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ABSTRACT

In this paper we develop a new spectrum sharing scheme that uses

compressive sensing to support the coexistence of the sporadic

machine-to-machine (M2M) communications and the persistent

conventional communications such as the 5G cellular transmissions

within the same channel. The redundancy in the transmitted signals,

such as training symbols, pilots, MAC overheads and correlated

data, is exploited to create a sparse signal model. Compressive

sensing techniques are then used to detect jointly all the transmitted

signals from the mixture. The performance of the new scheme is an-

alyzed. An M2M communication scenario in smart grid is simulated

to verify the sparse signal model and the spectrum sharing scheme.

Index Terms— Coexistence, spectrum sharing, machine to ma-

chine communications, 5G, compressive sensing, sparsity

1. INTRODUCTION

There is an increasing interest in machine to machine (M2M) com-

munications due to their wide applications in internet of things (IoT),

sensor networks, smart meters, smart health, etc [1]. In contrast

to human generated conventional communications, M2M involves

communications between autonomous devices without human inter-

action. Most M2M communications share some common properties

such as large number of devices, extremely low data rate, and highly

sporadic transmissions.

Support of M2M communications will be an important func-

tion for communication systems, in particular the 5G cellular sys-

tems [2]-[4]. Nevertheless, integrating M2M communications into

today’s cellular systems such as Long Term Evolution (LTE) is in-

efficient because the sporadic transmissions from a large number of

M2M devices can easily lead to severe signaling overhead and chan-

nel shortage, even though the overall M2M traffic amount is not high.

Networking architectures to support M2M communications

have been an active research topic [5]. Schemes for scheduling the

sporadic transmissions in massive M2M communications are pro-

posed in [6]. A random access scheme for M2M communications is

developed in [7]. Exploiting the sporadic property, [8] models M2M

communications with a sparse model and uses compressive sens-

ing to support random access of a large number of M2M devices.

Similarly, compressive sensing is used in [9] to address the multiple

access of M2M devices.

In this paper, we consider the problem where a large number of

sporadic M2M devices share the same channel with a conventional

communication user such as a cellular user. While the conventional

user transmits persistently, we allow the M2M devices to conduct

their transmissions in this channel directly without too much chan-

nel scheduling and handshaking overhead. We will show that the

redundancy in the transmitted signals can be exploited to separate

the mixtures with compressive sensing techniques. As a unique con-

tribution, the exploitation of redundancy differs this paper from [8]-

[10].

The organization of this paper is as follows. In Section 2, we

give the system model and the transmission scheme. In Section 3,

we develop a new receiving algorithm. Simulations are presented in

Section 4, and conclusions are given in Section 5.

2. SYSTEM MODEL

We consider a system consisting of a conventional user and M M2M

devices who share a common channel. The conventional user trans-

mits its signal persistently while each M2M device transmits ex-

tremely sporadically due to both the low duty cycle and the low

data rate of M2M applications. In particular, consider the case that

the conventional user needs to transmit a symbol sequence a0(n),
n = 0, 1, · · · , via OFDM modulation. This symbol sequence is

subdivided into a sequence of N -symbol OFDM blocks (or OFDM

symbols) a0(mN+n), where n = 0, · · · , N−1 and m = 0, 1, · · · .

We put the symbols of the mth block into an N ×1 symbol vec-

tor a0(m) = [a0(mN), · · · , a0(mN +N − 1)]T , where (·)T de-

notes matrix/vector transpose. For the purpose of compressive sens-

ing, the conventional user needs to conduct a transformation of the

symbol vector. In this paper, the transformation is conducted as fol-

lows

s0(m) = U0a0(m), (1)

where the N × N transformation matrix U0 can be an arbitrary

unitary matrix. The vector s0(m) = [s0(mN), · · · , s0(mN +N −
1)]T is then modulated and transmitted by OFDM.

The purpose of the transformation (1) is to provide an over-

complete representation of the conventional user’s signal, which is

needed during compressive sensing procedure at the receiving side.

