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Abstract—In order to effectively implement remedial reactions 

to mitigate the negative impacts of oscillations on a power grid, it 

is essential for system operators to timely and accurately 

determine whether an observed oscillation is a natural oscillation 

or a forced oscillation. Using phasor measurement unit (PMU) 

data, this paper proposes a residual spectral analysis (RSA) 

method to distinguish forced oscillations and natural oscillations. 

The proposed RSA method uses forecasting models with various 

lead times to forecast the current PMU data based on the past 

PMU data. The spectra of the forecasting residuals are shown to 

have different properties when the PMU data have forced or 

natural oscillations. Support vector machines (SVMs) are applied 

to the residuals to classify the oscillations. This paper develops an 

algorithm for implementing the RSA method, and demonstrates 

its superior performance via extensive simulations over the 48-

machine model. Simulations show that it can distinguish the 

oscillations more accurately than an existing method and work 

reliably even when the frequency of forced oscillations is close to 

that of natural oscillations. 

 
Index Terms— phasor measurement units, power system 

dynamics, oscillations, forecasting, spectral analysis. 

I.  INTRODUCTION 

O ENSURE the stability and reliability of a power grid, it 

is critical to detect and distinguish oscillations in time. 

Oscillations can cause numerous problems such as system 

breakups [1], decreased life expectancy of devices [2], and 

flickering light which is annoying to human eyes [3]. Based on 

their root causes, oscillations can be divided into two 

categories: forced oscillations and natural (or free) 

oscillations. Forced oscillations are incurred by external 

periodic perturbations [12-17], whereas natural oscillations are 

caused by intrinsic natural interactions among dynamic 

components [4-11]. These oscillations should be studied 

thoroughly so that cause-effect knowledge can be established 
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to support proper remedial reactions. 

The remedies for natural oscillations and forced oscillations 

are different. Natural oscillations can be mitigated by 

improving damping. It often calls for reducing tie line flows to 

change operation points [15], and adding damping control 

systems such as power system stabilizers (PSS) [18], [19]. For 

example, to improve the damping of an inter-area oscillation (a 

natural oscillation) in the Western Electricity Coordinating 

Council (WECC) system, the Bonneville Power 

Administration (BPA) established Dispatcher Standing Order 

303 to reduce tie-line flow when the damping of interarea 

modes is dangerously low. In contrast, to suppress forced 

oscillations, the source of oscillations should be identified and 

detached from systems [20]. As it has been reported in 

[21][22], treating forced oscillations as natural oscillations can 

mislead the estimation methods and subsequent control 

strategies. As such, it is important to distinguish forced and 

natural oscillations. 

Phasor measurement units (PMU) are being deployed in the 

modern power grid and providing highly synchronized data 

which carry invaluable information about stability of power 

grids. Oscillation analysis using PMU data is an integral part 

of smart grid to improve operators’ situational awareness. 

Some initial studies have been carried out to distinguish forced 

and natural oscillations based on PMU data [23-25, 30]. Liu et 

al. in [23] used support vector machines (SVMs) to extract the 

features of oscillations. The increasing amplitude of natural 

oscillations was used to distinguish them from forced 

oscillations. On the other hand, since the accuracy of this 

algorithm has direct relationship with the envelope size, there 

is a question on whether the algorithm can work in real-time 

scenarios. Using the noise response and the harmonic nature of 

oscillations, Xie et al. in [24] proposed a spectral method to 

distinguish forced oscillations from natural oscillations. Yet, it 

was found that the performance may degrade when the 

frequency of forced oscillations is close to the system’s mode 

frequency. The Wang et al. in [25] proposed an algorithm that 

uses power spectral density (PSD) and kurtosis to distinguish 

the oscillations. Nevertheless, as explained in [17], a large 

amount of time is required in order to get an accurate PSD 

estimation from PMU data. This method may be suitable for 

off-line applications only.  

