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Abstract—A two-stage-type algorithm is presented for blind
source separation in the overdetermined instantaneous mixture
case. The algorithm accomplishes two tasks: blind identification
for estimating the mixing matrix and source estimation for
recovering the original source signals with the identified mixing
matrix. In this paper, we focus on the former task. A new
mixing matrix identification method, which is based on the
joint canonical decomposition of two third-order tensors, is
proposed. Generalized singular value decomposition technique
is used to perform the joint canonical decomposition. The merits
of the proposed algorithm include the robustness to noise and
superior performance compared with the classical blind source
separation algorithms. Simulations for speech source separation
are conducted to demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION
The problem of blind source separation (BSS) is concerned

with recovery of a number of unknown original sources
from sensor outputs without knowing any prior knowledge of
the transmission channel [1]. Over the past two decades, a
large number of papers have addressed BSS problem. BSS
has become an intensively researched and extensively used
technique for data analysis and signal processing. BSS has
numerous applications in a wide range of fields including
biomedical signal processing (MEG, EEG, ECG, EMG, fMRI)
[2]–[5], speech enhancement [6]–[8], radar/sonar systems [9],
wireless communications [10], image restoration [11], [12],
hyperspectral image processing [13], etc. When the number of
sensor signals is greater than or equal to that of sources, BSS
is called overdetermined BSS (OBSS). In contrast, when the
number of sensor signals is less than that of sources, BSS is
called underdetermined BSS (UBSS).

BSS algorithms can be categorized into two different types
of methods: direct signal separation and indirect signal recov-
ery. Direct signal separation methods estimate demixing matrix
directly, and then use it to separate mixed source signals. Some
OBSS algorithms [11], [14], [15] belong to the class of direct
signal separation algorithms, while some [16], [17] belong
to the class of indirect signal separation algorithms. Indirect
signal recovery methods consist of two cascaded steps: blind
identification step for estimating mixing matrix and source esti-
mation step for estimating source signals. If the mixing matrix
is full column rank, it is easy to convert indirect signal recovery
to direct signal separation because the demixing matrix can
be obtained by performing pseudoinverse computation of the
identified mixing matrix. For the UBSS case, the mixing matrix
is not full column rank any longer. Hence, UBSS algorithms
have to rely on indirect signal recovery method to fulfill the

task of signal separation.
Therefore, the mixing matrix identification plays a crucial

role in indirect signal recovery algorithms [17]–[19]. Taking
into account this fact, this paper aims at developing a general-
ized singular value decomposition-based algorithm for sequen-
tial blind identification of overdetermined mixtures (GSVD-
SBIOM). Different from the simultaneous matrix diagonaliza-
tion (SMD)-based second-order blind identification algorithm
[20], [21], the proposed algorithm estimates the columns of
the mixing matrix in a sequential manner. The sequential-type
algorithms rely on the use of deflation. As pointed out in [22]–
[24], the conventional deflation procedure suffers from growing
estimation errors during the successive deflation stages, which
we term “error accumulation”. To overcome this disadvantage,
in this paper, we exploit the deflation technique proposed in
[25], with which error accumulation can be avoided.

The canonical decomposition (CANDECOMP) [26]–[31],
also known as parallel factor (PARAFAC) model [32]–[40], of
a higher order tensor is a useful tool for multi-linear algebra.
CANDECOMP aims at representing a general tensor as a
sum of rank-1 tensors. A rank-1 matrix can be written as the
outer product of two vectors. Similarly, a third-order rank-1
tensor can be written as the outer product of three vectors.
Uniqueness in CANDECOMP/PARAFAC was addressed in
[27], [39], [40].

The algebraic methods for blind identification of mixing ma-
trix implicitly or explicitly exploit CANDECOMP of a higher
order tensor containing either second-order or higher order
cumulants of the data. CANDECOMP is an advantageous tool
for blind identification problem because it can be used to solve
the problem for both OBSS and UBSS cases [25]–[27]. In
this paper, blind identification is performed based on the joint
CANDECOMP of two higher order tensors rather than only a
single tensor as in [27].

