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Abstract—Electric load forecasting plays a vital role in smart
grid. Short term electric load forecasting predicts the load that is
several hours to several weeks ahead. Due to the nonlinear, non-
stationary and nonseasonal nature of the electric load time series,
accurate forecasting is challenging. This paper explores Long-
Short-Term-Memory (LSTM) based Recurrent Neural Network
(RNN) to deal with this challenge. LSTM-based RNN is able
to exploit the long term dependencies in the electric load time
series for more accurate forecasting. Experiments are conducted
to demonstrate that LSTM-based RNN is capable of forecasting
accurately the complex electric load time series with a long
forecasting horizon. Its performance compares favorably to many
other forecasting methods.

Index Terms—Electric load forecasting, univariate time series,
smart grid, recurrent neural network (RNN), long-short-term-
memory (LSTM)

I. INTRODUCTION

Compared with the traditional power grid, smart grid is
capable of providing more intelligent, efficient, sustainable and
reliable power service by making use of the advanced infras-
tructure and information technology. Electric load forecasting
plays an increasingly indispensable role in smart grid. It is
of fundamental importance for utility providers to model and
forecast power loads in advance, to strike a balance between
production and demand, to decrease the production cost, and
to implement various pricing schemes for demand response.

Based on the duration of the forecasting horizon, electric
load forecasting is classified into four categories, i.e., long
term load forecasting, medium term load forecasting, short
term load forecasting, and very short term load forecasting
[1]. Short term load forecasting predicts load that is several
hours to several weeks ahead based on the observed load time
series data [2].

Since electric load is primarily an univariate time series [3],
many general time series forecasting methods can be applied
for electric load forecasting. A general class of methods is
the statistical forecasting models that include Autoregressive
(AR), Moving Average (MA), Autoregressive Integrated Mov-
ing Average (ARIMA) models [4] [5] and a number of their
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variants [6]. In particular, the ARIMA is one of the most pop-
ular and commonly used methods for time series forecasting.
However, these methods work under the assumption that the
observed time series and the future time series are linearly
related, which makes them less effective for time series with
significant nonlinear characteristics. There have been plenty
of work to extend their applications into nonlinear forecast-
ing, such as the Autoregressive Conditional Heteroskedastic
(GARCH) model [7]. Nevertheless, these statistical models
only have good prediction performance over stationary data [8]
[9], while the electric load time series may be nonstationary.

Another class of forecasting methods are based on artificial
Neural Networks (ANNs). ANNs have become immensely
popular in electric load forecasting in the past decade. Basi-
cally, ANNs mimic the human brain to learn regularities and
patterns automatically from the past experience and produce
generalized results. In contrast to the ARIMA-based linear
forecasting methods, ANNs are a set of nonlinear self-adaptive
methods that are driven by data, which means there is no
need of any prior knowledge of the relationship between the
models and the data variables. It is well known that ANNs are
capable of approximating any nonlinear function. ANNs can
usually achieve reasonable results, especially for complicated
models and time series [10]. There is an extensive literature on
using ANNs for electric load forecasting, such as feed-forward
Multilayer Perceptron (MLP) [11], nonlinear autoregressive
models with exogenous input (NARX) Neural Network [12],
Generalized Regression Neural Network (GRNN) [13], Sup-
port Vector Regression (SVR) [14], etc.

Although extensive research have been done, accurate elec-
tric load forecasting remains a challenge in smart grid. Electric
load forecasting is usually an univariate time series forecasting
problem that is more challenging than the corresponding
multivariate time series forecasting problem. Because there is
no additional information from other data sources that can be
utilized for learning [15]. In addition, compared with linear,
stationary and seasonal time series, electric load time series are
nonlinear, nonstationary and nonseasonal, where nonseasonal
means without apparent periodicity in time. It is difficult to
forecast accurately such time series in a long time horizon.
Therefore, more efforts are needed to develop more effective
forecasting methods.
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In this paper, we tackle this challenge using the Long-
Short-Term-Memory (LSTM) [16], which is a special recurrent
neural network (RNN) architecture that can be utilized to
learn temporal sequences and long term dependencies more
accurately than Deep Neural Networks (DNNs) and conven-
tional RNNs [17]. We will develop the novel electric load
forecasting scheme based on LSTM. This scheme is capable
of forecasting accurately the complex nonlinear, non-stationary
and nonseasonal univariate electric load time series over a long
forecasting horizon.