It is still a challenge to develop robust methods for 

distinguishing forced and natural oscillations, especially when 
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the frequency of forced oscillations is close to the system’s 

mode frequency. To address this challenge, this paper proposes 

a residual spectral analysis (RSA) method, which distinguishes 

oscillations based on the forecasting-residuals of a class of 

forecasting models using SVMs. The proposed method is 

shown to successfully distinguish forced and natural 

oscillations even when the frequency of forced oscillations is 

close to the natural oscillation frequencies.  

The rest of the paper is organized as follows. Section II 

introduces the mathematical model for forced and natural 

oscillations. The RSA method is proposed in Section III. In 

Section IV, this method is evaluated by simulations. 

Conclusions are drawn in Section V.  

II.  OSCILLATION MODELS 

To study and analyze small-signal stability of a power 

system, dynamic models are often linearized around an 

equilibrium operation point. It was shown in [18] that small 

deviations in the power system can be modeled by a set of 

linear differential equations as  
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where N N
A R


 is the state transition matrix, 1

( )
N

x t R


  is the 

system state vector, t is time, ( )f t  is the scalar source of forced  

oscillations, the scalar inputs ( )
k

q t , 1, ,k M , denote white 

Gaussian noise (WGN), 1

1

N
b R


  is the gain of the forced 

oscillation input and 1

2

N

k
b R


  is the noise gain.  

The solution to (1) gives the system’s dynamic response, 

which consists of three components, i.e., ambient, transient 

and forced components. The ambient component is the 

system’s response to low-magnitude random load variations 

[26]. The transient component is usually caused by an abrupt 

change, such as line fault, or generation tripping. The forced 

component is the system’s response to external periodic 

injections, such as malfunction controllers [27]. Based on the 

three components, the solution to (1) can be represented by  
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where ( )
r

x t  is the th
r  element of the vector ( )x t , (0 )x is the 

initial state vector which represents a post-fault transient,   is 

the convolution operator and 1j . In addition, following 

[24], 1N

i
u C


  and 1 N

i
v C


  denote the left and right 

eigenvectors corresponding to the eigenvalue 
i

  of A , 

respectively, and 
ir

u  is the th
r  element of vector 

i
u . 

Furthermore, in (2) the source of forced oscillation ( )f t  is 

modeled by its Fourier series harmonics as 

0( )
jm t

m

m

f t A e




 

                                                          (3) 

where 
0

  is the angular frequency of the forced oscillations, 

and
m

A is a complex number whose angle determines the 

phase of the mth harmonic. Note that non-periodic external 

disturbances are not modeled as forced oscillations because 

they do not have sharp peaks in their PSD.  

To study the features of natural and forced oscillations, two 

special cases can be considered. In the first case, there is only 

natural oscillation, which is caused by a lightly damped mode 

n
 . In the second case, there is only forced oscillation at 

0
m , 

and natural oscillation is absent because all the system modes 

are well-damped. 

Natural-oscillation case: Consider the N  modes 
i

  in (2). 

Assume that only the mode n is lightly-damped and all the 

other 1N   modes are well-damped. In this case, one has 

, 1, ,
i i i

j i N                                                       (4) 

with 0
i

  for i n   and 0
n

 . Their corresponding 

damping ratios are 
%0

22
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


ii

i
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and %0
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 .  

Because the forced oscillation component ( )f t  is assumed 

zero, (2) becomes 
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Because 
n

 ≈ 0, the noise  21
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M j t
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
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is the convolution of a sinusoidal signal with the random noise, 

which was named “random sinusoid” response in [24]. The 

noise ( )
r

z t and the transient response dominate in (5) because 

the residue noise is very small. 

Forced-oscillation case: Assume that the system is 

asymptotically stable and all the modes are well-damped with 

0
i

  , 1, ,i N . The response (2) becomes   
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Obviously, the forced item dominates in (6) since the residue 

noise is very small. 

Comparing the two cases (5) and (6), one can observe that 

the natural oscillation case involves the special “random 

sinusoid” which is absent in the forced oscillation case. 

Therefore, whether the “random sinusoid” ( )
r

z t  presents in 

( )
r

x t can be used to distinguish forced oscillations from 

natural oscillations.  

