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ABSTRACT

In this paper, a new active learning scheme is proposed for linear

regression problems with the objective of resolving the insufficient

training data problem and the unreliable training data labeling prob-

lem. A pool-based active regression technique is applied to select the

optimal training data to label from the overall data pool. Then, com-

pressive sensing is exploited to remove labeling errors if the errors

are sparse and have large enough magnitudes, which are called large

outliers. Next, in order to mitigate the non-sparse labeling errors that

have relatively small magnitudes, which are called small outliers, a

new technique is developed to convert them back into sparse large

outliers. With both artificial and real data sets, extensive simulations

are conducted to verify the robustness of the proposed scheme in

training data selection and outlier suppression.

Index Terms— Robust linear regression, outlier mitigation,

compressive sensing, active learning

1. INTRODUCTION

The objective of active regression is to minimize the amount of train-

ing data used in regression problems by looking for the most infor-

mative ones. It is useful when the training data are costly to label

or when they have to be transmitted through bandwidth/power lim-

ited wireless networks [1]. Active regression is becoming increas-

ingly important nowadays because many modern machine learning

problems have large dimensions and need an enormous amount of

training data, which has made data labeling a significant bottleneck.

Many effective active regression algorithms have been devel-

oped. In [2], active regression was conducted based on output vari-

ance minimization, which was shown equivalent to minimizing the

generalization error, i.e., the error when applying the regression re-

sults to the test data. An active regression algorithm that directly

minimizes the expected generalization error was developed in [3].

More recently, the algorithm in [4] was based on the principle of

maximizing the expected model change. The algorithms in [5] and

[6] used the stratification and vector norm maximization techniques,

respectively. Sequential active regression was studied in [7] [8] un-

der a concept of integrated human and machine learning.

It has been shown that active regression can outperform the con-

ventional passive regression, as seen in [5] [6] [9]. Nevertheless,

active regression usually suffers from a severe performance fluctu-

ation in practice because it tends to select the most ambiguous and

noisy data for training, which unfortunately causes not only high re-

gression errors but also heavy labeling errors. Modeled as outliers,
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if the labeling errors are sparse and have large magnitudes, they can

be suppressed by robust regression techniques, including both con-

ventional techniques such as RANSAC (Random Sample Consen-

sus) [10] and new techniques such as compressive sensing [11]- [15].

While large and sparse outliers can be suppressed by robust re-

gression techniques, non-sparse outliers with relatively small magni-

tudes, which are called small outliers, are another big issue that has

not been studied sufficiently. Small outliers comparable to noise can

not be mitigated with existing robust regression techniques. Conven-

tionally, they are treated just as noise. However, such an approxima-

tion violates the noise assumption, and may fundamentally limit the

regression/prediction performance. Detecting and mitigating such

small outliers is highly useful for further improving regression per-

formance.

Small and non-sparse outliers are common in practical applica-

tions. For example, human labelers usually have small bias or skews

when labeling the training data. As another example, in today’s In-

ternet of Things (IoT), data are collected from thousands of sensors

since IoT is all about data indeed [16]. However, the data may not

be reliable enough because sensors may be faulty, or may not be

calibrated accurately.

In this paper, we develop an active regression scheme that has

the capability of removing both large sparse outliers and small non-

sparse outliers. We apply a pool-based active regression technique

for reliable training data selection, and employ compressive sensing

technique for robust outlier mitigation.

The remainder of this paper is organized as follows. The active

regression model is described in Section 2. In Section 3, new outlier

mitigation techniques are developed. Simulations and conclusions

are given in Sections 4 and 5, respectively.

2. ACTIVE REGRESSIONMODEL

We consider the general linear regression model

yi = x
′
iθθθ + ǫi + hivi + oi, (1)

where yi is the data label, xi is the N × 1 dimensional data vector,

θθθ is the N × 1 dimensional regression vector, vi is the small outlier

applied through the scalar factor hi, oi is the large outlier, and ǫi is
the noise with zero-mean and variance σ2

ǫ .