The remainder of this paper is organized as follows. The
univariate time series forecasting problem is introduced in Sec-
tion II. In Section III, the electric load forecasting scheme with
LSTM-based RNN is presented. Experiments and conclusions
are given in Sections IV and V, respectively.

II. MULTI-STEP AHEAD TIME SERIES FORECASTING

Considering an univariate electric load time series with
N observations {Xt1 , Xt2 , · · · , XtN }, the task of multi-step
ahead forecasting is to utilize these N recorded data points to
predict the next H data points {XtN+1

, XtN+2
, · · · , XtN+H

}
in future of the existing time series. The parameter H > 1
is the forecasting horizon. Even in short term electric load
forecasting, the forecasting horizon can be very large, i.e.,
H � 1. Typically, the smart grid electric load data are
obtained via smart meters or PMU (power measurement unit).
If the smart meters have a sampling interval of 15 minutes, the
forecasting horizon is H = 96 for 24-hour (one-day) ahead
load forecasting. PMU has even higher sampling frequency
with sampling interval in sub-second, and the forecasting
horizon can be extremely long.

A. Recursive Strategy

There are three strategies that are commonly used to con-
duct multi-step ahead time series forecasting, i.e., recursive
strategy, direct strategy, and multiple-input and multiple-output
(MIMO) strategy [18]. The most intuitive and traditional
forecasting strategy is the recursive strategy [19], where a one-
step ahead time series forecasting method is applied with a
single forecasting model f(·). Specifically,

Xt+1 = f(Xt, Xt−1, · · · , Xt−d+1) + ε, (1)

where t ∈ {d, d + 1, · · · , N}, d is the dimension of the
estimator, ε is the additive noise, the estimator f : Rd → R
and R denotes the real field. In order to forecast H steps
ahead, we first forecast the one-step ahead estimation XtN+1

using (1). Then, with the forecasted XtN+1
as part of the

input time series, the next step is to estimate XtN+2
using the

same one-step ahead forecasting model (1). This procedure
runs recursively until we have estimated XtN+H

.
Although the recursive strategy is intuitive and is easy

to apply, it is sensitive to the accumulation of forecasting
errors, especially when the forecasting horizon is large. In
the recursive strategy, the forecasting errors in previous steps
are propagated and accumulated to deteriorate the subsequent
forecasting accuracy [18].

B. Direct Strategy

Another strategy for multi-step ahead forecasting is the
direct strategy [20]. Unlike the recursive strategy, the direct
strategy constructs H different forecasting models for each
forecasting horizon based on the observed time series data.
Specifically,

Xt+h = fh(Xt, Xt−1, · · · , Xt−d+1) + εh, (2)

where h ∈ {1, 2, · · · , H}, fh is the hth forecasting model,
and εh is the additive noise associated with the hth model.
Since the direct strategy does not use any forecasted value as
input for forecasting, it is not prone to accumulated errors.
However, the H forecasting models are trained separately and
independently from each other, which may result in condi-
tional independence among the H forecasted values [21]. Such
an independence effect will prevent the forecasting methods
from reflecting the statistical dependency among the forecasted
data, which will degrade the forecasting performance.

C. Multiple-input and Multiple-output (MIMO) Strategy

Both the recursive strategy and the direct strategy are
considered as single output strategy because they map multiple
inputs (a vector) to a single output (a scalar) [18]. In contrast,
the MIMO strategy is a forecasting strategy that uses multiple
inputs to create multiple outputs [22]. With the MIMO strat-
egy, the forecasting result is a time series (a vector) instead
of a scalar. All the data in this output vector are generated by
the same model trained using the same observed time series
data. Specifically,

{Xt+1, Xt+2, · · · , Xt+H} = F (Xt, Xt−1, · · · , Xt−d+1) + ε,
(3)

where ε is the noise vector and F : Rd → RH . Compared
with the single output strategies, the MIMO strategy is capable
of mitigating the conditional independence problem. It has the
advantage of preserving the temporal statistical dependency in
the forecasted time series. However, since the MIMO strategy
forecasts all the data with the same forecasting model, its
flexibility and variability may not be as strong as the other
forecasting strategies [23].