Although both a0(m) and s0(m) have N symbols, the redundancy

in a0(n) can be exploited to reduce the dimension of a0(m) and thus

guarantee the over-complete representation. Some of the symbols in

a0(m) are known as training or pilots. For example, most OFDM

transmissions have over 20% symbols designated for training in each

OFDM block, and have some subcarriers left either unmodulated

or modulated with fixed default symbols. The information of the

MAC head will also make some symbols known a priori. Note that

such redundancy are conventionally used only for channel estima-

tion, synchronization, etc [11], rather than supporting compressive

sensing, spectrum sharing and coexistence.



The receiver can subtract all the known symbols from a0(m)
so as to reduce the dimension of a0(m). This changes a0(m) to

x0(m), where x0(m) has dimension K0 and K0 < N . By this

procedure, (1) is effectively changed to the over-complete represen-

tation model

ŝ0(m) = Û0x0(m), (2)

where the N×K0 matrix Û0 is the corresponding submatrix of U0.

This over-complete representation model can in fact be obtained by

simply calculating

ŝ0(m) = s0(m)−U0a0(m−1) = U0(a0(m)−a0(m−1)) (3)

because adjacent OFDM blocks usually have the same known sym-

bols.

In addition, if the modulation level is low, e.g. QPSK, we can

also subtract a0(m) by a constant vector of an arbitrary QPSK sym-

bol to further increase the number of 0 elements and reduce K0.

On the other hand, if such redundancy is unavailable, we can re-

duce the block length of a0(m) from N to K0 directly. In this

case, each block a0(m) has K0 symbols, and is over-complete repre-

sented by the N symbols in s0(m). The difference is that the former

techniques exploit the redundancy of the communication signals for

spectrum sharing, which does not reduce spectrum efficiency, while

the last technique comes at the cost of extra degradation of band-

width efficiency.

For the M2M devices, we have the similar modulation and

transmission procedure. For notational simplicity, we assume

that the M2M devices also use OFDM modulation with N sym-

bols per OFDM block. Specifically, if the M2M device i, where

i = 1, · · · ,M , has data ai(n) for transmission, we construct N -

symbol blocks ai(m) = [ai(mN), · · · , ai(mN + N − 1)]T and

apply the transformation

si(m) = Uiai(m), (4)

where si(m) = [si(mN), · · · , si(mN+N−1)]T and the transfor-

mation matrix Ui is an N ×N arbitrary unitary matrix. The symbol

blocks si(m) are OFDM modulated and transmitted.

After OFDM modulation and demodulation, the receiver obtains

the received signal vector r(m) = [r(mN), · · · , r(mN+N−1)]T ,

and

r(m) =
M
∑

i=0

Ii(m)Gisi(m) + v(m) (5)

where the vector v(m) consists of additive white Gaussian noise

with zero mean and variance σ2

v , and the matrices Gi are the

frequency-domain channel matrices for the conventional user and

M2M devices. The indicator function Ii(m) = 1 means the

user/device i transmits during the OFDM block m, while Ii(m) = 0
means the user/device i does not transmit. Each channel matrix Gi

is an N ×N diagonal matrix with frequency-domain channel coef-

ficient gi(n), where n = 0, · · · , N − 1, i.e.,

Gi =







gi(0)
. . .

gi(N − 1)






. (6)

With the received signal r(m), the receiver needs to detect the

signal vectors ai(m), i = 0, · · · ,M , for all i such that Ii(m) = 1.

In this paper, we assume that all the transformation matrices

Ui are known a priori since they are determined during system de-

sign. We also assume that all the channels Gi have already been

estimated. With the presence of training, it is standard for channel

estimation in multi-user OFDM.

3. RECEIVER AND ITS PERFORMANCE

3.1. Signal detection via compressive sensing

We need to develop a compressive sensing based scheme for the re-

ceiver to detect the transmitted signals of the conventional user as

well as the M2M devices from the mixture (5). First, we can use the

redundancy of the M2M signals to change (5) into a sparse signal

model. Specifically, for each M2M device i, in each block ai(m),
all the known symbols can be subtracted to create 0 elements. The

number of non-zero elements in ai(m), if it is small, is defined as

the sparsity.