We have included both large outliers and small outliers in (1).

Large outliers have magnitudes much larger than the noise standard

deviation σǫ, i.e., |oi| ≫ σǫ. They are assumed sparse, or the prob-

ability of oi 6= 0 is relatively small. In contrast, small outliers

have magnitudes comparable to the noise standard deviation, i.e.,

|hivi| ≈ σǫ or |hivi| < σǫ. Small outliers are not assumed sparse.
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As a linear regression problem, we need to estimate θθθ by train-

ing. If xi is selected as training data, a labeler generates the label

yi, during which there are possibly large outlier oi and small outlier

hivi. From the pool of I data vectors, we select T of them to con-

struct a training data set (Xtr,ytr), where Xtr = [x1, · · · ,xT ]
′

and ytr = [y1, · · · , yT ]
′, and use it to estimate θθθ.

In this paper, we use the pool-based sequential active learning

technique of [3] to select the training data. We select the best T
input data vectors xi iteratively out of the overall I input data vectors
with the objective of minimizing the expected prediction error. To

be more specific, the input dataXtr would be selected from the pool

of I input data with the probability proportional to

Pa(X) =

(

N
∑

i,j=1

[Û−1]i,jX
′
iXj

)a

, (2)

where Xi and Xj are the ith and jth columns of the overall I ×N

input data matrix X, respectively. Û is an N × N matrix, with

the (i, j)th element Ûi,j = E[X′
iXj ]. The parameter a is applied

to adjust the tail of the distribution. The optimal training data set

Xtr is selected with the best value of a that minimizes the objective

function

J = tr
(

ÛLL
′
)

, (3)

whereL = (X′
trWXtr)

−1
X′

trW,W is a T×T weighting matrix,

and tr stands for the matrix trace operation.

After selecting the training data Xtr, the labeled vector ytr is

obtained, and we have

ytr = Xtrθθθ + ǫǫǫ+Hv + o (4)

according to (1). Note that ǫǫǫ, v and o are derived from the stacking

of ǫi, vi, and oi into vectors, respectively. The matrix H is resulted

from hi. We need to estimate and suppress the possible outliers o

and v before estimating θθθ

3. OUTLIER SUPPRESSION FOR BOTH SMALL AND

LARGE OUTLIERS

3.1. Large outlier suppression

The large outlier oi has much larger magnitude than both the noise

and the small outliers. In conventional schemes, the small outliers

are treated as noise, and we can use compressive sensing to estimate

θθθ and o through the following joint optimization

{θ̂θθ, ô} = arg min
{θθθ,o}

‖ytr − o−Xtrθθθ‖+ λ0‖o‖0. (5)

The weighting coefficient λ0 is adjusted to match the sparsity ‖o‖0,
where ‖ · ‖0 denotes ℓ0 norm.

A common practice of compressive sensing is to replace the ℓ0
norm with the convex ℓ1 norm, which changes (5) to

{θ̂θθ, ô} = arg min
{θθθ,o}

‖ytr − o−Xtrθθθ‖+ λ1‖o‖1. (6)

Following [13], we can find the solution as

θ̂θθ =
(

X
′
trXtr

)−1
X

′
tr(ytr − ô), (7)

where the outlier vector can be obtained from

ô = arg min
o

‖ytr − o−Xtrθ̂θθ‖+ λ1‖o‖1

= arg min
o

∥

∥

(

I−Xtr(X
′
trXtr)

−1
X

′
tr

)

(ytr − o)
∥

∥+ λ1‖o‖1,

(8)

where I is an identity matrix.

Proposition 1. Assume T > N . If σ2
ǫ → 0, hivi → 0 and the

outlier sparsity satisfies ‖o‖0 < (T −N)/2, the optimization ô =
arg mino

∥

∥

(

I−Xtr(X
′
trXtr)

−1X′
tr

)

(ytr − o)
∥

∥ has a unique

solution ô = o.

Proof. Let ytr− ô = Xtrθθθ+ǫǫǫ+Hv+∆o where∆o = o− ô

is the residue error of the outlier subtraction.