The rest of this paper is organized as follows. Section II
formulates the problem of BSS. In Section III, we propose a
new GSVD-SBIOM-based blind source separation algorithm
for the overdetermined mixtures case. The performance of the
proposed algorithm is demonstrated in Section IV. Finally,
conclusions and future works are considered in Section V.

II. PROBLEM FORMULATION
Consider the following instantaneous mixing model:

x(t) = As(t) + n(t) (1)

where A ∈ RJ×R is an unknown full column rank mixing
matrix, x(t) = [x1(t), . . . , xJ (t)]

T is a vector of observed



sensor signals, s(t) = [s1(t), . . . , sR(t)]
T is a vector of origi-

nal source signals. The sensor signals are corrupted by additive
noise n(t). Throughout this paper, the superscript (·)T denotes
the transpose. For the separability of the mixing system with
the proposed algorithm, we make the following assumptions
about the sources s(t) and noise n(t): 1) source signals are
zero-mean, spatially uncorrelated but temporally correlated;
2) the additive noise n(t) is modeled as a temporally white,
stationary, zero-mean random process, which is independent
of the sources.

The covariance matrix of x(t) is defined as Ci = E{x(t)
xT (t+τi)}, where τi denotes a time lag. Because the additive
noise is assumed to be temporally white, the noise vector for
nonzero time lag τi has no influence on the covariance matrix
Ci. Hence, for τi ̸= 0, the covariance matrix Ci takes the
form Ci = AE{s(t)sT (t+ τi)}AT .

The eigenvalue decomposition (EVD) of the covariance
matrix C0 = E{x(t)xT (t)} is performed as

C0 = [Us,Un]

[
Λs 0
0 Λn

]
[Us,Un]

T (2)

where Us is an eigenvector matrix whose column vectors
corresponding to the R principal eigenvalues of Λs =
diag[λ1, . . . , λR], and Un is an eigenvector matrix whose col-
umn vectors corresponding to the (J−R) smallest eigenvalues
of Λn = diag[λR+1, . . . , λJ ].

With the eigenvectors contained in the matrix Us, we
perform a transformation of the observation signals as follows:

x̄(t) = UT
s x(t) (3)

The covariance matrix of x̄(t) is then written as

Ri = E{x̄(t)x̄T (t+ τi)} = BDiB
T (4)

where B = UT
s A ∈ RR×R is a square matrix. Since the source

signals are assumed to be spatially uncorrelated, the matrix
Di = E{s(t)sT (t+ τi)} = diag[di1, . . . , diR] is diagonal.

In the two-stage-type BSS, the aim of the first stage is to
identify B, and the aim of the second stage is to recover source
signals as ŝ(t) = B̂−1x̄(t), where B̂−1 denotes the inverse of
the estimate B̂ of B.

III. GSVD-SBIOM-BASED BSS ALGORITHM
A. Two Third-Order Tensors and Their Equivalent Matrix
Format

Stack the matrices R1, . . . ,RK in a tensor C(1) ∈ RR×R×K ,
and RK+1, . . . ,RK+N in a tensor C(2) ∈ RR×R×N , re-
spectively, as follows: (C(1))ijk

def
= (Rk)ij and (C(2))ijn

def
=

(RK+n)ij , i = 1, . . . , R, j = 1, . . . , R, k = 1, . . . ,K, n =
1, . . . , N .

Define two matrices D̃ ∈ RK×R and D̄ ∈ RN×R by
(D̃)kr

def
= (Dk)rr and (D̄)nr

def
= (DK+n)rr, respectively,

k = 1, . . . ,K, n = 1, . . . , N, r = 1, . . . , R.
Then, we have [27]

C(1) =
R∑

r=1

br ◦ br ◦ d̃r (5)

C(2) =
R∑

r=1

br ◦ br ◦ d̄r (6)

where ◦ denotes the tensor outer product and in which {br},
{d̃r}, and {d̄r} are the columns of B, D̃, and D̄, respectively.
The joint CANDECOMP of C(1) and C(2) described in (5) and
(6) can be written in matrix format, which will be discussed
in detail in the remaining part of this subsection.