Nevertheless, subtracting the known symbols alone is usually

not enough to reach desirable sparsity. Fortunately, a special prop-

erty of M2M communications is that most M2M data packets are

similar or highly correlated to their adjacent packets. This is be-

cause the sampled data of a sensor at a sampling time instant is very

likely to be similar or highly correlated with the sampled data at the

next sampling time instant. This property can be exploited to further

increase sparsity.

In addition, in most M2M applications, such as IoT, sensor net-

works, smart meters, etc, the number of sampled data of a M2M

device is usually limited. Therefore, the length of each data packet

is usually short. We can assume that each OFDM block of the M2M

devices contains all the data of one data packet. Considering the sim-

ilarity of the data packets, the nearby OFDM blocks are also similar.

Then, we can simply subtract ai(m − 1) from ai(m) to exploit all

such similarities to enhance sparsity. Let

xi(m) = ai(m)− ai(m− 1), i = 1, · · · ,M. (7)

Note that (7) is mainly for notational simplification. In general, we

may need to apply various symbol position information to subtract

the corresponding similar or identical systems.

The redundancy in the M2M blocks are usually significant. For

example, the measurements or sampling values are highly correlated,

or very similar to each other. The short data packet includes many

identical contents, such as the IP addresses of the senders and re-

ceivers as well as the device ID. Over 20% of symbols are designed

as training symbols, and the training symbols are the same among

the OFDM blocks. Therefore, it is reasonable to assume that with

high probability xi(m) is a sparse vector with just a small number

of non-zero elements. Let the sparsity of xi(m) be Ki.

Considering the OFDM block m where we have already de-

tected all the blocks ai(ℓ), ℓ ≤ m− 1, and need to detect the blocks

ai(m), i = 0, · · · ,M . We subtract the detected signals from r(m),
which gives

y(m) = r(m)−

M
∑

i=0

Ii(m)GiUiai(m− 1)

= G0Û0x0(m) +
M
∑

i=1

Ii(m)GiUixi(m) + v(m). (8)

The conventional user’s signal is due to the over-complete represen-

tation model (2) after subtracting a0(m), while the M2M device’s

signal is due to the sparsity model (7) after subtracting ai(m − 1).
Note that certain symbol detection error does not degrade the spar-

sity too much.

If the sparsity Ki, i.e., the number of zero elements in xi(m), is

desirable, we can use the compressive sensing technique to estimate



x0(m) and xi(m) jointly by solving the optimization

{x̂0(m), x̂i(m)} = argmin
{xi}

∥

∥

∥

∥

∥

y(m)−

M
∑

i=1

Ii(m)GiUixi

−G0Û0x0

∥

∥

∥
+

M
∑

i=1

λiIi(m)‖xi‖0. (9)

The weighting coefficient λi is adjusted to match the sparsity ‖xi‖0,

where ‖ · ‖0 denotes ℓ0 norm.

A common practice in compressive sensing is to replace the ℓ0
norm with the convex ℓ1 norm, which changes (9) to

{x̂0(m), x̂i(m)} = argmin
{xi}

∥

∥

∥

∥

∥

y(m)−

M
∑

i=1

Ii(m)GiUixi

−G0Û0x0

∥

∥

∥
+

M
∑

i=1

λiIi(m)‖xi‖1. (10)

Following [12]-[14], we can find the solution to (10) as

x̂0(m) =
(

Û
H

0 Û0

)−1

Û
H

0 G
−1

0

×

(

y(m)−
M
∑

i=1

Ii(m)GiUix̂i(m)

)

= Û
H

0 G
−1

0

(

y(m)−
M
∑

i=1

Ii(m)GiUix̂i(m)

)

(11)

where (·)H denotes Hermitian. Note that U0 is unitary and

ÛH
0 Û0 = I.