Since the matrix Q = I − Xtr(X
′
trXtr)

−1X′
tr is idempotent

with rank T − N , we have Q(ytr − ô) = Q(ǫǫǫ + Hv + ∆o).
Consider the singular value decomposition Q = UDU′, where D

is the diagonal singular value matrix with all the non-zero singu-

lar values only and U is the T × (T − N) singular vector matrix.

The minimization problem min ‖Q(ǫǫǫ + Hv + ∆o)‖ is equivalent

to min ‖DU′(ǫǫǫ + Hv + ∆o)‖. When σ2
ǫ → 0 and hivi → 0,

the optimization is reduced to min ‖DU′∆o‖. Then, if ‖o‖0 <
(T − N)/2, we can set ‖ô‖0 < (T − N)/2 for the optimization.

Therefore, ‖∆o‖0 < T − N . This leads to the unique solution

∆o = 0 and thus ô = o. �

Proposition 1 shows that when the noise is small enough, all the

large outliers can be estimated and mitigated perfectly if the fraction

of outliers ‖o‖0/T in the training data set satisfies

‖o‖0
T

<
1

2
−

N

2T
. (9)

This accounts for the important observation that the compressive

sensing method becomes ineffective when the fraction of outliers (a

measure of sparsity) is over 0.5. In addition, the number of training

data T has to be sufficiently larger than N , which is the dimension

of the problem, as T > N + 2‖o‖0.
From the proof we can also see that the variance of the residue

error ∆oi = oi − ôi, denoted as σ2
δo, is comparable in size to noise

plus small outlier variance. Outliers as small as or smaller than noise

can not be removed.

Therefore, Proposition 1 explains that we need new techniques

to address small and non-sparse outliers. In the sequel, we first

present small outlier models and then develop small outlier mitiga-

tion techniques.

3.2. Small outlier model

Assume that the T training data are labeled byL labelers and each la-

beler labels TL = T/L data. Without loss of generality, we assume

that the ℓth labeler labels the training data set (Xℓ,yℓ), whereXℓ =
[x(ℓ−1)TL+1, · · · ,xℓTL

]′ and yℓ = [y(ℓ−1)TL+1, · · · , yℓTL
]′. In

addition, each of the ℓth labeler has a common outlier value vℓ,
which is added to the labeling values via the weighting vector

hℓ = [h(ℓ−1)TL+1, · · · , hℓTL
]′, ℓ = 1, · · · , L. (10)

We assume that ‖hℓ‖ = 1 and |vℓ| ≫ σ2
ǫ if vℓ 6= 0. For exam-

ple, if the ℓth labeler labeled TL = 10 data, and had suffered from

small outliers h(ℓ−1)TL+kvℓ =
1
10
vℓ, which is as large as the noise

standard deviation σǫ and is too small to be detected by conventional

outlier mitigation algorithms. In this case, we can also see that vℓ is
10 times as large as σǫ. Therefore, if we combine all the 10 small

outliers together, we are able to detect vℓ.
Based on these assumptions, we consider two outlier models in

this paper. For the small outlier model 1, we assume that the weight-

ing vector hℓ of each labeler ℓ is unknown, but all the labelers have
the same weighting vector, i.e., hℓ = h = [h1, · · · , hTL

]′. For

example, in certain survey experiments, it is likely that all the users

have the same gradually increased bias while labeling (answering)
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more questions. These users have the same weighting vector h but

different bias values vℓ.
For the small outlier model 2, the weighting vectors hℓ are dif-

ferent for different labelers, but the vectors are assumed known a

priori. For example, the characteristics of the small outliers can be

analyzed and determined beforehand.