III.  DISTINGUISH FORCED AND NATURAL OSCILLATIONS 

This section builds a forecasting model and uses the spectra 

of the forecasting residuals to detect the random sinusoid and 
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thus to distinguish natural and forced oscillations.  

Consider the generic forecasting model shown in Fig. 1, 

which uses [ ]
T

x k N  to forecast [ ]x k , where 
T

N  is the lead 

time of forecasting. Note that discrete time signals are 

considered, where [ ] ( )
s

x k x kT with the sampling interval Ts.  

 
Fig. 1. A simple forecasting model that uses past samples [ ]

T
x k N  to 

forecast [ ]x k  with forecasting residual [ ]e k . 

 

The residual of forecasting is 

  [ ] [ ] [ ] , , [ ]
T T

e k x k g x k N x k N D                  (7) 

where ( )g x  denotes a forecasting function that uses 1D   

past samples 
T

N  steps ahead to forecast [ ]x k .  

A.  Forecasting Residual in Natural-oscillation Case  

 When a natural oscillation is observed, the noise ( )
r

z t  and 

the transient response in (5) dominate the system response 

ˆ ( )
r

x t . Because the transient response is a pure or slightly 

attenuated sinusoidal signal, it can be well forecasted with very 

small residuals. The forecasting residuals are dominated by 

( )
r

z t . Therefore, to simplify notation, one can focus only on 

( )
r

z t  when analyzing the forecasting residuals. Specifically, it 

can be derived from (5) that 
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In (8), Q[k] is defined by (9).  
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Because the items [ ]
m s

q kT  are WGN that are independent 

from each other for different m, [ ]Q k  is also WGN.  

As the power system is a causal system, [ ]
r

z k  depends on 

[ ]Q l  for l k only. The convolution in (8) can be 

decomposed into two items as in (10).  
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Similarly, the explanatory variable of the forecasting model 

[ ]
r T

z k N d  , 0 , ,d D , can be represented by (11). 
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Note that the last item (with the summation sign) in (11) is 

exactly Item 1 in (10). This means that [ ]
r T

z k N d   is 

correlated to [ ]
r

z k  in term of Item 1 of (10). On the other 

hand, [ ]
r T

z k N d   is uncorrelated to Item 2 of (10) because 

[ ]Q k  is WGN. Therefore, when using the random sinusoidal 

{ [ ], , [ ]}
r T r T

z k N z k N D    to forecast the random 

sinusoidal [ ]
r

z k , the residuals shall be dominated by Item 2 of 

(10). For example, with 0D   and the optimal forecasting 

function ( ) n T s
j N T

g x e x


 , we have 

    
( )

1

[ ] [ ]n s

T

k

j k l T

l k N

e k e Q l
 

  

  .                                   (12) 

In general, 0D   can be used for more effective forecasting. 

In addition, (12) can be viewed as the convolution of the 

white noise [ ]Q k  and the windowed sinusoidal signal n s
j kT

e


. 

Equation (12) can be written as 
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where [ 1] [ 1]
T

u k N u k     defines a rectangle window of 

size 
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N  with step function 
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 . 

B.  Forecasting Residual in Forced-oscillation Case  

When a forced oscillation is observed, the Forced item in 

(6) dominates the system response. In this case, skipping the 

small residue noise for notational simplicity, one can obtain 
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Similarly, the explanatory variable is 
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If the forced oscillation ( )f t  has just a single frequency 

0
m , then ˆ [ ]

r T
x k N  can be used to forecast ˆ [ ]

r
x k  perfectly. 

In this case, 0D  and the optimal forecasting function is 
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jm N T

g x e


 . In general, ( )f t  can be approximated by a 

few harmonics of large magnitudes. If there are M  such 

harmonics, then with 1D M  , perfect forecasting can still 

be achieved with linear forecasting function 
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where 0
( 1 ) ( )

T s
j m N d T

m d
a e

  
 . In both cases, the forecasting 

residuals are just the residual noises in 

ˆ ˆ[ ] an d  [ ]
r r T

x k x k N d  . 

