction (BSE) algorithm that extracts source signals in
a sequential fashion via the joint generalized eigenvectors of a set
of covariance matrix pencils. The new concept of joint generalized
eigenvector is defined. We prove that these vectors can be made
unique and identical to the source extraction vectors with properly
selected matrix pencils. To resolve the open problem of estimating
joint generalized eigenvectors, we develop an approach based on
the deflation operation and the proportional property of the joint
generalized eigenvectors. Specifically, with the proportional prop-
erty, we show that the estimation problem can be formulated as an
optimization involving a quadratic cost function and a unit-rank
matrix constraint. An efficient iterative algorithm is then devel-
oped by applying the gradient search, matrix shrinkage, deflation,
and symmetry-preserving vectorization techniques. This algorithm
estimates the joint generalized eigenvectors and conducts BSE se-
quentially. Its computational complexity and convergence are an-
alyzed. Simulations demonstrate that this algorithm outperforms
many typical BSE or blind source separation algorithms. In par-
ticular, the new algorithm is more robust to both heavy noise and
ill-conditioned mixing matrices.

Index Terms—Source separation, blind source extraction, joint
generalized eigenvector, matrix shrinkage, matrix rank minimiza-
tion, gradient search algorithm.

I. INTRODUCTION

B LIND source extraction (BSE) involves recovery of one
or a subset of unknown source signals from the observed

mixtures without knowing the mixing matrix [1]. BSE has found
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wide applications in many fields, such as noninvasive fetal ECG
extraction [2], [3], heart/lung sound signals separation [4], EEG
readiness potentials extraction [5], speech signal denoising and
enhancing [6]–[8], etc.

Unlike blind source separation (BSS) that recovers all source
signals simultaneously [9]–[11], BSE extracts source signals
one by one in a sequential fashion. A typical BSE algorithm
conducts the following two steps iteratively: i) recover a source
signal, and ii) apply a deflation procedure to remove this source
signal from the mixture [12]–[20]. Sequential BSE has a number
of advantages over simultaneous BSS [1]. It is more efficient in
computation and more flexible in practical applications.

BSE has attracted a lot of research attention during the recent
decade. Liu et al. [21] applied linear prediction techniques for
BSE. Shi et al. [22] addressed it by exploiting the temporal struc-
ture of the desired source signals. A criterion called KSICA was
proposed in [23] for the blind extraction of spatio-temporally
nonstationary speech sources. Leong et al. [24] generalized BSE
to the case where the mixing function is ill-conditioned and post-
nonlinear. Sawada et al. [25] put forward a method to enhance
target source signals via the independent component analysis
(ICA) and time-frequency masking techniques. A scheme for
extracting source signals with the highest auto-correlation was
proposed in [26]. The method of Washizawa et al. [27] con-
ducted BSE without the need of strong source assumptions such
as independence and non-Gaussianity. In [28], a linear instanta-
neous differential fixed-point ICA (LI-DFICA) algorithm was
developed to extract sources from under-determined mixtures.

On the other hand, although many algorithms have been de-
veloped, considering the wide application of BSE in a variety
of potential fields, more efforts are still needed to develop new
algorithms with enhanced performance and robustness.

In this paper, we investigate a completely new BSE approach
based on the joint generalized eigenvectors of a set of matrix
pencils. The matrix pencils are formed by the covariance ma-
trices of the observed mixtures. In order to make the theoret-
ical development easier to follow, we outline the major steps
of our deductions in Fig. 1. Specifically, first, we define the
joint generalized eigenvectors and prove their equivalence to
source extraction vectors. Then, we formulate the estimation of
these vectors into a quadratic optimization over a unit-rank ma-
trix. Finally, this optimization is solved by an efficient iterative
algorithm which gives both the estimated vectors and the ex-
tracted sources.
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Fig. 1. Outline of the major work in this paper, including the role of theorems
(Theo.) and lemmas (Lem.).

Our major contributions in this paper include:
� We define the new concept of joint generalized eigenvec-

tors and prove their uniqueness and equivalence to source
extraction vectors in BSE applications.

� We show that the joint generalized eigenvectors can be
estimated via a rank constrained optimization. This gives
a practical way to solve the open problem regarding how
to find these vectors.

� We develop an efficient iterative algorithm to estimate
the joint generalized eigenvectors and to use them for
BSE. This algorithm uses gradient search to minimize a
quadratic cost function, applies matrix shrinkage to meet
the unit-rank constraint, exploits symmetry-preserving
vectorization to reduce complexity, and adopts deflation
operation to estimate all the vectors and source signals
sequentially.

� The convergence of the new algorithm is proved. Exten-
sive simulations are conducted to demonstrate its superior
performance and robustness.

The rest of the paper is organized as follows. In Section II,
we formulate the BSE problem. In Section III, we define the
joint generalized eigenvectors and investigate their estimations.
In Section IV, the new algorithm is developed. Simulations are
conducted in Section V and conclusions are given in Section VI.

Notations: The superscript (·)T denotes transpose, R denotes
real domain, E{·} denotes expectation, tr(·) denotes the trace of
a matrix, ‖ · ‖F denotes the Frobenius norm, and ‖x‖ denotes the
Euclidean norm of a vector x. The operator norm of the matrix
X is defined as ‖X‖ � σ1 , where σ1 is the largest singular
value of X. In addition, ek = [0, . . . , 1, . . . , 0]T denotes the unit
vector with only one nonzero element (which is 1) in the kth
place, diag[x] (or diag[x1 , . . . , xR ]) is a diagonal matrix with
the elements of x (or xi) in diagonal entries, and the function
(x)+ = max{0, x}.

II. PROBLEM FORMULATION

Consider the instantaneous mixing model

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xJ (t)]T is a vector of J observation
signals, s(t) = [s1(t), . . . , sR (t)]T is a vector of R source sig-
nals, A ∈ RJ×R is an unknown full column rank mixing matrix,
and n(t) represents additive noise. We assume that the source
signals are real, zero-mean, spatially uncorrelated but tempo-
rally correlated. The additive noise n(t) is a real, stationary,
temporally white zero-mean random process independent of the
source signals.

The covariance matrix of x(t) with a time lag τi is defined as

Cx,i
�
= E{x(t)xT (t + τi)}. Without any loss of generality, we

consider discrete-time signals, where both t and τi are integers.
Since the noise is assumed temporally white, if τi �= 0, then

Cx,i = ADiAT (2)

where Di
�
= E{s(t)sT (t + τi)} = diag[di1 , . . . , diR ].