In the first model, we can estimate h from the training data set

after removing the large outliers oi firstly with (7) and (8). By col-

lecting all the L users’ labeled data yℓ, where ℓ = 1, · · · , L, we can
estimate the common weighting vector h by solving the following

maximization

ĥ = argmax
h

E
[

‖h′(yℓ − ôℓ)‖
2] , s.t., ‖h‖ = 1 (11)

where ôℓ = [ô(ℓ−1)TL+1, · · · , ôℓTL
]′

We can find the correlation matrix

Ry = E
{

(yℓ − ôℓ)(yℓ − ôℓ)
′}

(12)

approximately using the sample average 1
L

∑L

ℓ=1(yℓ − ôℓ)(yℓ −
ôℓ)

′. The optimization (11) is then

ĥ = argmax
h

h
′
Ryh, s.t., ‖h‖ = 1. (13)

The solution to the optimization (13) is the eigenvector ofRy corre-

sponding to its maximum eigenvalue.

3.3. Small outlier mitigation

For the small outlier model 1, with the estimated weighting vector

ĥ, we can construct L new labeled training data

zℓ = ĥ
′(yℓ − ôℓ) = ĥ

′
Xℓθθθ + ĥ

′ǫǫǫℓ + ĥ
′
hvℓ. (14)

We can see that

E[‖ĥ′(yℓ − ôℓ)‖
2]

= ĥ
′E
[

(Xℓθθθ + ǫǫǫℓ + hvℓ)(Xℓθθθ + ǫǫǫℓ + hvℓ)
′]
ĥ

= ĥ
′ (E[Xℓθθθθθθ

′
X

′
ℓ]
)

ĥ+ σ2
ǫ ĥ

′ĥ + ĥ′hv2ℓh
′
ĥ

= ĥ
′
(

E[Xℓθθθθθθ
′
X

′
ℓ]
)

ĥ+ σ2
ǫ + v2ℓ . (15)

In (15), the noise power σ2
ǫ stays unchanged, while the outlier power

is enhanced from |h(ℓ−1)TL+kvℓ|
2 to |vℓ|

2. A gain of TL is achieved

to boost small outliers. This makes it possible to detect the small

outliers which are not detectible with conventional robust regression

algorithms. The larger TL is, the more reliable the small outlier

detection will be.

For the small outlier model 2, since the weighting vectors hℓ are

assumed known, the new labeled data is calculated directly as

zℓ = h
′
ℓ(yℓ − ôℓ), ℓ = 1, · · · , L. (16)

In this way, we obtain L new training data (h′
ℓXℓ, zℓ), ℓ =

1, · · · , L. Appending these new training data to the original train-

ing data set, we have T + L training data in total. In these training

data, we will have less than L large outliers contained in the data zℓ
with the magnitude of vℓ, which guarantees the sparsity of the large

outliers.

Define the new T + L training data set as (X̃, ỹ), where X̃ =
[X′

tr,X
′
1h1, · · · ,X

′
LhL]

′
, ỹ = [y′

tr, z1, · · · , zL]
′
. We have

ỹ = X̃θθθ + ǫ̃ǫǫ+ ṽ, (17)

where

ǫ̃ǫǫ = [ǫǫǫ′,h′
1ǫǫǫ1, · · · ,h

′
LǫǫǫL]

′,

ṽ = [(Hv)′, v1, · · · , vL]
′. (18)

Since the new outliers in (17) are large enough in magnitude and

sparse, they can be detected by the conventional outlier detection

algorithms. Note that there are at most L new large outliers among

the T + L overall training data.

Therefore, based on (17), we can use the compressive sensing

method again to estimate θθθ and ṽ jointly as

{θ̂θθ, v̂} = arg min
{θθθ,ṽ}

‖ỹ − ṽ − X̃θθθ‖+ λ1‖ṽ‖1. (19)

Similar to (7)(8), the solution to the joint optimization of (19) is

θ̂θθ =
(

X̃
′
X̃
)−1

X̃
′(ỹ − ṽ), (20)

and

v̂ = arg min
ṽ

∥

∥

∥

(

I− X̃(X̃′
X̃)−1

X̃
′
)

(ỹ − ṽ)
∥

∥

∥
+ λ1‖ṽ‖1. (21)

Note that I is a (T + L)× (T + L) identity matrix.