C.  Spectra Analysis of Forecasting Residuals 

 First, if there is natural oscillation with frequency 
n

  in 

the PMU data [ ]
r

x k , then the forecasting residual is (13). In 

the frequency domain, the spectra of the rectangle function 

[ 1] [ 1]
T

u k N u k     is a sinc function, whose peak value is 

proportional to the window length 
T

N . The WGN [ ]Q k  has a 

flat spectra while the sinusoidal function n s
j kT

e


 has a peak at 

n
 . The multiplication operation in the time domain can be 

translated into the convolutions in the frequency domain. 

Therefore the spectrum of the residuals in (13) has a peak at 

n
  whose amplitude is proportional to the lead time 

T
N  of the 

forecasting model. Because the PSD at 
n

  dominates the 

residual power, according to (9) and (12), the peak magnitude 

is approximately 
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 is the WGN power. 

Therefore, the PSD at frequency 
n

  is 
T

N  times of the 

noise power, while the PSD at other frequencies is just as 

small as the noise power. This not only shows that the spectra 

have a peak at the oscillation frequency 
n

 , but also shows 

that this peak is linearly increasing with the forecasting lead 

time 
T

N . As a result, both the magnitude of the residual 

spectra and the slope of a series of residual spectra can be used 

to detect natural oscillations. 

Second, if there is no oscillation in the PMU data [ ]
r

x k , 

then from (2), one may have  
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Note that because all the modes 
i i i

j     are well-damped 

with 0
i

  , the transient response involving (0 )x  can be 

omitted and the power of [ ]
r

x k  is very small.  

 Similar to the analysis of (8)-(13), one can find the 

forecasting residual as 
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The PSD has very small peaks at mode frequencies 
i

 , whose 

peak magnitude can be described approximately by the power 

of [ ]e k  (for each mode) as 

2 2 2

2

1

| [ ] | m o d e  | | | [ ] |

M

ir i m m s

m

E e k i u v b E q k T



   
    .   (20)  

Comparing (20) with (17), it is clear that natural oscillation 

leads to a much higher peak in the residual spectra.  

 Next, if there is a forced oscillation with frequency 
0

m  

only, since the forced oscillation can be perfectly removed 

through forecasting, the forecasting residual is just noise, i.e. 

 

0

2

1 1

( )

2

1 1
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i s

i T s T s i T s
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m i
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ir i l m T s

m i
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e e u v b e q k N T



  

 



 

 
      

 

 
   

 

 

 

(21) 

where the first item is due to the noise in [ ]
r

x k  while the 

second item is due to the noises in both [ ]
r

x k  and [ ]
r T

x k N . 

In this case, the PSD of the residual becomes similar to the no-

oscillation case (19) and (20). The spectra will not have a 

significant peak at the forced oscillation frequency, which is 

different from the natural oscillation case. 

   If using D  explanatory variables in the forecasting model, 

the spectra magnitude increases by D  folds. Nevertheless, by 

increasing the forecasting lead time to
T

N D , the natural 

oscillation peak can still be much more significant. More 

importantly, the slope of the natural oscillation peak over 
T

N   

is still a unique feature for natural oscillations. 

 Finally, if natural and forced oscillations happen 

simultaneously, then the residual depends on the power of the 

two oscillation items in (2). If they are on the same scale or the 

natural oscillation dominates, there are still peaks in the 

residual spectra corresponding to natural oscillation 

frequencies. In this case, natural oscillations can be detected. 

Otherwise, if the forced oscillation dominates, then there may 

not be obvious peaks in the residual spectra, and the detection 

will be in favor of forced oscillation.  

D.  Algorithm for the Proposed RSA method 

If there is oscillation in the PMU data ˆ [ ]
r

x k , whether the 

oscillation is natural or forced can be determined by detecting 

whether there are significant peaks in the spectra of the 

forecasting residuals. For reliable detection of spectral peaks, 

two metrics can be used jointly. 