When the number of observation signals is more than the
number of source signals, i.e., J > R, a standard dimension-
reduction procedure is usually applied to reduce the signal di-
mensions [1], [29]. Specifically, first, we compute the eigenvalue
decomposition (EVD) of Cx,0 = E{x(t)xT (t)}, which gives

Cx,0 =
[
Us Un

]
[
Σs 0
0 Σn

]
[
Us Un

]T
, (3)

where Us ∈ RJ×R and Un ∈ RJ×(J−R) are columnwise or-
thonormal matrices, Σs = diag[λx,1 , . . . , λx,R ] is a diagonal
matrix of the R principal eigenvalues, and Σn = diag[λx,R+1 ,
. . . , λx,J ] is a diagonal matrix of the (J −R) noise eigenvalues.
Then, with the average λ̄x,n = 1

J−R

∑J
i=R+1 λx,i , we can use

the matrix U = (diag[
√

λx,1 − λ̄x,n , . . . ,
√

λx,R − λ̄x,n ])−1

UT
s to whiten (and reduce the dimension of) the signal

x(t) as

x̄(t) = Ux(t). (4)

For the signal x̄(t), the new covariance matrix is

Ri
�
= E{x̄(t)x̄T (t + τi)} = UADiAT UT . (5)

In source separation, we recover the source signals by a sep-
arating matrix W ∈ RR×R , which gives

y(t) = Wx̄(t). (6)

From (4) and (1), it can be seen that

y(t) = WUx(t) = Gs(t) + WUn(t) (7)

where G = WUA. Source separation is considered successful
when y(t) = [y1(t), . . . , yR (t)]T is a permuted and scaled ver-
sion of s(t) plus noise, which implies that G is a generalized
permutation matrix, i.e.,

G = PΛ (8)

with a permutation matrix P and a non-singular diagonal matrix
Λ = diag[γ1 , . . . , γR ].

According to (5)–(8), the matrix WRiWT is diagonal. A
popular approach for source separation is thus to find an or-
thogonal matrix W that simultaneously diagonalizes a set of N
covariance matrices Ri , i = 1, . . . , N , and this task can be con-
ducted via approximate joint diagonalization (AJD) techniques
[29]–[48]. In this paper, instead of conducting AJD directly, we
show that a new concept of joint generalized eigenvector can
potentially lead to more robust BSE algorithms.
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III. JOINT GENERALIZED EIGENVECTORS AND

THEIR ESTIMATION

A. Joint Generalized Eigenvector and Source Extraction
Vector

Assume that there is an orthonormal matrix W that can suc-
cessfully separate all the R sources. Denote by wk the row of
W that extracts the kth source signal, k = 1, . . . , R. Then wT

k

is called the source extraction vector. According to (7) and (8),
we have wkUA = γkeT

k .
Among the N covariance matrices Ri , i = 1, . . . , N , con-

sider an arbitrary pair Ri and Rj , i �= j. From (5) we have

RiwT
k = dikγkUak , RjwT

k = djkγkUak , (9)

where ak denotes the kth column of the mixing matrix A. The
two equations in (9) lead to

RiwT
k = λi,jRjwT

k , (10)

where λi,j is a scalar. Hence, the R vectors wT
k are all general-

ized eigenvectors of the matrix pencil (Ri ,Rj ).
Blind source separation by the generalized eigenvalue de-

composition (GEVD) of a single matrix pencil was discussed
in Chapter 4 of [1]. The experience indicates that, while we can
obtain R generalized eigenvectors from the GEVD of a single
matrix pencil (Ri ,Rj ), these R vectors may not be exactly the
R source extraction vectors wT

k . For example, if there are repeti-
tive generalized eigenvalues in the matrix pencil (Ri ,Rj ), then
GEVD may give linear combinations of wT

k rather than wT
k

themselves. Obviously, linear combinations of wT
k cannot be

used as source extraction vectors.
In this paper, we will show that we can resolve this problem

by considering the joint generalized eigenvectors of multiple
matrix pencils (Ri ,Rj ), i �= j.

Definition 1: The joint generalized eigenvector of a set of
matrix pencils (Ri ,Rj ), i �= j, is the vector vT that satisfies
RivT = λi,jRjvT for all i �= j, where λi,j are scalars and
‖vT ‖ = 1.

In this paper, we consider the joint generalized eigenvectors
of the set of matrix pencils (Ri ,Rj ), (i, j) ∈ I ⊆ {(i, j) : 1 ≤
i < j ≤ N}. Specifically, the set I has M elements, which are
selected from the full set of N(N − 1)/2 matrix pencil indices
{(i, j) : 1 ≤ i < j ≤ N}.

Theorem 1: The set of matrix pencils (Ri ,Rj ), (i, j) ∈ I,
have R unique joint generalized eigenvectors vT

k that are equal
to the R source extraction vectors wT

k if and only if

∀1 ≤ m �= n ≤ R, ∃(i, j) ∈ I,
such that dim djn − dindjm �= 0. (11)

Proof: The proof is given in Appendix A. �
Theorem 1 shows that we can make the joint generalized

eigenvectors unique and identical to the source extraction vec-
tors by selecting appropriately the set I for (11) to be satis-
fied. For example, if (11) can be satisfied with I = {(1, 2)},
then we just need to find the R generalized eigenvectors of
the matrix pencil (R1 ,R2) and use them as source extraction

vectors. Otherwise, we have to use more matrix pencils, such
as I = {(1, 2), (1, 3)}, etc, and estimate their joint generalized
eigenvectors.

For source signals with rich temporal correlations, we need
only a small number of matrix pencils, which means M 

N(N − 1)/2. On the other hand, using more matrix pencils
can enhance the accuracy of estimating wT

k and vT
k from noisy

signals. Note that we will use vT
k and wT

k interchangeably in
sequel considering their equivalence.

B. Properties of Joint Generalized Eigenvectors

The estimation of joint generalized eigenvectors is a non-
trivial open problem. Conventional GEVD works on a single
matrix pencil only. AJD or other simultaneous matrix diagonal-
ization algorithms such as [49] may not be desirable because
they target toward the (more stringent) multiple-matrix diago-
nalization problem. Before developing practical estimation al-
gorithms to fill this gap, we show some useful properties of joint
generalized eigenvectors first in this subsection.

Consider a joint generalized eigenvector vT. Define ui
�
=

RivT. Then from (10) we have ui = λi,juj . In other words, ui

and uj are proportional, which we call the proportional property
of joint generalized eigenvectors.

Lemma 1: For two non-zero vectors ui ∈ RR×1 and uj ∈
RR×1 , let uis and ujs be their sth elements, respectively, where
1 ≤ s ≤ R. Then ui and uj are proportional if and only if

uisujt − uitujs = 0, 1 ≤ s < t ≤ R. (12)

Proof: See Appendix B. �
Let ris be the sth row of Ri . We have uis = risvT , and the

new proportional property (12) leads to

(risvT )(rj tvT )− (ritvT )(rjsvT ) = 0, (13)

which can be rewritten as

v(rT
isrj t − rT

itrjs)vT = 0, (i, j) ∈ I, 1 ≤ s < t ≤ R. (14)

Lemma 1 indicates that (14) is equivalent to (10).
For each matrix pencil (Ri ,Rj ), (i, j) ∈ I, we can define a

list of R(R− 1)/2 symmetric matrices

Rij
st
�
= (rT

isrj t − rT
itrjs) + (rT

jtris − rT
jsrit), (15)

where 1 ≤ s < t ≤ R. Then, from (14) we have

vRij
stv

T = 0, (i, j) ∈ I, 1 ≤ s < t ≤ R, (16)

which we call the quadratic property of joint generalized eigen-
vectors. This property serves as our starting point in devel-
oping new algorithms for the estimation of joint generalized
eigenvectors.