The M2M device blocks can be found by solving the convex

optimization

{x̂i(m)} = arg min
{xi}

∥

∥

∥

∥

∥

y(m)−
M
∑

i=1

Ii(m)GiUixi

−G0Û0x̂0(m)
∥

∥

∥
+

M
∑

i=1

λ1Ii(m)‖xi‖1

= arg min
{xi}

∥

∥

∥

(

IN −G0Û0Û
H

0 G
−1

0

)

×

(

y(m)−

M
∑

i=1

Ii(m)GiUixi

)∥

∥

∥

∥

∥

+

M
∑

i=1

λ1Ii(m)‖xi‖1. (12)

Note that IN is the N ×N identity matrix in (12).

After obtaining x̂i(m), we can estimate the packet ai(m) as

âi(m) = x̂i(m) + ai(m− 1). (13)

The procedure is outlined in the following algorithm.

3.2. Performance of compressive sensing based optimization

To simplify the analysis, let us consider the following variation of

the optimization (12) with the ℓ0 norm constraint on sparsity

{

arg min{xi}

∥

∥

∥
L
(

y(m)−
∑

M

i=1
Ii(m)GiUixi

)∥

∥

∥

s.t.
∑

M

i=1
Ii(m)‖xi‖0 ≤ N−K0

2

(14)

where L = IN −G0Û0Û
H
0 G−1

0
.

Compressive sensing based spectrum sharing

i) Transmission:

1) Conventional user: use U0 to represent a0(m) as s0(m)
2) M2M devices: use Ui to represent ai(m) as si(m)
3) All users: OFDM modulation and transmission of si(m)

ii) Receiving:

1) OFDM demodulation to get r(m)
2) Subtract the detected blocks from r(m) to get y(m)
3) Estimate x̂i(m) and x̂0(m) jointly from y(m)
4) Calculate âi(m).

output: âi(m) for i = 0, · · · ,M .

Proposition 1. Under the M2M signal sparsity constraint

M
∑

i=1

Ii(m)‖xi(m)‖0 <
N −K0

2
, (15)

the optimal solution to (14) satisfies limσ2
v
→0 x̂i(m) = xi(m).

Proof. From (8), we have

y(m)−
M
∑

i=1

Ii(m)GiUixi =

G0Û0x0(m) + v(m) +
M
∑

i=1

Ii(m)GiUi∆xi, (16)

where ∆xi = xi(m) − xi is the residue error of the M2M signal

subtraction. Since the matrix L is idempotent, we have L(y(m) −
∑

M

i=1
Ii(m)GiUixi) = L(v(m)+

∑

M

i=1
Ii(m)GiUi∆xi). Con-

sider the singular value decomposition L = ULDLU
H

L , where DL

is the diagonal singular value matrix with all the non-zero singular

values only and UL is the singular vector matrix. Since K0 is max-

imum rank of Û0, the dimension (and the rank) of the matrix DL is

no larger than N−K0. The minimization problem (14) is equivalent

to

arg min
{xi}

∥

∥

∥

∥

∥

DLU
H

L

(

v(m) +

M
∑

i=1

Ii(m)GiUi∆xi

)∥

∥

∥

∥

∥

. (17)

When σv → 0, the optimization (17) is reduced to

arg min
{xi}

‖DLU
H

L

M
∑

i=1

Ii(m)GiUi∆xi‖. (18)

If
∑

M

i=1
Ii(m)‖xi(m)‖0 < (N−K0)/2 and

∑

M

i=1
Ii(m)‖xi‖0 <

(N−K0)/2, then we have
∑

M

i=1
Ii(m)‖∆xi‖0 < N−K0. There-

fore, (17) is an over-determined linear equation system. This leads

to limσv→0 ∆xi = 0, which means limσv→0 x̂i(m) = xi(m). �

Proposition 1 shows that at high signal to noise ratio (SNR),

if the sparsity condition (15) can be satisfied, all the M2M device

signals can be estimated correctly. The sparsity condition (15) ex-

plains the importance of the over-complete representation (2) over

the conventional user signal a0(m). Large N − K0 (i.e., higher

over-complete representation) provides more room for us to detect

less sparse M2M signals. High sparsity of the M2M signals (i.e.,

small Ki and small ‖xi(m)‖0) makes the signal detection easier. Si-

multaneous transmission of many M2M signals will invalidate (15),

which will prevent the signal detection.