Stack the entries of the tensor C(1) in the matrix C̃ ∈
RRK×R as follows 1:

(C̃)(j−1)K+k,i=(C(1))ijk
i = 1, . . . , R, j = 1, . . . ,R, k = 1, . . . ,K

Similarly, stack the entries of the tensor C(2) in the matrix
C̄ ∈ RNR×R as follows:

(C̄)(n−1)J+i,j=(C(2))ijn
i = 1, . . . , R, j = 1, . . . ,R, n = 1, . . . , N

Then, (5) and (6) can be written in a matrix format as

C̃ = (B⊙ D̃)BT (7)

C̄ = (D̄⊙B)BT (8)

in which ⊙ denotes the Khatri-Rao product. As we can
see, the tensors C(1) and C(2) bridge the set of matri-
ces R1, . . . ,RK ,RK+1, . . . ,RK+N and the matrix pencil
(C̃, C̄). In the next subsection, by using the equivalent matrix
format (7) and (8) of the third-order tensors C(1) and C(2), we
perform their joint CANDECOMP based on GSVD technique.

B. GSVD-Based Blind Identification
The GSVD and its applications were introduced in [41]–

[44]. We perform the reduced-size GSVD of the matrix pencil
(C̃, C̄) as follows

C̃ = (B⊙ D̃)BT=UΣ̃Q (9)
C̄ = (D̄⊙B)BT=VΣ̄Q (10)

where U ∈ RRK×R and V ∈ RNR×R are columnwise
orthonormal matrices, Σ̃ = diag[σ̃1, . . . , σ̃R] and Σ̄ =
diag[σ̄1, . . . , σ̄R] are nonnegative diagonal matrices of the
generalized singular values, and Q ∈ RR×R is a nonsingular
matrix.

From (9) and (10), we have

(B⊙ D̃)=UΣ̃Q(BT )−1 (11)
(D̄⊙B)=VΣ̄Q(BT )−1 (12)

where (BT )−1 denotes the inverse of BT . (11) and (12) can
be further rewritten in the form

(B⊙ D̃)=GF (13)
(D̄⊙B)=HF (14)

where G = UΣ̃ ∈ RRK×R, H = VΣ̄ ∈ RNR×R, and the
square matrix F = Q(BT )−1 ∈ RR×R.

According to the definition of Khatri-Rao product, (13) and
(14) can be rewritten as[

b1 ⊗ d̃1, . . . ,bR ⊗ d̃R

]
=GF (15)[

d̄1 ⊗ b1, . . . , d̄R ⊗ bR

]
=HF (16)

1In [27], the stacking methods for C̄ = (D⊙A)AH in Equation (6) and
¯̄C = (A∗ ⊙ D)AT in Equation (7) are incorrect. The correct expressions
should be (C̄)(k−1)J+i,j = ( ¯̄C)(j−1)K+k,i = cijk , i = 1, . . . , J, j =
1, . . . , J, k = 1, . . . ,K.



where ⊗ denotes the Kronecker product.
Then, the blind identification can be formulated as follows:

given the matrices G and H, it is desired to estimate the matrix
F and then identify B.

Define an operator unvec(·) by M = unvec(m)⇔ (M)ij =
(m)(i−1)J+j , which stacks an IJ-dimensional vector m in an
(I × J) matrix M. Then, we have

unvec(Gfk) = unvec(bk ⊗ d̃k)

= bkd̃
T
k , k = 1, . . . , R (17)

where bk denotes the kth column of B, d̃k denotes the kth
column of D̃, and fk denotes the kth column of F.

Similarly, we have

unvec(Hfk) = unvec(d̄k ⊗ bk)

= d̄kb
T
k , k = 1, . . . , R (18)

where d̄k denotes the kth column of D̄, bk denotes the kth
column of B, and fk denotes the kth column of F.