C. Rank Constrained Optimization

Consider the problem of estimating the vector vT based
purely on (16). First, while vT is the eigenvector associated
with the zero eigenvalue of Rij

st , it is nontrivial to estimate a
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common set of R vectors vT for all the matrices. Second, be-
cause the matrices Rij

st may not be semi-definite, vT cannot be
obtained in closed-form by forcing the derivative of vRij

stv
T

equal to zero. Instead, we have to minimize (vRij
stv

T )2 , which
is no longer quadratic. A standard technique is to relax vT v
into a symmetric unit-rank matrix B [50]. Specifically, since
(16) can be written as

tr(Rij
stv

T v) = 0, (17)

we relax it with an R×R symmetric matrix B into

tr(Rij
stB) = 0, s.t. rank(B) = 1. (18)

Considering all the matrices Rij
st , we have the optimization

min f(B), s.t. rank(B) = 1, (19)

where f(B) =
∑

(i,j )∈I,1≤s<t≤R (tr(Rij
stB))2 .

Theorem 2: The optimal solution to (19) is B∗ = wT
k wk

where wT
k is a joint generalized eigenvector (and is also a source

extraction vector).
Proof: See Appendix C. �
The exploitation of the new concept of joint generalized

eigenvectors and the estimation of these vectors via the rank
constrained optimization (19) make our approach both unique
and advantageous over many existing BSE algorithms, includ-
ing those that also use quadratic cost functions, such as [51]–
[57]. The cost function f(B) is quadratic, and the domain
set {B : tr(Rij

stB) = 0, (i, j) ∈ I, 1 ≤ s < t ≤ R} is a convex
cone over non-negative definite matrices. Such properties can
potentially enhance our approach’s accuracy, efficiency and con-
vergence.

Furthermore, (19) is a variation of the matrix rank minimiza-
tion problem [50] that has attracted a lot of research attention
recently and has found wide applications in quadratic optimiza-
tion, signal processing, system identification, etc. Many algo-
rithms have been developed for this problem [58]–[66], which
can be adapted for our purpose. In particular, the FPCA (fixed
point continuation with approximate singular value decomposi-
tion) Algorithm of [58] is powerful, fast and robust, inspired by
which we develop a new approach in sequel that combines the
gradient search and matrix shrinkage techniques to solve (19).

As basic ideas, first, we apply gradient search to minimize
the quadratic cost function f(B). From (19), the gradient can
be found as

∇f(B)
�
=

∂f(B)
∂B

=
∑

(i,j )∈I,1≤s<t≤R

2tr(Rij
stB)Rij

st , (20)

with which we can derive the updating rule

B(�) = B(�−1) − α∇f(B(�−1)), � = 1, 2, . . . , (21)

where α is an appropriate step size.
Next, we apply the matrix shrinkage operator Sv (B(�)) to

satisfy the unit-rank constraint [58]. Let the singular value de-
composition (SVD) of B(�) be B(�) = UB diag[σσσ]VT

B where
σσσ = [σ1 , . . . , σR ], and UB , VB are orthonormal matrices. Then

Sv (B(�)) � UB diag[sv (σσσ)]VT
B , (22)

where the vector shrinkage operator sv (σσσ) is defined as

sv (σσσ) � [(σ1 − v)+ , . . . , (σR − v)+ ] (23)

with appropriate threshold v > 0.
However, direct implementation of the gradient search (21) is

not desirable. Each iteration needs the calculation of MR(R−
1)/2 matrices Rij

st , which has extremely high computational
complexity. The symmetry of B is neither exploited nor main-
tained explicitly. The matrix B(�) may gradually lose symmetry
during updating due to the accumulation of calculation errors,
which certainly degrades accuracy. To address these issues, in
next section we apply symmetry-preserving vectorization and
deflation techniques to implement a more efficient algorithm.

IV. EFFICIENT ALGORITHM IMPLEMENTATION

A. Re-Formulation via Symmetry-Preserving Vectorization

It is well known that tr(Rij
stB) = (vec(Rij

st))T vec(B), where
vec(·) is the vectorization operator that stacks the columns of
a matrix into a column vector. Considering that Rij

st and B
are both symmetric matrices, it is more desirable to remove
the identical elements so as to reduce the vector dimension.
For this purpose, we define three new vectorization operators
svec(·), hvec(·) and unhvec(·). The first two operators stack an
R×R symmetric matrix into an R(R+1)

2 dimensional vector,
whereas the last one is the inverse operation of hvec(·). In addi-
tion, svec(·) adds the repeated elements together, while hvec(·)
does not.

Definition 2. Symmetry-preserving vectorization operators:
1) svec(·) is defined as b = svec(B), where the elements are
(b)(i−1)(R−i/2)+j = βij (B)ij , 1 ≤ i ≤ j ≤ R, βij = 1 for i =
j, and βij = 2 for i < j. 2) hvec(·) is defined as b =
hvec(B), where (b)(i−1)(R−i/2)+j = (B)ij , 1 ≤ i ≤ j ≤ R.
3) unhvec(·) is defined as B = unhvec(b), where (B)ij =
(B)j i = (b)(i−1)(R−i/2)+j .

With the new operators, we can rewrite f(B) of (19) as

f(b) =
∑

(i,j )∈I,1≤s<t≤R

((svec(Rij
st))

T b)2

=
∑

(i,j )∈I,1≤s<t≤R

bT svec(Rij
st)(svec(Rij

st))
T b, (24)

where b = hvec(B) is an R(R + 1)/2 dimensional vector.
To make (24) more concise, we stack all the R(R− 1)/2

vectors svec(Rij
st), 1 ≤ s < t ≤ R, into the R(R+1)

2 × R(R−1)
2

dimensional matrix

Cij =
[
svec

(
Rij

12

)
, . . . , svec

(
Rij

(R−1)R

)]
. (25)

Furthermore, we stack all the M matrices Cij , (i, j) ∈ I, into
the R(R+1)

2 ×M R(R−1)
2 matrix [C12 , . . . ,Cij , . . .] and define

the R(R+1)
2 × R(R+1)

2 dimensional matrix

C = [C12 , . . . ,Cij , . . .][C12 , . . . ,Cij , . . .]T . (26)

Accordingly, (24) becomes f(b) = bT Cb and the optimiza-
tion (19) is changed to the vector form

min f(b) = bT Cb, s.t. rank(unhvec(b)) = 1. (27)
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Lemma 2: If the columns of Cij are linearly independent,
then the null space of each matrix Cij , denoted as N{Cij},
is spanned by the vectors bk = hvec(wT

k wk ), k = 1, . . . , R,
where wT

k are source extraction vectors (and joint generalized
eigenvectors).

