
Population Dynamic Human Behavioral Models for

Smart Grid Demand Side Management

Xiaohua Li, Mohammadreza Ghorbaniparvar and Ning Zhou

Department of Electrical and Computer Engineering

State University of New York at Binghamton

Binghamton, NY 13902, USA

Email: {xli,mghorba1,ningzhou}@binghamton.edu

Abstract—Demand side management (DSM) plays a critical
role in scheduling and optimizing the energy consumption in the
smart grid. Considering the critical yet complex human behavior
issue, we develop new population dynamic models to describe the
behavior of DSM users and use them to analyze the performance
of DSM. We first introduce an accurate Markov model for the
DSM population. We show that this model can be converted into a
form similar to the popular SIR (susceptible-infected-recovered)
model in mathematical biology. Then, we formulate a composite
model that integrates the new DSM user behavioral model
with a game theoretic DSM scheme. The convergence and the
equilibrium of the composite model are studied both analytically
and numerically. Experiments are conducted to determine the
important model parameters.

Index Terms—demand side management, smart grid, human
behavior, Markov model, population dynamic model

I. INTRODUCTION

Programs implemented by utility companies which aim to

control energy consumption of their customers are known

as demand-side management (DSM) [1]. DSM is becoming

critical in today’s smart grid because at the customer side

there is an emergence of many heavy appliances such as

plug-in hybrid vehicles (PHEVs) and large energy sources

such as storage batteries and solar panels [2]. Their impact

to the grid has to be mitigated by effective DSM. Fortunately,

smart grid technologies such as smart meters and home energy

management systems (HEMS) can greatly help the DSM

deployment [3].

In conventional DSM, utility companies directly control

their customer’s appliances. In contrast, in smart grids au-

tonomous DSM is more desirable since customers can deter-

mine their own demand and response. Game-theory has been

an effective tool to help autonomous DSM realize promising

objectives in cost minimization, peak-to-average power ratio

reduction, grid reliability/efficiency improvement, etc [4]-[7].

Although DSM has been investigated extensively, a criti-

cal issue, i.e., the impact of human behavior, has not been

addressed sufficiently. Since a DSM system consists of a

large number of distributed users with different interests, the

behavior of these users critically affects its performance [8]-

[10]. In fact, applying game theory in DSM is a way to address

the human behavior issue. It uses the rationality assumption to

model the selfish and competitive nature of human behaviors.

However, the rationality assumption also sets a severe limit to

its effectiveness in DSM human behavior study [11][12].

In this paper, we develop new human behavioral models

for DSM. Following [13]-[15], we set up a Markov model

for DSM users and derive both linear and nonlinear popu-

lation dynamic models to describe the DSM user behavior.

Interestingly, the model we derived is similar to a biological

model SISa (susceptible-infected-susceptible with autonomous

infection) which was applied successfully in human behavior

modeling and prediction [16][17]. The integration of this

model with DSM schemes provides a better understanding of

the practical performance of DSM.

The paper is organized as follows. In Section II, a smart grid

DSM system is formulated. In Section III, new human behav-

ioral models are developed. In Section IV, a composite DSM

model is used to evaluate the DSM performance. Simulations

are conducted in Section V and conclusions are presented in

Section VI.

II. SMART GRID DSM SYSTEM

Consider a smart grid consisting of one energy source

(utility company) and N energy users (customers). Each user

has a smart meter with two-way communication capability and

is equipped with HEMS to control household appliances. The

energy source has a central controller to communicate with

the users and to collect their energy usage data through the

smart meters.