Remark: According to (17), bk and d̃k are the dominant left
singular vector and the dominant right singular vector of the
matrix unvec(Gfk) up to scale factors, respectively. Similarly,
according to (18), d̄k and bk are the dominant left singular
vector and the dominant right singular vector of the matrix
unvec(Hfk) up to scale factors, respectively. The aim of blind
identification is to estimate {bk} rather than {d̃k} and {d̄k}.
Taking into account this fact, during the procedure for the joint
decomposition of C̃ in (9) and C̄ in (10), we do not need to
estimate {d̃k} and {d̄k} for the purpose of blind identification.
In this sense, the blind identification stage only exploits partial
result of the joint CANDECOMP of the tensors C(1) in (5) and
C(2) in (6).

It is obvious to see that the columns of unvec(Gfk) and
the rows of unvec(Hfk) are all proportional to the vector bk.
In other words, the columns of unvec(Gfk) and the rows of
unvec(Hfk) are proportional.

The columns of the matrix X = [x1, . . . ,xK ] ∈ RR×K

and the rows of the matrix Y = [yT
1 , . . . ,y

T
N ]T ∈ RN×R are

proportional if and only if the ith column of X and the jth row
of Y satisfy γi,jxi = γj,iy

T
j , 1 ≤ i ≤ K, 1 ≤ j ≤ N , where

γi,j and γj,i are two scalars. The condition γi,jxi = γj,iy
T
j is

equivalent to

xsiytj−xtiysj = 0, 1 ≤ i ≤ K, 1 ≤ j ≤ N, 1 ≤ s < t ≤ R.
(19)

Define Gk = unvec(gk) ∈ RR×K , k = 1, . . . , R, where gk

denotes the kth column of G. From the set of matrices {Gk},
we construct matrices Wi ∈ RR×R as

Wi =
[
g1
i , . . . ,g

R
i

]
, i = 1, . . . ,K (20)

where gk
i denotes the ith column of Gk.

Define Hk = unvec(hk) ∈ RN×R, k = 1, . . . , R, where hk

denotes the kth column of H. From the set of matrices {Hk},
we construct matrices Tj ∈ RR×R as

Tj =
[
(h1

j )
T , . . . , (hR

j )
T
]
, j = 1, . . . , N (21)

where (hk
j )

T denotes the transpose of the jth row of Hk.

Applying (19) to unvec(Gfk) and unvec(Hfk), we have(
R∑
l=1

(Wi)sl(F)lk

)(
R∑
l=1

(Tj)tl(F)lk

)

−

(
R∑
l=1

(Wi)tl(F)lk

)(
R∑
l=1

(Tj)sl(F)lk

)
= 0. (22)

We denote by wp
q the qth row of Wp, and by tpq the qth

row of Tp. Then, (22) can be rewritten in vector notations(
wi

sfkt
j
t −wi

tfkt
j
s

)
fk = 0 (23)

or (
tjt fkw

i
s − tjsfkw

i
t

)
fk = 0. (24)

(23) and (24) can be further rewritten in matrix-vector
notations

Pkfk = 0, k = 1, . . . , R (25)

where Pk ∈ RM×R, M = KNR(R−1)
2 , and 0 is a zero vector.

The M rows of Pk have the form wi
sfkt

j
t−wi

tfkt
j
s+tjt fkw

i
s−

tjsfkw
i
t, 1 ≤ i ≤ K, 1 ≤ j ≤ N, 1 ≤ s < t ≤ R. Because (25)

provides a criterion for detecting whether the identification
of fk is achieved or not, we term it “identification detecting
device”. Note that (25) is the starting point of the update rule
for estimating fk’s that will be derived in the next subsection.

C. Update Rule for GSVD-SBIOM
Let us consider the constrained optimization problem as in

[25]:

minimize J (z) = (Pz)TPz = zT (PTP)z

subject to the constraint ∥z∥F = 1

where z ∈ RR×1 and ∥·∥F denotes the Frobenius norm. The
M rows of P have the form wi

szt
j
t − wi

tzt
j
s + tjtzw

i
s −

tjszw
i
t, 1 ≤ i ≤ K, 1 ≤ j ≤ N, 1 ≤ s < t ≤ R. According to

the previous subsection, the columns fk’s of the matrix F are
the optimal solutions to the constrained optimization problem.
To search for an optimal solution, we update z according to
the following iterative update rule [25]:

z← z+ v, z← z

∥z∥F
(26)

where v is the eigenvector of the matrix PTP corresponding
to the smallest eigenvalue. It is worth noting that the matrix
P should be updated as well with z that is estimated at the
previous iteration. After convergence, z is an estimate f̂1 of a
column of F.