Compressive sensing techniques in [12]-[14] were developed for

data processing problems in signal processing or machine learning.



One of the major challenge for adapting them into communications

signal detection is the noise and residue error. In our case, equa-

tion (11) is used for detecting the conventional user’s signal, which

suffers from the residue error of the estimation of x̂i(m). From the

proof of Proposition 1, especially (17)-(18), we can see that the de-

tection of the M2M signal xi(m) is interfered by the noise v(m)
only, not the conventional user signal x0(m). In other words, the

SNR of the M2M signal to the noise determines the performance. On

the other hand, variance of the residue error in ∆xi(m) = xi(m)−
x̂i(m), denoted as σ2

δx, is comparable in size to noise variance σ2

v .

Furthermore, the optimization (12) with ℓ1 norm, rather than the ℓ0
norm, introduces such residue error to all the elements of x̂i(m).
The estimator (11) thus suffers from a noise-plus-residue-error with

variance σ2

v + σ2

δx.

There are two ways to mitigate this noise amplification effect.

First, we can let

x̂i(mN + n) = 0, if |x̂i(mN + n)| < ασv (19)

for some constant α (e.g., α = 2), and replace (11) by the weighted

least squares estimator

x̂0(m) = Û
H

0 G
−1

0 W

(

y(m)−
M
∑

i=1

Ii(m)GiUix̂i(m)

)

(20)

where W = diag{w1, · · · , wN} with wn = 1 if x̂i(mN + n) = 0

and wn = σ2

v/(σ
2

v +
∑

M

i=1
Ii(m)σ2

δx) otherwise.

The second way is to exploit the fact that there are usually chan-

nel coding in the transmissions which can be used to reduce detec-

tion errors. After obtaining the M2M signals x̂i(m) and âi(m), we

can exploit the channel decoding in the M2M signals to further re-

duce the error. Then, using the decoded sequence, we reconstruct

x̂i(m) and calculate (11) again to estimate the conventional user

signal.

4. SIMULATIONS

For M2M communications, we simulated the PMU (phasor mea-

surement unit) communications in smart grids. Specifically, we sim-

ulated a 16-machine power system model and 8 PMUs were placed

in the system. We simulated the happening of a fault. The 8 PMUs

transmitted their sampled data to the data collector at 60 packets per

second for each PMU. Each data packet consisted of the following

sampling values: time, voltage magnitude, voltage angle, voltage

frequency, and current of a neighboring line. Therefore we had al-

together 12 bytes of data in a data packet. We used 16-bit A/D to

quantify the data, and then converted the bit sequences into QPSK

symbol sequences.

We considered UDP packet transmission, where in the head of

UDP there were identical (but randomly generated) IP addresses as

well as random fields. The packet head was also converted into

QPSK symbols for modulation and transmission. Then, we added

20% training symbols into the sequence. With all these operations,

we created symbol vectors ai(m) with dimension N = 100 for each

PMU i at each sampling time instant m.

The sparsity was evaluated by calculating ‖ai(m) − ai(m −
1)‖0/N . The sparsity of the symbol sequence generated from the

first PMU’s signals is shown in Fig. 1. We find that the maximum

sparsity was less than 0.3, which was obtained when the fault oc-

curred. The sparsity had an average value of 0.088 and standard

deviation 0.03. We can see that the sparsity is well within the capa-

bility of our compressive sensing based transmission scheme.
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Fig. 1. Sparsity of the symbol blocks of the first PMU.

Next, we simulated the transmission of the PMU signals using

the channel of a conventional cell user. Due to the low duty cycle of

the PMU data packets, for 8 PMUs, their transmission duration was

only 24% of the transmission duration of the conventional user.

The detection BER is shown in Fig. 2. We can see that the com-

pressive sensing based scheme successfully detected all the signals.

The performance was only slightly worse than the idea case when

each user or device fully occupied the channel exclusively. Note that

we used one channel to support the transmissions of a conventional

user and 8 PMU devices in this case.
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Fig. 2. Comparison of BER of various transmission schemes. Con-

vUser: conventional user’s BER. M2M: M2M device’s BER. Mix:

direct signal detection without signal separation. Idea: Optimal ex-

clusive channel occupation. New: our proposed scheme.