Let N = {1, 2, · · · , N} be the user set. Each user n ∈ N
has a number of household appliances a ∈ An, where An

denotes the set of all the appliances of the user n. Each

appliance consumes energy xn,a(h) during time h ∈ H, where

H = {1, 2, · · · , H} is the optimization time horizon. For

example, one-day ahead energy consumption scheduling with

hourly step-size means H = {1, 2, · · · , 24}. The energy usage

(or load) of the whole system during time h is

L(h) =
∑

n∈N

∑

a∈An

xn,a(h). (1)

Following [6], we define the cost of energy usage as

fh(L(h)), which is a function of the energy usage L(h). Each

function fh(ℓ), h ∈ H, is assumed convex with respect to ℓ



(the total energy usage) during the hour h. A special example

is the monotonically increasing quadratic cost function

fh(L(h)) = ahL
2(h) + bhL(h) + ch, (2)

where ah > 0, bh ≥ 0 and ch ≥ 0 are time-dependent

parameters.

The total energy usage of the whole system is

∑

h∈H

L(h) =
∑

h∈H

∑

n∈N

∑

a∈An

xn,a(h) (3)

and the total cost of the system is

C(x) =
∑

h∈H

fh(L(h)) =
∑

h∈H

fh

(
∑

n∈N

∑

a∈An

xn,a(h)

)
, (4)

where

x = {xn|∀n ∈ N}, xn = {xn,a(h) | ∀a ∈ An, h ∈ H}.
(5)

Besides the energy usage cost, we consider also the utility of

the energy usage appliances. Each user n ∈ N has a number

of different household appliances a ∈ An. Each appliance,

while consuming energy xn,a(h) during time h (with certain

cost), brings utility which is characterized by a utility function

Un,a(xn,a(h)). Utility functions for some major appliances are

developed in [5], such as air conditioner, refrigerator, PHEV,

clothes washer, dishwasher, lighting and entertainment. The

total utility of the system is

U(x) =
∑

h∈H

∑

n∈N

∑

a∈An

Un,a(xn,a(h)) (6)

All the utility functions Un,a(xn,a(h)) are assumed concave

over xn,a(h).

The DSM problem considered in this paper is to schedule

and shift the energy usage profile x so as to maximize the

social welfare

W (x)
△
=U(x)− C(x) =

∑

h∈H

∑

n∈N

∑

a∈An

Un,a(xn,a(h))

−
∑

h∈H

fh

(
∑

n∈N

∑

a∈An

xn,a(h)

)
. (7)

Because U(x) is concave of xn,a(h) and C(x) is convex of

xn,a(h), the social welfare W (x) is concave with respect to

xn,a(h).

Recall that each appliance a of the user n consumes a total

energy En,a. We assume that it can work during time set

Tn,a ⊆ H. During each time h ∈ Tn,a, this appliance has an

upper bound and a lower bound on its energy consumption,

which are denoted as γmin
n,a and γmax

n,a , respectively. This gives

linear constraints on x as





En,a =
∑

h∈Tn,a
xn,a(h),

xn,a(h) = 0, if h 6∈ Tn,a,
γmin
n,a ≤ xn,a(h) ≤ γmax

n,a , if h ∈ Tn,a.
(8)

γ:

use DSM)
infection

β: transmission infection

Susceptible Infected

(users use
DSM)

(users not
α : autonomous

recovery

Fig. 1. A two-state Markov model for each DSM user.

Under the linear constraints (8), the social welfare W (x)
has a global maximum, which can be found in the convex

optimization

max
x

W (x), s.t., xn ∈ Xn, ∀ n ∈ N , (9)

where Xn is the domain of the optimization variable xn

defined as

Xn = {xn|xn,a(h) satisfies (8) for ∀ a ∈ An, h ∈ H}.
(10)

This problem can also be converted into decentralized opti-

mization problems in more practical implementations [5][6].

III. POPULATION DYNAMIC HUMAN BEHAVIORAL MODELS

FOR SMART GRID

A. An exact Markov model for DSM population

To model the complex human behavior with a tractable

formulation, in this paper we adopt a population dynamic

approach and consider the Markov model shown in Fig. 1

for each DSM user. We define two states: the susceptible state

(i.e., not using the DSM scheme), and the infected state (i.e.,

using the DSM scheme). All users in the susceptible state

form the set S, while all the other users form the set I. Thus,

S ⊆ N , I ⊆ N , S ∩ I = φ, and S ∪ I = N .