An estimated column b̂1 of B can be computed as the
dominant left singular vector of the matrix unvec(Gf̂1), which
corresponds to the largest singular value. Let us denote by f̂l
the lth estimated column of the matrix F and b̂l the lth identi-
fied column of the matrix B. The sequential-type identification
process of B can be formulated as: given f̂1, . . . , f̂l, G, and
H, it is desired to estimate f̂l+1 and then identify b̂l+1.

Next, we consider a variable λ as a function of z

λ =
zT
(
PTP

)
z

zT (uuT ) z
(27)



where u ∈ RR×1, which can be computed as in [25], is orthog-
onal to f̂1, . . . , f̂l. As pointed out in [25], the minimization of
(27) forces z to be different from f̂1, . . . , f̂l. It is clear that λ is
the generalized eigenvalue of the matrix pencil (PTP,uuT ).
Therefore, the sequential-type identification process uses the
iterative update rule described in (26), in which the vector v
is chosen to be the generalized eigenvector of (PTP,uuT ) cor-
responding to the generalized eigenvalue that has the smallest
magnitude.

After the convergence of the iterative update rule in (26) is
achieved, z is the (l+1)th estimated column f̂l+1 of the matrix
F. b̂l+1 can be computed as the dominant left singular vector
of the matrix unvec(Gf̂l+1). We can continue the sequential-
type identification process until all the columns of B are
identified.

D. Source Estimation
As a kind of indirect blind signal recovery-type algorithm,

the aim of the second stage of the proposed algorithm is to
estimate original source signals with the estimated mixing ma-
trix. By using B̂, the original source signals can be estimated
as

ŝ(t) = B̂−1x̄(t) (28)

where B̂−1 is the inverse of the estimated matrix B̂. It is worth
noting that ŝ(t) = [ŝ1(t), . . . , ŝR(t)]

T is the estimated version
of the original source signals s(t) = [s1(t), . . . , sR(t)]

T up to
permutation and amplitude scaling. For more precise source
estimation, minimum mean-square error (MMSE)-based ap-
proach [45] can be used.

IV. COMPUTER SIMULATIONS
In this section, we illustrate the performance of the proposed

GSVD-SBIOM-based BSS algorithm and compare it with
the FastICA [46] and JADE [47] algorithms by computer
simulations. R = 3 speech source signals are considered,
each is 1.25 seconds long (see Fig. 1). They are the truncated
versions of the sound signals obtained from [48]. They are
mixed with a randomly generated 5× 3 mixing matrix

A =


−0.3852 0.0559 0.4951
0.1577 −0.0742 −1.5148
1.0646 −0.5558 1.1651
0.3244 0.2339 0.5071
−0.0560 −1.7841 −0.6436

 .

The observed mixtures of speech source signals (SNR = 30
dB) are shown in Fig. 2.

In simulations, total of K+N = 20 covariance matrices are
generated with the time lags τi = 1, 2, . . . , 20. White noise is
added to introduce signal-to-noise ratios (SNRs) varying from
-5 dB to 30 dB. The signal-to-noise ratio is defined as SNR =

10log10
E{∥As(t)∥2}
E{∥n(t)∥2} . The vector z in (26) is initialized with

a column of F̂0, where F̂0 = Q(B̂T
0 )

−1 and B̂0 is roughly
estimated by the generalized eigenvalue decomposition of the
matrix pencil (R1,R2). Fig. 3 shows the estimated speech
source signals up to amplitude scaling and permutation.

To measure the performance of the algorithms, we use the
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Fig. 1. Speech source signals.
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Fig. 2. Observed mixtures of speech source signals.

performance index [1]

PI =
1

R(R− 1)

R∑
i=1

{(
R∑

k=1

|ĝik|
maxj |ĝij |

− 1

)

+

(
R∑

k=1

|ĝki|
maxj |ĝji|

− 1

)} (29)

where ĝij is the (i, j)-element of the estimated global mixing-
separating matrix Ĝ = B̂−1UT

s A. The performance index
(PI) measures to what extent the estimated global mixing-
separating matrix is close to a generalized permutation matrix.
Obviously, the smaller the value of PI, the better the source
separation performance.