Proof: If the columns of Cij are linearly independent, then
rank(Cij ) = R(R− 1)/2. Hence, the dimension of N{Cij}
is R. According to (18) and Definition 2, we can see that
(Cij )T bk = 0. Since the source extraction vectors wT

k are
linearly independent, so do the R vectors bk . Therefore, we
conclude that N{Cij} is spanned by bk . �

Lemma 2 shows that the optimal solutions to (27) are the
joint generalized eigenvectors (source extraction vectors). In
addition, Lemma 2 provides us with a guideline to select covari-
ance matrices Ri . One drawback of many eigen-decomposition-
based source separation algorithms is the absence of such
guidelines. Because each Cij (and thus C) has a null space
with dimension R, the sum of the R least singular values of the
matrix C should be zero. Therefore, in practical applications
when the noise is not strictly white or the matrices Di in (2)
are not strictly diagonal, we can select the optimal set of covari-
ance matrices Ri (via choosing time lags τi) by minimizing the
sum of R least singular values of C. The effectiveness of this
guideline is verified by simulations in Section V-E.

B. Deflationary Algorithm for Sequential BSE and for the
Estimation of Joint Generalized Eigenvectors

From (27), the gradient of f(b) can be found as

∇f(b)
�
=

∂f(b)
∂b

= 2Cb. (28)

The updating rule is thus

b(�) = b(�−1) − 2α(�−1)Cb(�−1) (29)

where the step size α(�−1) can be optimized by exact line search

α(�−1) = arg min
α>0

f(b(�−1) − 2αCb(�−1))

=
(Cb(�−1))T Cb(�−1)

2(Cb(�−1))T CCb(�−1) . (30)

In each iteration, after obtaining b(�) , we conduct matrix shrink-
age and normalization via

B(�) =
Sv (unhvec(b(�)))
‖Sv (unhvec(b(�)))‖F . (31)

The normalization is necessary to avoid the trivial solution
B = 0. Upon convergence, we can calculate a joint general-
ized eigenvector (source extraction vector) from B(�) as the
eigenvector corresponding to the largest eigenvalue.

To estimate another joint generalized eigenvector, we apply
deflation operation and run the iterations again. The overall
procedure is outlined in Algorithm 1.

This algorithm estimates all the joint generalized eigenvectors
(and source extraction vectors) sequentially, one in each stage.
It runs R stages to estimate all the R vectors. For BSE applica-
tions, it can terminate early when the desired sources have been

Algorithm 1 : Estimate wT
k and Extract Source sk (t) in

Stage k = 1, . . . , R.

Input: x̄(t): observation signals; v, ζ: thresholds;
1: if k = 1: choose τi , find Ri , R

ij
st , C1 as per (5) (15)

(26);
2: if k > 1: calculate Ck as per (33);
3: Initialize B(0) and construct b(0) = hvec(B(0));
4: �← 1;
5: repeat (as per (29), (30), (31))
6: compute gradient: g(�−1) = 2Ckb(�−1) ;
7: compute step size: α(�−1) = g ( �−1 )T g ( �−1 )

2g ( �−1 )T Ck g ( �−1 ) ;

8: update: h(�) = b(�−1) − α(�−1)g(�−1) ;
9: unstack vector into matrix: H(�) = unhvec(h(�))

10: shrinkage: B(�) = Sv (H(�))/‖Sv (H(�))‖F ;
11: stack matrix into vector: b(�) = hvec(B(�));
12: �← � + 1;
13: until ‖B(�) −B(�−1)‖F ≤ ζ;
14: estimate ŵT

k as leading eigenvector of B(�) ;
15: calculate ŝk (t) = ŵk x̄(t).
Ouput: ŵT

k and ŝk (t).

extracted. In each stage k, the algorithm runs iteratively the gra-
dient search operation and the matrix shrinkage operation until
the change in B(�) is less than a pre-defined small threshold ζ.

Deflation is applied to guarantee that the full set of orthogo-
nal joint generalized eigenvectors are estimated. The deflation
operation is conducted via determining the matrices Ck and
B(0) . In stage k = 1, since no deflation is necessary, C1 = C
and is calculated directly by (26). B(0) is initialized as a random
symmetric matrix with rank 1. In each of the subsequent stages
k ≥ 2, the targeting vector wT

k should be orthogonal to all the
vectors ŵ1 , . . . , ŵk−1 estimated in previous stages, i.e.,

ŵiwT
k = 0, i = 1, . . . , k − 1. (32)

This becomes (svec(Ŵi))T b = 0 in vector form, where b =
hvec(wT

k wk ) and Ŵi = ŵT
i ŵi . The idea of deflation is to

look for a vector b that is orthogonal to C and all the estimated
matrices svec(Ŵi)(svec(Ŵi))T , i = 1, . . . , k − 1. This can be
implemented by replacing the matrix C of (27) with

Ck = Ck−1 + svec(Ŵk−1)(svec(Ŵk−1))T , k ≥ 2. (33)

Furthermore, to speed up the gradient search, we can ini-
tialize B(0) within the subspace orthogonal to ŵ1 , . . . , ŵk−1 .
Considering the matrix Ŵ(k−1) =

[
ŵT

1 , . . . , ŵT
k−1

]
, we con-

duct EVD

Ŵ(k−1)(Ŵ(k−1))T =

[Ue , U(k−1) ]
[
Σe 0
0 0

]
[Ue , U(k−1) ]

T
. (34)

Since U(k−1) ∈ RR×(R−k+1) is orthogonal to ŵT
1 , . . . , ŵT

k−1 ,
the vector wT

k is in the space spanned by the columns of U(k−1) .
Therefore, we can initialize by B(0) = U(k−1)ccT U(k−1)T

with a random vector c ∈ R(R−k+1)×1 .
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The major computational complexity in each iteration comes
from updating the R(R + 1)/2 dimensional vector b. The
MR(R− 1)/2 matrices Rij

st are used just once at the begin-
ning when calculating C1 . All the subsequent iterations and
stages involve only a single matrix Ck . The complexity in each
iteration is thus O(R4), dominated by the matrix-vector multi-
plication Ckb(�−1) . This compares favorably with the common
complexity O(NR3) of existing AJD methods [40]. This also
compares favorably with the complexity O(MR2 ×R3) of (21).
Note that in many practical applications, the number of sources
R is usually small while N � R and M ≤ N(N − 1)/2 can
be much larger, especially if we want to use a large number of
covariance matrices to enhance estimation accuracy.