III. LSTM-BASED RNN FOR ELECTRIC LOAD
FORECASTING

A. Recurrent Neural Networks (RNNs)

Many feedforward neural networks, such as MLP (Multi-
layer Perceptron), DNN (Deep Neural Network), CNN (Con-
volutional Neural Network), etc., have achieved state-of-the-art
performance in various supervised or unsupervised machine
learning applications. Their success highly depends on the
independence assumption among the training and test data
[24]. When the data in a time series depend on each other or
the independence assumption fails, their learning performance
will degrade due to their insufficient capability of modeling
long term dependencies. Time series forecasting is such a
typical scenario where the current data points are related with
the previous data points. Long time dependence is in fact the
basis for time series forecasting. In addition, the feedforward
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neural networks constrain the inputs and targets to be vectors
of fixed length [25], which also makes them inconvenient for
sequence (such as time series) learning.

In contrast, RNNs are designed specifically to operate
over sequential data or time series [26]. Compared with the
feedforward neural networks that only allow signals to travel
forward from the input to the output, RNNs allow signals
to travel both forward and backward. They introduce loops
in the network and allow internal connections among hidden
units. With the help of such internal connections, RNNs are
more suitable for exploiting the information in the past data to
forecast the future data. In particular, RNNs make it possible
to explore temporal relationships among the data that are far
away from each other [27].

Fig. 1: The architecture of RNN.

Fig. 1 shows the architecture of RNN. Given an input time
series x = {x1, x2, · · · , xT }, the RNN computes the hidden
state sequence h = {h1, h2, · · · , hT } as well as the output
sequence y = {y1, y2, · · · , yT } iteratively using the following
set of equations

ht = f(Whxxt +Whhht−1 + bh) (4)
yt = g(Wyhht + by). (5)

In (4)-(5), Whx,Whh and Wyh denote the input-hidden weight
matrix, the hidden-hidden weight matrix, and the hidden-
output weight matrix, respectively. The vectors bh and by
represent the bias of the hidden layer and the output layer,
respectively. In addition, f(·) and g(·) are the activation func-
tions for the hidden layer and the output layer, respectively.
The RNN uses the hidden state ht at time step t to memorize
the network. The hidden state captures all the information
included in the previous time steps.

Multi-step-ahead time series forecasting shows the multi-
step dependencies because the forecast of the out-of-sample
data xt+h depends on the input data observed at much earlier
time te, where te � t+ h. Nevertheless, when the interval of
data dependencies increases, the simple RNNs tend to suffer
increasingly heavily from the gradient vanishing problem [28].
In other words, the influence of the input data at te to the
forecasted data xt+h decays quickly over time t + h − te.
Therefore, the simple RNNs may not be the best choice in
forecasting problems with long term dependencies.

B. LSTM (Long-Short-Term-Memory) Architecture

LSTM is an efficient RNN architecture introduced by
Hochreiter and Schmidhuber in 1997 [16] and refined by
many people since then [29]. LSTM was mainly motivated
and designed to overcome the vanishing gradients problem of
the standard RNN when dealing with long term dependencies.

In the standard RNN, the overall neural network is a chain
of repeating modules formed as a series of simple hidden
networks, such as a single sigmoid layer. In contrast to the
standard RNN which has a series of repeating modules with
relatively simple structure, the hidden layers of LSTM have
a more complicated structure. Specifically, LSTM introduces
the concepts of gate and memory cells in each hidden layer. A
memory block mainly consists of four parts: an input gate i,
a forget gate f , an output gate o, and self-connected memory
cells C. The input gate controls the entry of the activations to
the memory cell. The output gate learns when to output the
activations to the successive network. The forget gate helps
the network to forget the past input data and reset the memory
cells. In addition, multiplicative gates are applied carefully to
make it possible for the memory cells to access and store the
information over a long time interval. Such a structure can
effectively mitigate the vanishing gradient problem [30]. This
makes LSTM an architecture suitable for problems with long
term dependencies.

Since the gates can not get any information from the
memory cell output when the output gate is closed, the LSTM
does not know how long the memory should be for the model.
To resolve this problem, peephole connections can be added to
the LSTM memory cells. Working as an immediate supervisor,
peephole connections make it possible for all the gates to
inspect the cell states [31]. Fig. 2 shows the architecture of
a general LSTM memory block with peephole connections
added.

Fig. 2: The architecture of LSTM memory block with
peephole connections.

C. LSTM-based RNN Forecasting Scheme

Considering the advantages of LSTM in time series fore-
casting, we use the LSTM-based RNN scheme in this paper
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for electric load time series forecasting. The scheme applies
the LSTM with peephole connections.

Given an input time series x = {x1, x2, · · · , xT }, the
LSTM maps input time series to two output time sequences
h = {h1, h2, · · · , hT } and y = {y1, y2, · · · , yT } iteratively
by updating the states of memory cells with the following
procedure.