5. CONCLUSIONS

In this paper we develop a compressive sensing based scheme for

M2M devices to share the same spectrum with the conventional users

so as to resolve the challenges involved in M2M communications.

The redundancy in the transmitted signals is exploited to create the

over-complete representation model and the sparse signal model.

Compressive sensing techniques are then exploited for signal detec-

tion. Performance analysis and simulations are conducted to demon-

strate this premising way of exploiting the inevitable signal redun-

dancy to enhance the spectrum sharing efficiency.



6. REFERENCES

[1] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi,

“The challenges of M2M massive access in wireless cellular net-

works,” Digital Communications and Networks, vol. 1, no. 1, pp.

1-19, Jan. 2015.

[2] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and

research challenges for 5G wireless networks,” IEEE Wireless

Communications, vol. 21, no. 2, pp. 106-112, 2014.

[3] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong,

and J. Zhang, “What will 5G be?” IEEE J. on Sel. Areas in Com-

mun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014.

[4] J. F. Monserrat, G. Mange, V. Braun, H. Tullberg, G. Zimmer-

mann, and O. Bulakci, “METIS research advances towards the

5G mobile and wireless system definition,” EURASIP Journal

on Wireless Communications and Networking, vol. 2015, no. 1,

pp. 1-16, Jan. 2015.

[5] S.-Y. Lien, K.-C. Chen, and Y. Lin, “Toward ubiquitous massive

accesses in 3GPP machine-to-machine communications,” IEEE

Commun. Mag, vol. 49, no. 4, pp. 66-74, Apr. 2011.

[6] A. S. Lioumpas and A. Alexiou, “Uplink scheduling for

Machine-to-Machine communications in LTE-based cellular

systems,” in Proc. 2011 IEEE GlobeCom Workshops, pp. 353-

357, Dec. 5-9, 2011, Houston, TX.

[7] K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim, J. Y. Ahn,

“A novel random access for fixed-location machine-to-machine

communications in OFDMA based systems,” IEEE Commun.

Letters, vol. 16, no. 9, pp. 1428-1431, Sept. 2012.

[8] G. Wunder, P. Jung, and M. Ramadan, “Compressive random ac-

cess using a common overload control channel,” in Proc. IEEE

GLOBECOM’2015, Dec. 2015, San Diego, CA.

[9] F. Monsees, M. Woltering, C. Bockelmann, and A. Dekorsy,

“A potential solution for MTC: Multi-carrier compressed sens-

ing multi-user detection,” in Proc. 49th Asilomar Conference on

Signals, Systems and Computers, pp. 18-22, Nov 8-11, 2015,

Pacific Grove, CA.

[10] G. Wunder, H. Boche, T. Strohmer, P. Jung, “Sparse signal pro-

cessing concepts for efficient 5G system design,” IEEE Access,

vo. 3, pp. 195-208, 2015.

[11] X. Li, “Blind channel estimation and equalization in wireless

sensor networks based on correlations among sensors,” IEEE

Trans. Signal Processing, vol. 53, no. 4, pp. 1511-1519, Apr.

2005.

[12] J. J. Fuchs, “An inverse problem approach to robust regres-

sion,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP’99), Phoenix, AZ, Mar. 1999

[13] Y. Jin and B. D. Rao, “Algorithms for robust linear regression

by exploiting the connection to sparse signal recovery,” Proc.

IEEE Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP’10), Dallas, TX, Mar. 2010.

[14] G. B. Giannakis, G. Mateos, S. Farahmand, V. Kekatos, and

H. Zhu, “USPACOR: Universal sparsity-controlling outlier re-

jection,” Proc. IEEE Int. Conf. on Acoustics, Speech and Signal

Processing (ICASSP’11), Prague, May 2011.

[15] K. Mitra, A. Veeraraghavan, and R. Chellappa, “Analysis of

sparse regularization based robust regression approaches,” IEEE

Trans. Signal Processing, vol. 61, no. 5, pp. 1249-1257, Mar.

2013.