The first metric is the residual spectra 
T

N
c , which is 
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defined in (22) as ( )
e n

S  , the PSD of [ ]e k  at the oscillation 

frequency 
n

 , 

        
T

N e n
c S  .                                    (22) 

The second metric is the residual slope (C )S  which is defined 

as  

 
1 2

( ) , , ,
T T T L

N N N
S C s lo p e c c c                                (23.a) 

This is the slope of the L  residual spectra 
1

{ , , }
T T L

N N
C c c  

with respect to the L  lead times 
T i

N , 1, ,i L . The slope 

can be calculated as the parameter a  in the minimization of 

 2

{ , }
1

m in ( )
T i

L

N T i
a b

i

c a N b



  .                                   (23.b) 

To determine this metric, a group of forecasting models with 

different lead times 
T i

N   are used, as shown in Fig. 2.  

  
Fig. 2. Procedure of the proposed RSA method for distinguishing forced and 

natural oscillations. 

 

Both the residual spectra 
T

N
c and the residual slope (C )S  of 

natural oscillations are often larger than those of forced 

oscillations for the same level of noise. The joint use of these 

two metrics makes the detection more reliable. 

Based on the two metrics, an algorithm for the RSA method 

is outlined below, as illustrated by Fig. 2. 

 

Algorithm for the RSA method 

 Step 1. Collect data samples such as PMU data, and pre-

process the data via detrending (removing DC) and 

normalization (for unit standard deviation). 

 Step 2. For L  forecasting delays
1T T L

N N  , 

estimate the forecasting models and calculate the 

residuals [ ]e k . 

 Step 3. Calculate PSDs of the residuals. 

 Step 4. Calculate the two metrics. First, calculate residual 

spectra 
1 2

{ , , , }
T T T L

N N N
C c c c  defined in (22) for each 

lead time. Then calculate residual slope S(C) in (23). 

 Step 5. Compare the metrics with appropriate thresholds 

to classify the signals into forced or natural oscillations. 

 

In step 5, classification can be conducted via SVM. 

Appropriate thresholds can be determined with some training 

data set and checked using validation data set. 

 

IV.  PERFORMANCE EVALUATION 

In this section, case studies are carried out to evaluate the 

performance of the proposed RSA method. Both a simple 

artificial system and the 48-machine power system are used to 

generate simulation data with various natural and forced 

oscillations. When implementing the proposed algorithm, the 

MATLAB® function “oe.m” is used in step 2 to find the 

optimal forecasting model ( )g x   and to calculate residuals. 

The Welch’s method “pwelch.m” is used in step 3 to calculate 

the residual PSD. Many MATLAB® functions can be used to 

estimate the slope of C  in step 4. The polynomial curve fitting 

function “polyfit.m” is used to calculate the slope ( )S C  in 

step 4, where linear slope is obtained by choosing first order 

polynomials. 

A.  Case Study of a Simple Artificial System 

To study some basic properties of the residual spectra 
T

N
c , 

the artificial system described by (24) is used to generate 

simulation data at 30 samples/s. The WGN ( )e t   is used to 

mimic random perturbations to a power system. In order to 

generate the ambient noise, transfer function Gx(s) mimics the 

power system’s low-pass features. Table I shows the three 

modes of Gx(s). The standard deviation of the ambient noise is 

set to 1.00.  

)()()( tesGtx
x

                                                              (24a) 

 

jsjs

jsjs

jsjs
sG

x




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40
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20



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
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









                             (24b) 

 
TABLE I. MODES OF THE SIMPLE AMBIENT NOSE MODEL 

Index Frequency(Hz) Damping Ratio Residue 

1 0.4 ζ  20 

2 3.0 7.9% 30 

3 9.0 5.3% 40 

 

To study the impact of the forecasting lead time on the 

residual spectra 
T

N
c under different damping, the damping 

ratio  ζ of the 0.4 Hz mode is set to  0.19%, 2.78% and 7.90% 

by changing σ in (24b); and  
T

N
c  is calculated as the PSD of 

the residual [ ]e k  normalized by the PSD of [ ]x k  at the 

oscillation frequency 0 .4
n

   Hz, ( ) ( )
T

N e n x n
c S S  .The 

simulation results are shown in Fig. 3. It can be observed that 

the magnitude of  
T

N
c  increases with the lead time. The 

observation is consistent with the analysis results presented in 

Section III.  