From Fig. 1, a user in the set S can autonomously, or

spontaneously, switch to the set I, which means adopting

the DSM scheme. This happens with probability α, where

0 ≤ α ≤ 1. For example, after a sustainability education, each

user has probability α to adopt the DSM scheme. Each user

in the set I has probability γ, where 0 ≤ γ ≤ 1, to switch

back to S. For example, a user may find the DSM scheme

inconvenient to use and thus abandon it.

Finally, the users in the set I may infect the users in

the set S. For example, a user may adopt the DSM scheme

if some of his friends have adopted it. This happens with

probability β, where 0 ≤ β ≤ 1. It models the effect of social

networking or mutual imitation among the DSM users. Note

that the probability β is a networking-related parameter. In

other words, a user n in the state S will remain in the state

S with probability (1− β)In , where In is the total number of

users in the state I that have connection to the user n. It is

also the number of neighbors of the user i. Obviously, the user

n will switch to the state I with probability 1− (1− β)In .

To describe the state evolution, define the state of the user

n as ξn(t) at time t, where n ∈ N . We let ξn(t) = 0 if

the user n is in the set S and ξn(t) = 1 if the user n is in



the set I. The state of the overall DSM population is ξξξ(t) =
(ξ1(t), · · · , ξN (t)). There are 2N states ξξξ(t) ∈ {0, 1}N .

We use discrete Markov chains in this paper. The transi-

tional probability between the states can be defined as

P[ξξξ(t+ 1) = y|ξξξ(t) = z] =
∏

n∈N

P[ξn(t+ 1) = yn|ξξξ(t) = z],

(11)

where y = (y1, · · · , yN) and z = (z1, · · · , zN ) are state

values. Note that both yn and zn have values 0 or 1. Based

on the transitional diagram of Fig. 1, we have

P[ξn(t+ 1) = yn|ξξξ(t) = z]

=






(1− β)In(t)(1− α), if (zn, yn) = (0, 0)

1− (1− β)In(t)(1− α), if (zn, yn) = (0, 1)
γ, if (zn, yn) = (1, 0)
1− γ, if (zn, yn) = (1, 1).

(12)

Note that In(t) is the number of neighboring users of the user

n that are in the state I at time t.

Let PS,n(t) and PI,n(t) be the probabilities of the user n in

the states S and I at time t, respectively. We have PS,n(t) =
1 − PI,n(t) because there are two states only. The Markov

state evolution is described by

PS,n(t+ 1)

= PS,n(t)P[yn = 0|zn = 0] + PI,n(t)P[yn = 0|zn = 1]

= (1 − β)In(t)(1− α)PS,n(t) + γPI,n(t), (13)

and

PI,n(t+ 1)

= PI,n(t)P[yn = 1|zn = 1] + PS,n(t)P[yn = 1|zn = 0]

= (1− γ)PI,n(t) +
[
1− (1 − β)In(t)(1− α)

]
PS,n(t).

(14)

B. Nonlinear/linear models from mean-field approximation

The exact Markov model (13)(14) is computationally pro-

hibitive for analysis. To simplify it, we consider the mean-

field approximation, where the exact probabilities PS,n(t)
and PI,n(t) are replaced by their mean-field approximations

PS,n(t) and P I,n(t), respectively. In addition, (1− β)In(t) is

approximated as
∏

j∈Nn
[P I,j(t)(1 − β) + (1 − P I,j(t))] =∏

j∈Nn
(1 − βP I,j(t)) ≈ 1 − β

∑
j∈Nn

PI,j(t), where Nn

denotes the set of neighboring users of the user n. Then we

have

PS,n(t+ 1)

=



1− β
∑

j∈Nn

PI,j(t)



 (1 − α)PS,n(t) + γP I,n(t).

(15)

Similarly, the mean-field approximation of (14) is

PI,n(t+ 1) = (1− γ)P I,n(t)

+


1−


1− β

∑

j∈Nn

P I,j(t)


 (1− α)


PS,n(t).