C. Convergence Analysis

Let us first analyze the operation of matrix shrinkage and nor-
malization (31), which in Algorithm 1 is described as B(�) =
Sv (H(�))/‖Sv (H(�))‖F . The objective of matrix shrinkage is
to make the matrix B(�) closer to rank 1 than H(�) . Let the sin-
gular values of H(�) and B(�) be σh,1 ≥ · · · ≥ σh,R and σb,1 ≥
· · · ≥ σb,R , respectively. Their distances from rank 1 can be
measured by μh = σh,1/

∑R
i=2 σh,i and μb = σb,1/

∑R
i=2 σb,i ,

respectively. Larger value means closer to rank 1. We define
σh,R+1 = 0 for notational convenience.

Lemma 3: The operation of matrix shrinkage and normal-
ization makes B(�) closer to rank 1 than H(�) , i.e., μb > μh , if
the threshold v satisfies

σh,n ≥ v ≥ σh,n+1 ,

v <

∑R
i=n+1 σh,i

(
σ−1

h,1(
∑R

i=2 σh,i)− n + 1
)+ , (35)

for an integer n = 1, . . . , R.
Proof: See Appendix D. �
A desirable property is that the right-hand-side of (35),

i.e., the upper bound of v, increases when H(�) is closer to
rank 1. This means that we just need to calculate this upper
bound once using H(1) obtained in the first iteration. As long as
we choose v under this upper bound, Lemma 3 will guarantee
that the operation of matrix shrinkage and normalization makes
B(�) more and more close to rank 1.

Theorem 3: With a relatively small v that satisfies (35) and
a step size α that satisfies 0 < α < 1

λm a x
, where λmax is the

maximum eigenvalue of Ck , the Algorithm 1 converges to B∗.
Proof: See Appendix E. �
From λmax = maxz(zT Ckz)/(zT z), it can be readily shown

that bT CT CCb/(bT CT Cb) > λmax/2 for random b and
thus the optimized α(�−1) in (30) always satisfies 0 < α(�−1) <
1/λmax .

V. SIMULATIONS

In this section, we evaluate the performance of our pro-
posed BSE algorithm by simulations. We compare it with
six typical BSS or BSE algorithms, i.e., SOBI [29], Fas-
tICA [67], JADE [31], WASOBI [68], BGSEP [69], and RGD

(relative gradient decent) [34]. For WASOBI and BGSEP, we
used the MATLAB code obtained from [70]. For FastICA, we
used the MATLAB code obtained from the website http://
www.cis.hut.fi/projects/ica/fastica/ and used
the deflation type to extract source signals sequentially rather
than simultaneously. The source code of our proposed BSE algo-
rithm can be obtained at http://www.ws.binghamton.
edu/li/ BSE-Zhang-Li-Peng2017.zip. Note that the
SOBI, JADE, WASOBI, BGSEP and RGD algorithms all use
joint diagonalization techniques to recover all the source signals
simultaneously.

As performance measure, we used the performance index

PI =
1

R(R− 1)

R∑

i=1

{(
R∑

k=1

|ĝik |
maxj |ĝij | − 1

)

+

(
R∑

k=1

|ĝki |
maxj |ĝj i | − 1

) }

(36)

where ĝij is the (i, j)-element of the mixing-separating matrix
Ĝ = ŴUA. This index measures to what extent Ĝ is close to
a generalized permutation matrix [1]. The smaller the value of
PI, the better the separation performance.

The mixing matrix A and the noise were randomly generated
in each run of simulations. Our new algorithm was initialized
with B(0) = 1R1T

R in stage k = 1, where 1R is an R dimen-
sional vector whose elements are all one. In all other stages
k ≥ 2, our algorithm was initialized with c = 1R−k+1 .

A. Extraction of AR Signals

In this experiment, each source signal was modeled as an
Lth order autoregressive (AR) process driven by the zero-mean
Gaussian white noise with unit variance, i.e.,

si(t) =
L∑

l=1

hi(l)si(t− l) + wi(t), 1 ≤ i ≤ R (37)

where hi(l) are AR coefficients. The values of wi(t) were gen-
erated independently from the standard normal distribution. For
fair comparison with [68], we adopted its model parameters
where hi(l), l = 1, . . . , L− 1, were fixed to 0, while hi(L) was
randomly generated in the interval (−1, 1). As pointed out in
[68], hi(L) can be used to measure whether source signals are
easy to separate or not. When hi(L) is close to zero, it is difficult
to separate the mixed source signals because they have similar
correlations or power spectra. On the other hand, when |hi(L)|
is close to one, sources become relatively easy to separate thanks
to their distinct correlations or power spectra.

We conducted simulations with parameters J = 5, R = 3,
N = 10, and L = 5. We used time lags τi = i, i = 1, . . . , 10,
to generate covariance matrices Ri . We also added white noise
so as to create mixtures x(t) with various signal-to-noise ratios

(SNRs), where SNR was defined as SNR = 10log10
E {‖As(t)‖2 }
E {‖n(t)‖2 } .

We used 100 independent runs to calculate the average PI. Sim-
ulation results are shown in Fig. 2.

It can be seen that WASOBI had the best performance when
SNR was extremely high. However, both our proposed algorithm
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Fig. 2. Performance index (PI) as function of SNR in the experiment of
extracting AR signals. Our proposed algorithm (NEW) outperformed the other
two comparing algorithms when SNR was not extremely high.

Fig. 3. Three speech source signals.

and SOBI had better performance than WASOBI when SNR was
not extremely high. This showed that WASOBI was sensitive to
noise. In addition, our proposed algorithm was slightly better
than SOBI.

We also measured the runtime of these algorithms on a
2.40-GHz PC with 4 GB RAM. The average runtimes were
0.020725, 0.011602 and 0.023464 seconds for our proposed al-
gorithm, SOBI, and WASOBI, respectively. Note that SOBI and
WASOBI estimated all the source signals simultaneously while
our proposed algorithm extracted source signals one by one.
Hence, when the aim is just to extract a subset of the source
signals, the runtime of our proposed algorithm will be much
more competitive.

B. Extraction of Speech Signals

In this experiment, we considered R = 3 speech source sig-
nals. Each of them was 1 second long (see Fig. 3), and was
obtained from [71] with truncation. Speech signals are known
to be non-Gaussian, non-white, and non-stationary. For the algo-
rithms compared in this experiment, JADE and FastICA exploit

Fig. 4. Performance index (PI) as function of SNR in the experiment of speech
signal extraction. Our proposed algorithm (NEW) had better performance and
was more robust in low SNRs.

the non-Gaussianity of the source signals while our proposed
algorithm and SOBI utilize the non-whiteness of the source sig-
nals. The BGSEP [69], [72] exploits the non-stationarity of the
source signals instead.