Fig. 3 also shows the impact of the mode damping ratios on 
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T
N

c . It can be observed that the slope of 
T

N
c  decreases as the 

damping ratio increases, if the lead time is long enough (e.g., 

bigger than one second). This property suggests that the slope 

can be used to separate low damping natural oscillations from 

high damping natural oscillations. 

 

 
Fig. 3. Residual spectra

T
N

c at 0 .4
n

   Hz as function of lead time 
T

N . 

B.  Case Study of the 48-Machine 140-Bus System 

To study the performance of the proposed RSA method in 

more realistic power system applications, the 48-machine 140-

bus model shown in Fig. 4 is used to generate PMU data. The 

major modes of the 48-machine model are presented in Table 

II. Power System Toolbox [28] is used to generate the 

simulation data for 200 seconds. For forced oscillations, a 

sinusoidal signal with a single frequency  
0

0 .4   Hz  and 

amplitude 
1

0 .1A   is injected into the system by modulating 

the shaft torque to mimic oscillation caused by vortex control 

[14] in a randomly picked generator.  

 

 
Fig. 4. Map of the NPCC 48-machine 140-bus system [29]. 

 

For natural oscillations, the damping coefficients of the 

generators are reduced to reach an unstable condition after a 

three-phase fault. The eigenvalue analysis method suggests 

that the dominant mode of the low-damped 48-machine model 

is at frequency of 0.6 Hz with the damping ratio of -3.8%. 

Fault location is randomly selected in the system. Preforming a 

time domain simulation using the non-linear model, the 

system’s frequency deviation is shown in Fig. 5.  In the figure, 

sustained oscillation at 0.6 Hz is observed. The sustained 

oscillation instead of growing oscillation (indicated by the 

negative damping mode) is observed because of the 

nonlinearity of the power system. Active and reactive loads of 

all the load buses are modulated by 5% of WGN to simulate 

the ambient noise. Frequency of bus 33 is recorded and used 

for the simulation study. With the 200 seconds of data, the 

analysis is performed on the last 150 seconds of data in order 

to focus on the steady state response.  
 

  TABLE II. MAJOR MODES OF THE 48-MACHINE MODEL 

Mode Index Frequency (Hz) Damping Ratio 

1 0.6 24 % 

2 1.5 14 % 

3 2.1 10 % 

 

 
Fig. 5. Sustained oscillation observed at the voltage frequency of bus 33 for 

natural oscillations at 0.6 Hz.  

 

The proposed RSA algorithm is applied to two data sets 

(i.e. one with forced oscillations and one with natural 

oscillations). PSDs with different lead times are estimated and 

plotted in Figs. 6 and 7. The symbol Tosc in the figures denotes 

the period of oscillations. The parameters for the Welch 

algorithm (step 3 in algorithm) are set as: discrete Fourier 

transform length (Nfft) 6144, 50% overlapping, and Hamming 

window with window size 2048.  

As it can be seen in Fig. 6, there is a peak at 0.6 Hz for both 

the original signal and the forecasting residuals. In addition, 

the magnitude of the forecast residuals at oscillation frequency 

(0.6 Hz) increases as the lead time increases for the natural 

oscillations. In contrast, in the forced oscillation case in Fig. 7, 

there is no obvious peak at the oscillation frequency 0.4 Hz for 

the forecasting residuals. In addition, from Fig. 6, it can be 

observed that the spectra 
T

N
c at frequency 0.6 Hz increase with 

the forecasting lead time 
o sc

n T . Therefore, the slope of the 

spectra defined by (23) is a reliable metric for distinguishing 

oscillations.  
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To investigate the impact of higher order harmonics on the 

performance of the proposed method, the 2nd order harmonic, 

which has amplitude of 0.01 and phase shift of 90o degree, is 

added to the simulated forced oscillation. As it can be seen in 

Fig. 8, there is no obvious peak at the oscillation frequency 0.4 

Hz for the forecasting residuals, which means that the higher 

order harmonic does not have any noticeable impact on the 

performance of the proposed method. 