(16)

Put all the mean-field Markov state approximations into the

N × 1 vectors
{

PS(t)
△
= [PS,1(t), · · · , PS,N (t)]T

PI(t)
△
= [P I,1(t), · · · , P I,N(t)]T

(17)

where (·)T denotes matrix/vector transpose. Then (15)-(16)

can be written in vector form as

PS(t+ 1) =(1 − α)
(
1− βAPI(t)

)
⊙PS(t) + γPI(t),

(18)

PI(t+ 1) =(1 − γ)PI(t)

+
[
1− (1− α)

(
I− βAPI(t)

)]
⊙PS(t).

(19)

where A is the N × N adjacency matrix of the DSM

population, 1 = [1, · · · , 1]T , and ⊙ denotes direct element-

wise multiplication.

To linearize the above nonlinear model, various techniques

can be applied [13][14]. One of the ways is to simply discard

the factor PS,n(t) from (15), which gives

P̃S,n(t+ 1) = γP̃I,n(t) + (1 − α)


1− β

∑

j∈Nn

P̃I,j(t)


 .

(20)

Since PS,n(t) ≤ 1, we have PS,n(t + 1) < P̃S,n(t + 1).

Therefore, if P̃S,n(t+1) converges, then the nonlinear model

PS,n(t+1) also converges. This in fact provides a valid way

to analyze the convergence of the nonlinear model. Similarly,

from (16) we can obtain

P̃I,n(t+ 1) = (1 − γ)P̃I,n(t) + P̃S,n(t)

− (1− α)


1− β

∑

j∈N

P̃I,j(t)


 . (21)

Considering the vector P̃S(t) = [P̃S,1(t), · · · , P̃S,N (t)]T

and the fact that PI(t) = 1−PS(t), from (20) we can get

P̃S(t+ 1) = ((1− α)βA − γI) P̃S(t)

+ (1− α+ γ + (1 − α)βA) 1, (22)

where I is the N × N identity matrix. Therefore, if the

magnitude of the maximum eigenvalue of the adjacency matrix

A is less than γ
β(1−α) , the linear model (20)(21) is convergent,

which in turn means the nonlinear model (15) (16) is conver-

gent as well.



C. A population dynamic model for homogeneous DSM

For further simplification, we consider a well-mixed ho-

mogeneous population where each user has equal probability

to imitate any other user. Then we have P I,n(t) = PI(t),
PS,n(t) = PS(t), and Nn ≈ N . The nonlinear mean-field

model (15) and (16) can be simplified to

PS(t+ 1) = (1−NβP I(t))(1 − α)P S(t) + γPI(t) (23)

P I(t+1) = (1−γ)PI(t)+αPS(t)+(1−α)NβP I(t)PS(t).
(24)

Since the average number of users in the sets S and I at

time t are, respectively, S(t) = NPS(t) and I(t) = NPI(t),
from (23) and (24) we can obtain a nonlinear time-difference

equation based model

{
S(t+ 1)− S(t) = −β(1− α)S(t)I(t) + γI(t)− αS(t)
I(t+ 1)− I(t) = β(1 − α)S(t)I(t)− γI(t) + αS(t)

(25)

which describes the evolution of the DSM population. Note

that I(t) + S(t) = N .

Interestingly, the model (25) is similar to the SISa

(susceptible-infected-susceptible with autonomous) model of

[16][17] in mathematical biology. The SISa model was based

on the analogy from the well-known SIR (susceptible-infected-

recovered) virus propagation model and was designed specif-

ically for modeling the inter-personal propagation of human

behaviors, states, ideas, emotions, etc. Its effectiveness has

been validated by real data in [16] (modeling the spread of

obesity) and in [17] (modeling the spread of emotions such as

content).