The number of observation signals was J = 5. The number
of covariance matrices was N = 10. For BGSEP, the number
of blocks of signals was set to 10. For fair comparison, our
proposed algorithm and SOBI were simulated with the same
set of covariance matrices. We used 100 independent runs to
calculate the average PI. Simulation results are shown in Fig. 4.

As it can be seen, the performance of FastICA and JADE
was much worse than the other algorithms. When the SNR was
not extremely high, the performance of BGSEP was worse than
our algorithm and SOBI. In addition, our proposed algorithm
was slightly better than SOBI, especially at low SNR, e.g.,
SNR ∈ [−5, 10] dB. This means that our proposed algorithm is
more robust to heavy noise than the other algorithms.

To explain why the BGSEP is not as robust to noise as our
proposed algorithm, let us denote by xk (t), sk (t) and nk (t) the
kth block of the observation signal, source signal and noise,
respectively. Define the covariance matrix of xk (t) with zero
time-lag as

C̄x,k = ADkAT + Rnn,k (38)

where Dk
�
= E{sk (t)sk

T (t)} and Rnn,k
�
= E{nk (t)nT

k (t)}.
The BGSEP algorithm uses the zero time-lagged covariance
matrices C̄x,1 , . . . , C̄x,M to recover the source signals. As we
can see, such covariance matrices cannot avoid the influence of
noise. In contrast, our proposed algorithm uses non-zero time-
lagged covariance matrices Cx,i which are not susceptible to
white noise theoretically. This is one of the primary reasons
why our proposed algorithm outperformed BGSEP when the
SNR was not extremely high.

C. Robustness to Ill-Conditioned Mixing Matrices

For the mixing matrix A, its condition number can be defined
as κ(A) = σ1

σR
, where σ1 and σR are the largest and the smallest
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Fig. 5. Performance index (PI) as function of condition number of the mixing
matrix A. Our proposed algorithm (NEW) was more robust and outperformed
the other algorithms.

TABLE I
LARGEST EIGENVALUES λm ax OF Ck UNDER VARIOUS SNRS

singular values of A, respectively [73]. Large κ(A) means that
A is near singular and thus ill-conditioned.

In order to evaluate the robustness of our algorithm to ill-
conditioned mixing matrices, in this experiment, we gener-
ated A with κ(A) varying from 100 to 200. With such large
κ(A) values, the source extraction problem was highly ill-
conditioned.

The source signals used in this experiment were the same
speech signals as those in Section V-B. The simulation results
shown in Fig. 5 demonstrated that our proposed algorithm was
more robust and outperformed the other algorithms. In this ill-
conditioned situation, it was hard for FastICA and JADE to
separate source signals. In contrast, our proposed algorithm,
SOBI, and RGD still had good performance with PI ranging
from −20 dB to −35 dB. All of them were robust to the ill-
conditioned mixing matrices, and our proposed algorithm had
the best performance.

D. Evaluation of Convergence

In this experiment, we set the number of observation signals
to J = 6 and the number of covariance matrices to N = 10.
We used again the three speech source signals studied in
Section V-B. Table I lists the largest eigenvalues λmax of the
matrices Ck under various SNRs.

According to the convergence results given in Theorem 3,
we require 0 < α < 1

λm a x
in order to guarantee the convergence

of the proposed algorithm. First, we adopted the constant step
size α = 0.05, which satisfied the convergence condition. The
threshold of matrix shrinkage Sv (·) was chosen as v = 0.0005.

Fig. 6. Performance index (PI) as function of number of iterations under
various SNRs. α = 0.05, v = 0.0005.

Fig. 7. Performance index (PI) as function of number of iterations under
various SNRs. α = 0.1, v = max(v0 (γv )�−1 , 0.00001).

Simulation results shown in Fig. 6 demonstrated that the pro-
posed algorithm had the guaranteed convergence.

Next, to evaluate the connection between the parameters α,
v and the convergence rate, we set the step size to α = 0.1
and v = max(v0(γv )�−1 , 0.00001), where v0 = 0.05 and γv =
0.995. Note that this large α still satisfied the convergent con-
dition 0 < α < 1/λmax . The parameter v gradually decreased
from a big value 0.05 to a very small constant 0.00001. Simula-
tion results in Fig. 7 indicated that larger step size α and varying
threshold v could substantially increase the convergence speed
and enhance the source extraction accuracy.

E. Covariance Matrix Optimization

Many BSS or BSE algorithms use the covariance matrices cal-
culated simply with time lags τi ∈ {1, . . . , N}. We denote by T1
this set of covariance matrices. In this experiment, we evaluated
the performance of our algorithm when using a set of covariance
matrices obtained with a slightly optimized set of time lags. The
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TABLE II
PERFORMANCE INDEX WHEN USING COVARIANCE MATRICES WITHOUT

OPTIMIZATION (T1 ) OR WITH OPTIMIZATION (T2 )

criterion for time lag optimization was to minimize the sum of R
least singular values of C. We denote by T2 this set of covariance
matrices. Note that T2 may vary in different runs of simulations
due to the variety of noise. An example of the optimized time
lags was τi ∈ {1, 2, 3, 9, 10, 11, 12, 13, 18, 20}. The parameters
J,R,N and the source signals used in this experiment were the
same as those in the previous subsection. From the simulation
results listed in Table II, it can be seen that such an optimization
could enhance the performance by several decibels.

VI. CONCLUSION

In this paper we developed a new sequential blind source
extraction (BSE) approach based on the joint generalized eigen-
vectors of a series of covariance matrix pencils. We proved
that the joint generalized eigenvectors are the same as source
extraction vectors, and can be estimated from an optimization
involving a quadratic cost function and a unit-rank matrix con-
straint. We used gradient search and matrix shrinkage to solve
this optimization, and implemented it as an efficient algorithm
based on the symmetry-preserving vectorization and deflation
techniques. The merits of the proposed algorithm include su-
perior performance, robustness to noise, and robustness to ill-
conditioned mixing matrices. Simulations were conducted to
demonstrate that this algorithm compared favorably to some
typical BSS and BSE algorithms.

APPENDIX A
PROOF OF THEOREM 1

From (9) and (10), because wT
k satisfies (10) for all (i, j) ∈ I,

each source extraction vector wT
k is also a joint generalized

eigenvector. Since the dimension of the generalized eigenvector
space for each matrix pencil is R only, there is no other join
generalized eigenvector that is independent fromwT

k . Therefore,
we just need to show that linear combinations of wT

k cannot be
joint generalized eigenvectors.

Sufficiency: To show the sufficiency of Theorem 1, we will
prove that if (11) is satisfied, then none of the linear combina-
tions of wT

k with at least two nonzero combining coefficients
can be a joint generalized eigenvector. We do it by contradiction.