  

 
Fig. 6. PSDs of the original signal and the forecasting residuals in the natural 

oscillation case. (Here, “Res e(n) (16*Tosc)” means the residuals from the 

forecast model whose lead time is 16 times of oscillation periods; “Org x(t)” 

means the original data). 

 

  
Fig. 7. PSDs of the original signal and the forecasting residuals in the forced 

oscillation case. 

 

To evaluate the performance of SVM classification, Monte-

Carlo simulations are conducted to generate 200 data sets (100 

forced oscillations and 100 natural oscillations). Each data set 

contains 200 seconds of data. In addition, the data sets are 

divided into two groups: training and validation. The training 

and the validation data each consist of 50 sets of forced 

oscillations and 50 sets of natural oscillations. The proposed 

algorithm is applied to the training data to determine the 

classification thresholds. For the residual spectra, the mean 

magnitude of the residual spectra over L different lead-times is 

used in SVM because it results in a large classification margin. 

The oscillation classification results are plotted in Fig. 9. It can 

be observed that the proposed RSA method can correctly 

distinguish the forced and natural oscillations in both the 

training and validation data sets. 
 

 
Fig. 8. PSDs of the original signal and the forecasting residuals in the forced 

oscillation case with 1st and 2nd order harmonics. 

 

 
Fig. 9. SVM classification using the mean magnitudes and slopes of the 

spectra.  

C.  Effects of Signal-to-Noise Ratio on Classification 

To study the influence of signal-to-noise ratio (SNR) on 

classification, the magnitudes of forced oscillations are varied 

(Amplitude = 0.05, 0.01, and 0.005) to obtain different SNRs 

(23.39 dB, 9.41 dB, and 3.39 dB, respectively), and 400 data 

sets of forced oscillations are simulated. Polynomial kernel of 

order 3 is used in SVM. The classification results are shown in 

Fig. 10. It can be observed that as the SNR decreases, the 

slope decreases and the spectra magnitude increases. The 

proposed method can correctly distinguish forced and natural 

oscillations.  

D.  Comparison 

This subsection compares the proposed RSA method with 
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the spectral method [24]. The idea in [24] is that the ratio of 

the PSDs between two different channels of PMU 

measurements (at oscillation frequency) does not change for 

natural oscillations, while this ratio increases significantly for 

forced oscillations. Using the same setting as subsection IV.B, 

a study is conducted for three different cases: 1) Natural 

oscillations with oscillation frequency at 0.6 Hz; 2) Forced 

oscillations with oscillation at 2.0 Hz; 3) Forced oscillations 

with oscillation frequency at 0.4 Hz (close to one of system’s 

modes). The results are shown in Table III. Here, αS is the 

ratio of PSDs between two different channels of PMU 

measurements when forced oscillations exist while αN is the 

ratio of PSDs between two different measurement channels 

when forced oscillations do not exist.      

 
 Fig. 10. SVM classification under various SNRs.  

 

TABLE III. COMPARISON OF THE PROPOSED RSA METHOD WITH THE 

SPECTRAL METHOD  [24].  

Case Index 1 2 3 

Oscillations Frequency (Hz) 0.6   2.0   0.4  

αS 3.5 47.4 1.5 

αN   4.0 0.9 1.7 

Actual Oscillation type Natural Forced Forced 

Spectral Method[24] Natural Forced Natural 

Proposed RSA Method  Natural Forced Forced 

 

As it can be seen in Table III, αS and αN are very close for 

case 1, so the spectral method [24] correctly identifies the case 

as natural oscillations. For case 2, the αS and αN at 2.0 Hz are 

not close to each other, so the spectral method correctly 

identifies it as forced oscillations. However, for case 3, the αS 

and αN are close to each other, which makes the spectral 

method misjudge it as a natural oscillation. Note that the 

misjudgment was because the spectral ratios of both ambient 

and oscillatory conditions converge to the same values (i.e., 

the relative mode shape) when the frequency of a forced 

oscillation is close to the frequency of a poorly damped system 

mode. 