Proposition 1. In the equilibrium of (25), the probability for

a user to adopt the DSM scheme is

PI =
I(t)

N
=

1

2

(
1−

α+ γ

(1 − α)βN

+

√(
1−

α+ γ

(1− α)βN

)2

+
4α

(1 − α)βN


 . (26)

Proof. The equilibrium is obtained when S(t+1)−S(t) =
I(t + 1) − I(t) = 0. Considering that I(t) + S(t) = N , at

equilibrium, we have

(1 − α)βI(t)(N − I(t))− γI(t) + α(N − I(t)) = 0. (27)

Solving this equation for I(t), we can get (26). �

As a market penetration problem, in order to get at least

I(t) ≥ NPI users to I, from (26) we require

γ <

(
(1− α)βN +

α

PI

)
(1− PI). (28)

By improving DSM performance (i.e., maximizing social

welfare W (x)), we can increase β and reduce γ for (28) to

be satisfied.

IV. INTEGRATING HUMAN BEHAVIOR MODEL WITH DSM

Let us consider the DSM optimization (9) first. Based on the

SISa model (25), only the I(t) users in the set I participate in

the optimization. Therefore, the cost function (4) and utility

function (6) are changed to

C(x) =
∑

h∈H

fh

(
∑

n∈I

∑

a∈An

xn,a(h) +
∑

m∈S

∑

a∈Am

xm,a(h)

)
,

(29)

and

U(x) =

∑

h∈H

∑

a∈An

(
∑

n∈I

Un,a(xn,a(h)) +
∑

m∈S

Um,a(xm,a(h))

)

(30)

If the central controller can still read the overall energy

consumption data Lm(h) =
∑

a∈Am
xm,a(h) of each user in

S (those who do not participate in the DSM) through smart

meters, it calculates ES(h) =
∑

m∈S Lm(h) and apply the

new cost and utility functions

C1(xI) =
∑

h∈H

fh

(
∑

n∈I

∑

a∈An

xn,a(h) + ES(h)

)
, (31)

U1(xI)

=
∑

h∈H

∑

a∈An

(
∑

n∈I

Un,a(xn,a(h)) +
∑

m∈S

Um,a(Lm(h))

)

(32)

where xI = {xn|n ∈ I}.

Otherwise, if the data Lm(h) is not available (e.g., due to

lack of smart meters), then the central controller has to skip

xm,a(h). The cost and utility functions become

C̃1(xI) =
∑

h∈H

fh

(
∑

n∈I

∑

a∈An

xn,a(h)

)
, (33)

Ũ1(xI) =
∑

h∈H

∑

n∈I

∑

a∈An

Un,a(xn,a(h)) (34)

In both cases, we have constraint xn ∈ Xn, ∀n ∈ N . Now

we can optimize the social welfare (9) with the new cost and

utility functions, i.e.,

W1(xI) = U1(xI)−C1(xI), or W̃1(xI) = Ũ1(xI)−C̃1(xI).
(35)

We assume that the infection probability β and the recovery

probability γ are functions of the social welfare W1(xI) or

W̃1(xI). The rationale is that the probability for a user to

adopt or abandon the DSM scheme depends on the social

welfare of the scheme. The higher the social welfare, the

smaller the probability γ and the higher the probability β.

Some typical functions can be used, such as linear function

g(W ) = µW +η, exponential function g(W ) = η(1−e−µW ),
or sigmoid/logistic function g(W ) = η/(1 + e−µ(W−W0)),
with appropriate parameters.
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Therefore, in our composite model, the new SISa model (25)

affects the social welfare W1(xI) or W̃1(xI) through the user

set I, while the social welfare affects the SISa model through

the parameters β and γ. Since the SISa model evolves at a

much slower pace than the optimization (9), we assume that

during each iteration of (25) we have time to finish a new

optimization (9) and use the optimized social welfare W1(xI)
or W̃1(xI) to update β and γ.

Proposition 2. Assume monotonically increasing cost func-

tions fh(ℓ). For any two subsets I1 ⊆ N and I2 ⊆ N , if

I1 ⊆ I2, then W1(xI1 ) ≤ W1(xI2) and W̃1(xI1 ) ≤ W̃1(xI2 ).