Assume the linear combination vT =
∑R

k=1 αkwT
k be a joint

generalized eigenvector instead. Without any loss of generality,
we assume α1 �= 0 and α� �= 0 for some 2 ≤ � ≤ R. According
to (11), for any index m, 2 ≤ m ≤ R, there exists an index pair
(i, j) such that

dim dj1 − di1djm �= 0. (39)

For this index pair (i, j), taking into account (9), we have

RivT = Ri

R∑

k=1

αkwT
k =

R∑

k=1

αkdikγkUak (40)

and

RjvT = Rj

R∑

k=1

αkwT
k =

R∑

k=1

αkdjkγkUak . (41)

Let λ be the generalized eigenvalue of the matrix pencil
(Ri ,Rj ) corresponding to the generalized eigenvector vT. We
have

Ri

R∑

k=1

αkwT
k = λRj

R∑

k=1

αkwT
k . (42)

Combining (40)–(42), we have

R∑

k=1

αk (dik − λdjk )γkUak = 0 (43)

where 0 denotes zero vector. Because UA is a square full col-
umn rank matrix, its column vectors Uak , k = 1, . . . , R, are
linearly independent. Hence, we have

αk (dik − λdjk )γk = 0, 1 ≤ k ≤ R. (44)

Taking into account γk �= 0, we have

αk (dik − λdjk ) = 0, 1 ≤ k ≤ R. (45)

Since α1 �= 0, this leads to di1 − λdj1 = 0 which is

di1 = λdj1 . (46)

With (46), we can change (39) into (dim − λdjm )dj1 �= 0.
Therefore, we have dim − λdjm �= 0 for all 2 ≤ m ≤ R. Then
from (45), we must have αk = 0 for all 2 ≤ k ≤ R, which is a
contradiction to the assumption α� �= 0. This proves the suffi-
ciency.

Necessity: The necessity can be established by proving that
if there exists an index pair m and n, 1 ≤ m �= n ≤ R, that
satisfy dim djn − dindjm = 0 for all (i, j) ∈ I, then we can find
a linear combination (with at least two nonzero coefficients) of
the vectors wT

k that is a joint generalized eigenvector.
Since the source extraction vectors wT

m and wT
n are joint

generalized eigenvectors, according to (9), for all (i, j) ∈ I we
have

RiwT
m = dim γmUam , RjwT

m = djm γmUam , (47)

RiwT
n = dinγnUan , RjwT

n = djnγnUan . (48)

Therefore, for the linear combination vT = αwT
m + βwT

n ,
where α �= 0, β �= 0, we have

RivT = αdim γmUam + βdinγnUan , (49)

RjvT = αdjm γmUam + βdjnγnUan . (50)

Next, we exploit the condition dim djn = dindjm for analysis.
Case 1: din = djn = 0. In this case we have

RivT = αdim γmUam , RjvT = αdjm γmUam . (51)
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Because (51) is valid for all (i, j) ∈ I, the linear combination
vT is a joint generalized eigenvector.

Case 2: din �= 0 and djn �= 0. In this case we can change (49)
and (50) into

RivT = din

(
α

dim

din
γmUam + βγnUan

)

= din

(
α

djm

djn
γmUam + βγnUan

)
, (52)

RjvT = djn

(
α

djm

djn
γmUam + βγnUan

)
. (53)

This also implies that the linear combination v is a joint gener-
alized eigenvector.

Case 3: Only one of din and djn is zero. Without any loss of
generality, consider din = 0 and djn �= 0. Then we have dim =
0. From (49) and (50) we know that vT is a joint generalized
eigenvector with λi,j = 0.

Combining the above three cases, the necessity is proved.

APPENDIX B
PROOF OF LEMMA 1

First, if ui and uj are proportional, i.e., ui = γuj for some
scalar γ �= 0, then uisujt − uitujs = γujsujt − γujtujs = 0.
Next, if uisujt − uitujs = 0 for all 1 ≤ s < t ≤ R, we need to
prove that there exists a nonzero scalar γ such that ui = γuj .
Let uik �= 0 for some k. Then we have ujt = uj k

ui k
uit for all

t > k and ujs = uj k

ui k
uis for all s < k. Let γ = uj k

ui k
. This gives

ui = γuj .
What remains is to show γ �= 0, which means we must have

ujk �= 0. This can be readily shown by contradiction. Specif-
ically, assume ujk = 0 instead. From uikujt = uitujk we see
that ujt = 0 for all t > k. In addition, from uisujk = uikujs

we find ujs = 0 for all s < k. This means that uj = 0, a con-
tradiction.

APPENDIX C
PROOF OF THEOREM 2

First, if B = wT
k wk where wT

k is a joint generalized eigen-
vector (and is also a source extraction vector according to
Theorem 1), then rank(B) = 1 and f(B) = 0. This also means
that the minimum value of f(B) is zero and is achievable.

Second, assume that by optimizing (19) we have found a
symmetric matrixB that satisfies both rank(B) = 1 and f(B) =
0. It is easy to see that B satisfies (18). In addition, we can find
a vector wT such that B = wT w. We can see that wT satisfies
(17) and also (16). It can be readily verified that (16) is equivalent
to (14) for real signals. Therefore, based on Lemma 1, wT

satisfies (10) and is a joint generalized eigenvector. Theorem 1
guarantees that wT is also a source extraction vector.

APPENDIX D
PROOF OF LEMMA 3

Obviously, normalization does not change the measure μb .
Therefore, we just need to analyze matrix shrinkage. To make

μb > μh , we require

(σh,1 − v)+

∑R
i=2(σh,i − v)+

>
σh,1

∑R
i=2 σh,i

. (54)

Consider the case that the threshold v satisfies

σh,n ≥ v ≥ σh,n+1 (55)

for some integer n = 1, . . . , R. Note that n = R means that v
is no larger than any singular value. Note also that v should
be smaller than σh,1 because otherwise the result of matrix
shrinkage is zero according to (22)(23). With (55), we can
change (54) to

σh,1 − v
∑n

i=2(σh,i − v)
>

σh,1
∑R

i=2 σh,i

. (56)

Re-arranging the items in (56) we come at
(

1
σh,1

R∑

i=2

σh,i − n + 1

)

v <
R∑

i=n+1

σh,i . (57)

If ( 1
σh , 1

∑R
i=2 σh,i)− n + 1 ≤ 0, then (57) holds for any v.

If ( 1
σh , 1

∑R
i=2 σh,i)− n + 1 > 0, then we have

v <

∑R
i=n+1 σh,i

σ−1
h,1

∑R
i=2 σh,i − n + 1

. (58)

Combining these two cases leads to (35).

APPENDIX E
PROOF OF THEOREM 3

Without any loss of generality, assume a constant step size α
for simplification. From (29), in stage k, we have

b(�) = (1− 2αCk )b̄(�−1) , (59)

where

b̄(�−1) = hvec(B̄(�−1)) = hvec

(
Sv (unhvec(b(�−1)))
‖Sv (unhvec(b(�−1)))‖F

)
.