The key point is that the large outliers have been subtracted from

ỹ via ô, and the small outliers are removed via ṽ in (20). Therefore,

the estimation of the regression vector θθθ in (20) is more accurate.

3.4. New active regression scheme

In summary, the algorithm for the new proposed scheme with joint

small and large outlier mitigation and pool-based active regression

is given below.

New Robust Regression Algorithm

i) Input: Data pool {xi, yi, i = 1, 2, · · · , I}, λ1, T , TL

ii) Pool-based active learning: Select T training data out

of the data pool with (2) and (3);

iii) Large outlier mitigation: Estimate and remove ô with

(7) and (8);

iv) Small outlier mitigation:

1) Construct new training data with (14) and (16), and

form the T + L new training data X̃ and ỹ;

2) Estimate v̂ and θ̂θθ with (20) and (21);

v) Output: θ̂θθ for test data prediction.

In this algorithm, we apply convex optimization to estimate and

mitigate both the large outliers and the small outliers. The large

outlier vector o is sparse. The non-sparse small outlier vector v is

converted into the sparse large outlier vector ṽ through the outlier

reconstruction technique in (14) and (16).

4. SIMULATIONS

In order to verify the performance of the proposed scheme for the

small and large outlier mitigation in pool-based active regression

(SLOM+PB), extensive simulations with an artificial data set, a

UCI benchmark data set and a survey data set were conducted. We

compared the new algorithm with the following algorithms: Conv.

R which implemented only the conventional regression; LOM

which applied simply large outlier mitigation using compressive
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Fig. 1. Regressor estimation performance with the small outlier

model 1.
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Fig. 2. Regressor estimation performance with the small outlier

model 2.

sensing [13]; RANSAC which employed Random Sample Con-

sensus [17]; PB which implemented [3]; RANSAC+LOM which

combined RANSAC with LOM; and PB+LOM which integrated

PB with LOM.

Firstly, we used the artificially generated data for simulation.

We let I = 400, N = 10, T = 200, TL = 20, θθθ ∼ N (0N , IN ),
xi ∼ N (0N , IN ), and ǫi ∼ N (0, 0.25). We modeled large outliers

with Laplacian distribution oi ∼ L(0, 103), and small outliers with

vi ∼ L(0, δv). As for the small outlier weighting vectors, in model

1 the vectors followed the Gaussian distribution hhh ∼ N (0TL
, ITL

).
For model 2, since the weighting vectors for different labelers are

different, the set of weighting vectors followed the Gaussian distri-

bution hℓ ∼ N (0TL
, (0.25 + 0.05a)ITL

), where a ∼ N (0L, IL).
We evaluated NRMSE (normalized root mean square error) of the

regression vector θθθ estimation

√

E[‖θ̂θθ − θθθ‖2/‖θθθ‖2] with 100 runs

of experiments for each small outlier standard deviation δv . The

simulation results in Fig. 1 clearly show that our new algorithm out-

performs the other algorithms with the small outlier model 1. In

Fig. 2 with the small outlier model 2, our new algorithm shows even

better performance.

Next, we simulated the algorithms by applying the small out-
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Fig. 3. Prediction performance with the small outlier model 1 in the

Air Quality data set.
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Fig. 4. Prediction performance with the small outlier model 1 in the

survey data.

lier model 1 to the UCI benchmark data set of Air Quality [18] as

well as a mock teacher evaluation survey data set designed and con-

ducted by us. We compared the NRMSE of the prediction of yi, i.e.,
√

E[|ŷi − yi|2/|yi|2] of the five different algorithms. Fig. 3 and

Fig. 4 both show that our new algorithm is more robust to outliers.

5. CONCLUSIONS

In this paper, a new robust regression scheme has been developed

which integrates active learning with compressive sensing to make

the data labeling in linear regression problems more robust to both

sparse large outliers and non-sparse small outliers. Non-sparse small

outliers were converted to sparse large outliers in order to use the

compressive sensing method for outlier mitigation. The robustness

of the new algorithm was verified by extensive simulations with ar-

tificial data, UCI benchmark data, as well as real survey data.
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