First, as per Fig. 2, the forget gate is applied to help the
LSTM to decide what information to throw away from the
cell state. A sigmoid function σ(·) is used to calculate the
activation of the forget gate as

ft = σ(Wfxxt +Wfhht−1 +WfcCt−1 + bf ). (6)

The output ft of (6) is a value between 0 and 1 corresponding
to the last cell state Ct−1. The value 0 means forgetting the
last state completely, while the value 1 stands for keeping the
last state completely.

Next, we need to let the LSTM know what new information
is going to be stored in the new cell state. To begin with, the
LSTM uses a sigmoid layer, which is named as the input gate
layer it, where

it = σ(Wixxt +Wihht−1 +WicCt−1 + bi), (7)

to decide what information to update. The sigmoid layer g(·)
constructs a vector Ut to store the new candidate values to be
added to the new cell state as

Ut = g(Wcxxt +Wchht−1 + bc) (8)

Then, the old cell state Ct−1 is updated to a new cell state
Ct with the estimated ft and Ut. Specifically, the old cell state
is multiplied with ft in order to forget information from the
last state. The candidate values is multiplied with the input
gate layer to decide how much new information to be updated
to the new cell state, which gives

Ct = Utit + Ct−1ft. (9)

Another sigmoid layer σ(·) is then used as the output gate
to filter and output the cell state as ot, where

ot = σ(Woxxt +Wohht−1 +WocCt−1 + bo). (10)

Furthermore, a cell output sigmoid activation function `(·) is
applied over the cell state, which is then multiplied by the
output ot to give the desired information

ht = ot`(Ct). (11)

As for the output of the memory block, an output activation
function k(·) is used, i.e.,

yt = k(Wyhht + by). (12)

In (6)-(12), the matrices Wix, Wfx, Wox, Wcx are the
appropriate input weight matrices, Wih, Wfh, Woh, Wch are
the recurrent weight matrices, Wyh represents the hidden
output weight matrix, Wic, Wfc, Woc denote the weight
matrices of peephole connections. The vectors bi, bf , bo, bc,
by are the corresponding bias vectors.

IV. EXPERIMENT EVALUATIONS

A. Experiment Setup

In this section, we present our experiments on applying the
LSTM-based RNN scheme for electric load forecasting. We
compared the proposed LSTM-based RNN scheme with the
following methods: SARIMA which is the Seasonal Autore-
gressive Integrated Moving Average model [32]; NARX which
is a nonlinear autoregressive neural network model with exoge-
nous inputs [12]; SVR (Support Vector Regression) which is
a very popular model in financial time series forecasting [14];
and NNETAR which is a feed-forward neural network model
for univariate time series forecasting with a single hidden
layer and lagged inputs. Two evaluation criteria were used
as performance metric: root mean square error (RMSE) and
mean absolute percentage error (MAPE) between real values
and forecasting results.

Since most of the methods in comparison are developed
for general time series forecasting, for fair comparison we
compared their performance with two data sets: an electric
load data set that we collected, and an airline passengers data
set that is used widely as benchmark for algorithm evaluation.
The airline passengers data set is a time series describing the
monthly totals of the international airline passengers [33]. This
data set includes 144 observations in total for 12 years. As
shown in Fig. 3, there is an apparent upward trend and strong
seasonal variations. As a result, this data set is helpful for us
to examine the performance of our scheme in forecasting short
time series with multiplicative seasonal patterns.

The electric load data set is an univariate time series describ-
ing the electricity consumption in our school’s engineering
building. This data set contains power consumption samples
of the building recorded every 15 minutes. As shown in Fig. 5,
this data set is a strong non-stationary and non-seasonal time
series, which poses a great challenge for long-horizon time
series forecasting.

B. Experiment Results with the Airline Data Set

The experiments on the international airline passengers data
set had a forecasting horizon H = 12. It can be seen from
Fig. 3 that, compared with the original time series, all the five
methods followed the upper trend and the seasonal pattern to
variant extents. Fig. 4 shows more details of the forecasting
results. We can clearly see that LSTM and SARIMA both had
superior performance over SVR and NNETAR. This is also
verified from Table I which shows that LSTM and SARIMA
achieved better forecasting performance with smaller RMSE
and MAPE. In particular, although NARX had a similar RMSE
score as LSTM, LSTM obtained better MAPE score and thus
had better forecasting accuracy.