(60)
Note that if the matrix shrinkage and normalization operation is
not applied, b̄(�−1) should be replaced with b(�−1) , which gives

b(�) = (1− 2αCk )b(�−1) . (61)

With the EVD Ck = Ucdiag{λ1 , . . . , λR(R+1)/2}UT
c , we can

rewrite it as

UT
c b(�) = diag{1− 2αλ1 , . . . , 1− 2αλR(R+1)/2}UT

c b(�−1) .
(62)

It is easy to see that the iteration (61) or (62) converges when
|1− 2αλi | < 1, which leads to 0 < α < 1/λmax [58]. How-
ever, (61) may possibly converge to the trivial zero solution
instead of B∗, which is why the matrix shrinkage and normal-
ization operation is needed.

In the following, we will first show that the updating will lead
B(�−1) to the neighborhood of an optimal solution B∗. Then,
we will show that the algorithm can converge to B∗.
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First, since b∗ = hvec(B∗) and Ckb∗ = 0, from (59) we can
get

b(�−1) − b∗ = (1− 2αCk )b̄(�−2) − b∗

= (1− 2αCk )(b̄(�−2) − b∗)

= (1− 2αCk )(b̄(�−2) − b(�−2))

+ (1− 2αCk )(b(�−2) − b∗). (63)

In (63), we can replace b(�−2) − b∗ by a similar equation
containing the item b(�−3) − b∗, i.e., (1− 2αCk )(b̄(�−3) −
b(�−3)) + (1− 2αCk )(b(�−3) − b∗). Doing this operation it-
eratively we can finally describe b(�−1) − b∗ by b(0) − b∗. As
a result, with some straightforward deductions, we can get

b(�−1) − b∗ =
�−1∑

i=1

(1− 2αCk )i(b̄(�−1−i) − b(�−1−i))

+ (1− 2αCk )�−1(b(0) − b∗). (64)

According to the matrix shrinkage and normalization proce-
dure, for the unit-norm matrices B(�−1) , we have ‖B̄(�−1) −
B(�−1)‖ < Cv for some constant C. This means that

‖b(�−1) − b∗‖ <

�−1∑

i=1

‖1− 2αCk‖iCv

+ ‖1− 2αCk‖�−1‖b(0) − b∗‖ (65)

Therefore, if 0 < α < 1/λmax and v is small, we can see that
b(�−1) is close to b∗ for large enough �. Note that according to
(35), v can be very small. As a result, B(�−1) falls within the
neighborhood of B∗. Since B∗ has unit rank, the first (dominant)
singular vector of B(�−1) is close to that of B∗.

Next, considering that

b(�) − b∗ = (1− 2αCk )(b̄(�−1) − b∗), (66)

we have

‖b(�) − b∗‖ ≤ ‖1− 2αCk‖‖b̄(�−1) − b∗‖. (67)

To analyze ‖b̄(�−1) − b∗‖, we consider the equivalent matrix
form. According to Lemma 3, if v satisfies (35) and the dominant
singular vector of B(�−1) is close to that of B∗, then

∥
∥
∥
∥

Sv (B(�−1))
‖Sv (B(�−1))‖F −B∗

∥
∥
∥
∥ ≤ ‖B(�−1) −B∗‖. (68)

This is because the matrix shrinkage operation makes the matrix
B(�−1) closer to the rank 1 matrix B∗. With (68), we can change
(67) into

‖b(�) − b∗‖ ≤ ‖1− 2αCk‖‖b(�−1) − b∗‖. (69)

Therefore, similar to the convergence argument of (61) and
(62), if 0 < α < 1

λm a x
, we have ‖b(�) − b∗‖ → 0. This means

that B(�) converges to the optimal solution B∗. The theorem is
thus proved.
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[45] P. Tichavský and A. Yeredor, “Fast approximate joint diagonalization
incorporating weight matrices,” IEEE Trans. Signal Process., vol. 57,
no. 3, pp. 878–891, Mar. 2009.

[46] S. Degerine and E. Kane, “A comparative study of approximate joint
diagonalization algorithms for blind source separation in presence of ad-
ditive noise,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 3022–3031,
Jun. 2007.

[47] G. Chabriel, J. Barrere, N. Thirion-Moreau, and E. Moreau, “Algebraic
joint zero-diagonalization and blind sources separation,” IEEE Trans.
Signal Process., vol. 56, no. 3, pp. 980–989, Mar. 2008.

[48] R. Vollgraf and K. Obermayer, “Quadratic optimization for simultane-
ous matrix diagonalization,” IEEE Trans. Signal Process., vol. 54, no. 9,
pp. 3270–3278, Sep. 2006.

[49] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “Computation of the
canonical decomposition by means of a simultaneous generalized Schur
decomposition,” SIAM J. Matrix Anal. Appl., vol. 26, no. 2, pp. 295–327,
Apr. 2004.

[50] Y.-B. Zhao, “An approximation theory of matrix rank minimization and its
application to quadratic equations,” Linear Algebra Appl., vol. 59, no. 7,
pp. 77–93, Jan. 2012.

[51] J. Tang, G. He, L. Dong, and L. Fang, “A smoothing Newton
method for second-order cone optimization based on a new smooth-
ing function,” Appl. Math. Comput., vol. 218, no. 4, pp. 1317–1329,
2011.

[52] J. Zhou, S.-C. Fang, and W. Xing, “Conic approximation to quadratic
optimization with linear complementarity constraints,” Comput. Optim.
Appl., vol. 66, pp. 97–122, 2017.

[53] M. Zangiabadi, G. Gu, and C. Roos, “A full Nesterov–Todd step infeasi-
ble interior-point method for second-order cone optimization,” J. Optim.
Theory Appl., vol. 158, no. 3, pp. 816–858, 2013.

[54] Y. Hsia, S. Wang, and Z. Xu, “Improved semidefinite approximation
bounds for nonconvex nonhomogeneous quadratic optimization with
ellipsoid constraints,” Oper. Res. Lett., vol. 43, no. 4, pp. 378–383,
2015.

[55] A. Malcolm and D. P. Nicholls, “Operator expansions and constrained
quadratic optimization for interface reconstruction: Impenetrable pe-
riodic acoustic media,” Wave Motion, vol. 51, no. 1, pp. 23–40,
Jan. 2014.
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[70] P. Tichavský, “Matlab code for U-WEDGE, WEDGE, BG-WEDGE and
WASOBI,” 2009. [Online]. Available: http://si.utia.cas.cz/Tichavsky.html

[71] N. D. Sidiropoulos, “A short list of sound sources,” 2010. [Online]. Avail-
able: http://www.telecom.tuc.gr/∼nikos/BSS_Nikos.html



2904 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018
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