In contrast, the proposed RSA method is able to correctly 

determine the oscillation types in all the three cases. The 

magnitude and the slop of the residual spectra as well as the 

classification threshold are plotted in Fig. 11. The observation 

indicates that the proposed RSA method is more effective in 

distinguishing natural and forced oscillations than the spectral 

method, even when the forced oscillation frequency is close to 

the mode frequency. 

 
Fig. 11. The proposed RSA method can correctly distinguish the oscillations. 

E.  Case Study using Field Measurement Data 

To test its applicability in a real-life example, the proposed 

RSA method is applied to the field measurement data during 

forced and natural oscillations. Note that the oscillation 

frequency and magnitudes in a real world often change 

gradually. To accommodate the gradual changes, a sliding 

window approach is used to apply the proposed RSA method 

on the measurement data within a window, one block at a time, 

to calculate the residuals.  

The natural oscillation data shown in Fig. 12 were recorded 

right before the power outage happened in WECC system on 

August 10, 1996 [1]. It was determined that the outage was 

caused by a natural oscillation mode at 0.25 Hz mode that 

grew out of control and caused the power outage in WECC 

system [1] [26]. Modal analysis carried out by [26] also 

showed that there was a sustained oscillation at 0.25 Hz 

between 450 s and 650 s. The proposed RSA method is 

applied to the normalized data set with sliding window side of 

1*Tosc (i.e., 4.0 s). The resulting spectra is summarized in Fig. 

13. It can be observed that at 0.25 Hz, the magnitudes of the 

residual spectra increase when the time delay increases. Also, 

the magnitudes of residual spectra are not significantly smaller 

than the original spectra. Based on the proposed RSA method, 

the observation indicates that the oscillation is a natural 

oscillation. 

The forced oscillation data shown in Fig. 14 were retrieved 

from the website of North American Synchrophasor Initiative 

(NASPI) [30], which was provided by NASPI as an example 

of forced oscillation.  Spectral analysis showed that that there 

was a sustained oscillation at 1.25 Hz between 250 s and 450 

s. The proposed RSA method is applied to the normalized data 

set with sliding window side of 1*Tosc (i.e., 0.8 s). The 

resulting spectra is summarized in Fig. 15. It can be observed 

that at 1.25 Hz, the magnitudes of the residual spectra do not 
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increase proportionally with their time delay. For example, the 

magnitude of the residual spectra with time delay of 2*Tosc is 

larger than that of 16*Tosc. Also, the magnitudes of residual 

spectra are significantly smaller than the original spectra. 

Based on the proposed RSA method, the observation indicates 

that the oscillation is a forced oscillation. 

 
Fig. 12. Detrended real power on a major transmission line in the WECC 

system right before the power outage on 08/10/1996. 

 

 
Fig. 13 PSDs of the original signal and the forecasting residuals in the natural 

oscillation that happened in the WECC system before the power outage on 

08/10/1996. 

V.  CONCLUSION AND FUTURE WORK 

This paper proposes a residual spectrum analysis (RSA) 

method to distinguish natural oscillations from forced 

oscillations using the spectra of the forecasting residuals. For 

natural oscillations, since the system response is dominated by 

the random sinusoidal signal, the spectra of the forecasting 

residuals peak at the oscillation frequency. The magnitude of 

the peak increases with the lead time of the forecast model. In 

contrast, for forced oscillations, since the system response is 

dominated by the deterministic sinusoidal signal, the spectra of 

the forecasting residuals do not necessarily have peaks at the 

oscillation frequency. The proposed RSA method exploits 

such unique features to distinguish forced and natural 

oscillations. An algorithm is developed to estimate the 

forecasting residuals, calculate the spectra, and use SVMs to 

classify oscillations. Simulations over both a simple artificial 

system model and the 48-machine model show that the 

proposed RSA method can effectively distinguish forced 

oscillations from natural oscillations, even when the forced 

oscillation frequency is close to system modes. 

 

 
Fig. 14. Detrended real power from bus6 to bus4 during a sustained forced 

oscillation event posted on the NASPI website.  
 

 
Fig. 15. PSDs of the original signal and the forecasting residuals in the forced 

oscillation case posted on the NASPI website.  
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