Proof. For cost minimization C(x), since the cost functions

fh(ℓ), h ∈ H, are monotonically increasing, the minimum

values of both (31) and (33) are achieved at the same

minxI

∑
n∈I

∑
a∈An

xn,a(h). Therefore, C1(xI) = C̃1(xI),
which means the energy consumption data of the users in S
can be safely omitted from the cost optimization. In addition,

if I1 ⊆ I2, then

∑

m∈I2\I1

∑

a∈Am

xm,a(h) + min
xI1

∑

n∈I1

∑

a∈An

xn,a(h)

≥ min
xI2

∑

n∈I2

∑

a∈An

xn,a(h) (36)

for all h ∈ H. Hence C1(xI1) ≥ C1(xI2). Similarly, for

the utility maximization of U(x), we can easily see that

U1(xI1 ) ≤ U1(xI2) and Ũ1(xI1) ≤ Ũ1(xI2 ) because the over-

all utility is a summation of all the user’s utilities. Combining

the cost C(x) and the utility U(x) together, we can prove the

proposition. �

The more users involved in the DSM, the better the perfor-

mance. Higher market penetration is always better.

To analyze I(t) of the set I at equilibrium, from (25)(28),

the system can converge to the best case I = N if

I(t + 1) − I(t) > 0 for any t, which means γ < [(1 −
α)β + α/I(t)](N − I(t)) for all possible sets I ⊂ N . If

γ > [(1 − α)β + α/I(t)](N − I(t)) for all I ⊂ N , then no

user participates in the DSM and I = φ. The system may

consist of a mixture of I and S users otherwise.
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By comparing γ with [(1 − α)β + α/I(t)](N − I(t)), we

can analyze the convergence and equilibrium of the com-

posite model. An example is illustrated in Fig. 2, where

γ = g(W1(xI)) = µW1(xI) with constant µ. Point B is a

desirable convergent equilibrium since I = N . However, point

A is also a convergent equilibrium for the case of µ = 0.6.

Depending on the parameters, the initial set I may converge

to either A or B.

V. SIMULATIONS

First, we consider a simple system with 32 households. The

parameters of the SISa model are β = 0.005, α = 0.019, and

γ = µW/Wmax where Wmax is the maximum social welfare.

To clearly illustrate the effects of human behavior on DSM,

simulations are conducted for 4 different scenarios: 1) without

using DSM or SISa; 2) DSM model of [5] without SISa (I =
N ); 3) DSM model of [5] integrated with SISa and a relatively

high µ = 0.3; and 4) DSM model of [5] integrated with SISa

and a relatively low µ = 0.06. The initial conditions of I for

our composite models are set at I = φ.

Fig. 3 shows the evolution of the number of users in the

set I. Note that the equilibria fit well with the analysis results

illustrated in Fig. 2. Electricity costs for all different scenarios

are calculated and plotted in Fig. 4. The SISa parameters play

a critical role on the convergence of the composite models and

the market penetration of the DSM schemes.
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Fig. 6. Convergence in terms of number of users adopting DSM, with
experiment data.

To determine the SISa model parameters in a more realistic

setting, we did a survey experiment in a class of 20 students.

Students were asked whether they would like to adopt the

DSM, for what a cost change they would cancel the DSM,

and for what a cost change they would recommend the DSM

to friends. With the collected data, we determined α = 0.15
based on the first question. The regression of the data of the

second equation gave γ = 1.4249W/Wmax − 0.503, while

the regression of the data of the third equation gave β =
0.0175 + 1.3432(1 − W/Wmax), see Fig. 5. We used these

parameters in the simulation of a DSM system of 20 users.

The simulation results are shown in Figs. 6 and 7. Similarly,

we can see that the effectiveness of the DSM scheme is highly

related to the human behavior.

VI. CONCLUSIONS

In this paper, we develop population dynamic human be-

havioral models for smart grid demand side management

(DSM). A composite DSM model is presented by integrating

a new SISa model with a game-theoretic DSM scheme. The

convergence and the equilibria of the composite model are

studied by analysis and simulation, which demonstrates the

importance of addressing human behavior in DSM.
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