The SARIMA had the best performance in this case. The
reason lies in that the airline passenger data set has a strong
multiplicative seasonal pattern and a clear upper trend. The
SARIMA exploited these regular seasonal patterns by using
logarithmic transformation as well as seasonal differencing
[34]. These special and data-dependent pre-processing tech-
niques made it easier for SARIMA to forecast. Obviously,
such advantage is highly data dependent, not general for
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TABLE I: Forecasting RMSE and MAPE for the Airline
Passenger Data Set

FORECASTING METHODS RMSE MAPE
SVR 0.0717 0.0556

NNETAR 0.0799 0.0595
LSTM 0.0435 0.0345
NARX 0.0452 0.0403

SARIMA 0.0359 0.0256

other data sets. In terms of generality, LSTM should still be
better because it achieved the performance closest to SARIMA
without applying any special data-dependent pre-processing.

Fig. 3: In-sample and out-of-sample comparison for the
international airline passengers data set.

Fig. 4: Forecasting comparison for the international airline
passengers data set.

C. Experiment Results with the Electricity Consumption Data
Set

In the experiments, we used 904 data samples of the electric-
ity consumption data set to forecast the electrical consumption

TABLE II: RMSE and MAPE results for the Electricity
Consumption Data Set

FORECASTING METHODS RMSE MAPE
SVR 0.2044 0.1775

NNETAR 0.1952 0.1689
LSTM 0.0702 0.0535
NARX 0.1446 0.1192

SARIMA 0.2537 0.2001

H = 96 steps ahead. In other words, we used the electricity
consumption of the past 10 days to forecast the electricity
consumption of the next day. It can be seen from Fig. 5
that, compared with the airline passenger time series, this
electric load time series is more complex, without any ob-
vious seasonal pattern or trend. The non-stationarity and non-
seasonality pose severe challenge for conventional methods
to forecast. The relatively longer forecasting horizon, i.e.,
H = 96, makes accurate forecasting even more challenging.

Experiment results in Fig. 5 show that LSTM forecasted
quite well compared with the original time series. Fig. 6 shows
more clearly that LSTM outperformed all the other methods
with the best forecasted time series. Table II shows that
LSTM outperformed all the other methods with the smallest
forecasting errors. In this complex electric load forecasting
scenario, the performance of the other four methods was con-
sidered in general unsatisfactory. Although NARX captured
the general trend of the real time series, the forecasting result
was quite spurious, resulting in inaccurate forecasting with
large RMSE and MAPE. SARIMA did not work well either
in this longer-horizon forecasting due to non-stationarity and
non-seasonality.

Fig. 5: In-sample and out-of-sample comparison for the
electricity consumption data set.

V. CONCLUSIONS

In this paper, we propose to use the Long-Short-Term-
Memory (LSTM) based Recurrent Neural Network (RNN) to
address the challenging short term electric load forecasting
problem. By exploiting the long term dependencies in the
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Fig. 6: Forecasting comparison for the electricity
consumption data set.

time series, LSTM is capable of forecasting complex uni-
variate electric load time series with strong non-stationarity
and non-seasonality. Experiments are conducted with a short
benchmark international airline passenger data set and a long
electricity consumption data set. Experiment results show that
the LSTM-based forecasting method can outperform most
traditional forecasting methods in the challenging short term
electric load forecasting problem.
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[11] C. Garcı́a-Ascanio and C. Maté, “Electric power demand forecasting
using interval time series: A comparison between var and imlp,” Energy
Policy, vol. 38, no. 2, pp. 715–725, 2010.

[12] M. Espinoza, J. A. Suykens, R. Belmans, and B. De Moor, “Electric load
forecasting,” IEEE Control Systems, vol. 27, no. 5, pp. 43–57, 2007.

[13] Y. Li and J. Wang, “The load forecasting model based on bayes-grnn,”
Journal of Software, vol. 7, no. 6, pp. 1273–1280, 2012.

[14] C.-N. Ko and C.-M. Lee, “Short-term load forecasting using svr (support
vector regression)-based radial basis function neural network with dual
extended kalman filter,” Energy, vol. 49, pp. 413–422, 2013.

[15] J. Du Preez and S. F. Witt, “Univariate versus multivariate time series
forecasting: an application to international tourism demand,” Interna-
tional Journal of Forecasting, vol. 19, no. 3, pp. 435–451, 2003.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.”
in INTERSPEECH, 2014, pp. 338–342.

[18] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the nn5 forecasting competition,” Expert systems with appli-
cations, vol. 39, no. 8, pp. 7067–7083, 2012.
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