We used the MATLAB code from the website
http://www.cis.hut.fi/projects/ica/fastica/
for FastICA simulation. 100 independent runs are conducted
for our proposed GSVD-SBIOM algorithm, FastICA, and
JADE to calculate the average PI. Simulation results are
illustrated in Fig. 4.

It can be seen that our proposed GSVD-SBIOM algorithm
achieves better performance than FastICA and JADE. The
performance of FastICA and JADE is much worse than the
proposed algorithm, especially when the SNR is not too high
(SNR ∈ [−5, 10] dB). This means that our proposed GSVD-
SBIOM algorithm is more robust to noise.
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Fig. 3. Estimated speech source signals.
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Fig. 4. Performance index (PI) versus SNR. J = 5, R = 3,K +N = 20.

V. CONCLUSION
We have developed a new two-stage-type algorithm based on

the joint CANDECOMP of two higher order tensors for blind
source separation from instantaneous mixtures. We use GSVD
technique to perform the joint CANDECOMP. Using speech
source separation as example, simulations have shown that our
proposed algorithm has superior performance over two typical
BSS algorithms FastICA and JADE. Future investigation may
concern the application of the proposed algorithm to UBSS
problem.
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signal separation of rational functions with applications,” IEEE Trans.
Signal Process., vol. 64, no. 8, pp. 1909–1918, Apr. 2016.

[5] R. Martı́n-Clemente, J. L. Camargo-Olivares, S. Hornillo-Mellado,
M. Elena, and I. Román, “Fast technique for noninvasive fetal ECG
extraction,” IEEE Trans. Biomed. Eng., vol. 58, no. 2, pp. 227–230,
Feb. 2011.

[6] A. Sarmiento, I. Durán-Dı́az, A. Cichocki, and S. Cruces, “A contrast
function based on generalized divergences for solving the permuta-
tion problem in convolved speech mixtures,” IEEE/ACM Trans. Audio
Speech, Lang. Process., vol. 23, no. 11, pp. 1713–1726, Nov. 2015.

[7] J. Traa, D. Wingate, N. D. Stein, and P. Smaragdis, “Robust source
localization and enhancement with a probabilistic steered response
power model,” IEEE/ACM Trans. Audio Speech, Lang. Process., vol. 24,
no. 3, pp. 493–503, Mar. 2016.

[8] X. Jaureguiberry, E. Vincent, and G. Richard, “Fusion methods for
speech enhancement and audio source separation,” IEEE/ACM Trans.
Audio Speech, Lang. Process., vol. 24, no. 7, pp. 1266–1279, Jul. 2016.

[9] S. Redif, S. Weiss, and J. G. McWhirter, “Relevance of polynomial
matrix decompositions to broadband blind signal separation,” Signal
Process., vol. 134, pp. 76–86, 2017.

[10] Y. Fadlallah, A. Aissa-El-Bey, K. Abed-Meraim, K. Amis, and R. Pyn-
diah, “Semi-blind source separation in a multi-user transmission system
with interference alignment,” IEEE Wireless Commun. Lett., vol. 2,
no. 5, pp. 551–554, Oct. 2013.

[11] D. Liu, S. Hu, and H. Zhang, “Simultaneous blind separation of
instantaneous mixtures with arbitrary rank,” IEEE Trans. Circuits Syst.
I: Regular Papers, vol. 53, no. 10, pp. 2287–2298, Oct. 2006.

[12] L. Drumetz, M. A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot,
and C. Jutten, “Blind hyperspectral unmixing using an extended linear
mixing model to address spectral variability,” IEEE Trans. Image
Process., vol. 25, no. 8, pp. 3890–3905, Aug. 2016.

[13] N. Falco, J. A. Benediktsson, and L. Bruzzone, “Spectral and spatial
classification of hyperspectral images based on ICA and reduced
morphological attribute profiles,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 11, pp. 6223–6240, Nov. 2015.
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