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ABSTRACT

In this paper, we develop a new deflation-based blind source ex-

traction (BSE) algorithm to estimate and extract source signals in

a sequential fashion from the mixtures. At the beginning of this

algorithm, the first source signal is estimated by a constrained op-

timization and its efficient updating rule. Then, the other source

signals are estimated and extracted by an exact solution subspace

searching-based deflation technique. The key merit is that this new

technique can greatly alleviate the error accumulation problem suf-

fered by traditional deflation methods. Using speech source signal

separation as example, simulations are conducted to demonstrate the

superior performance of the proposed algorithm in both source ex-

traction and error-accumulation mitigation over typical simultaneous

blind source separation and deflation-based BSE algorithms.

Index Terms— Blind source extraction, deflation, exact solu-

tion subspace searching, error accumulation, source separation

1. INTRODUCTION

The problem of blind source extraction (BSE) [1–8] involves recov-

ery of one or a subset of unknown source signals from their observed

mixtures without prior knowledge of the mixing matrix. Unlike si-

multaneous blind source separation (BSS) [9, 10], the objective of

BSE is to extract the source signals in a sequential fashion, i.e., one

by one, rather than to recover all of them simultaneously. BSE is

a well-known signal processing method with wide applications in

noninvasive fetal ECG extraction [2, 3], EEG readiness potentials

extraction [4], heart/lung sound signals separation [5], speech signal

denoising and enhancing [6–8], etc.

BSE has some advantages over the simultaneous BSS [1], espe-

cially when the aim is just to extract a couple of desired signals from

the mixtures of a large number of source signals. BSE can be con-

sidered as a generalization of principal component analysis (PCA).

It can extract signals in a specified order according to some type of

feature of the source signals. BSE can be designed to extract only

a few source signals of interest, which is often more flexible in real
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applications. In general, the learning rules for BSE are simpler and

have lower computational complexity.

A number of publications have addressed the problem of BSE.

Liu et al. [11] applied the linear predictor method to BSE. Shi et

al. [12] addressed the BSE problem in the case when the desired

source signal has certain temporal structure. The traditional Fas-

tICA method tends to suffer from the divergent behavior for a mix-

ture of Gaussian-only sources. To overcome this drawback, a cri-

terion called KSICA was proposed in [13] for blind extraction of

spatio-temporally nonstationary speech source. Sällberg et al. [14]

proposed a speech BSE method with a fixed-point property that is

valid for a range of sources including Gaussian signals. Leong et

al. [15] generalized the traditional BSE methods to the case where

the mixing is ill-conditioned and post-nonlinear. Sawada et al. [16]

put forward a method for enhancing target source signals by using a

two-stage method with independent component analysis (ICA) and

time-frequency masking techniques. Washizawa et al. [17] proposed

a method that does not need the strong assumptions such as inde-

pendence or non-Gaussianity on source signals. In [18], a linear in-

stantaneous differential fixed-point ICA (LI-DFICA) algorithm was

developed for underdetermined mixtures.

In a typical sequential BSE algorithm, the following two cas-

caded steps are conducted. First, a source signal with certain special

properties is estimated. Then, a deflation scheme is used to implic-

itly or explicitly remove the contribution of this source signal from

the mixtures [19–24]. As pointed out in [19–21], one of the major

problems of the deflation schemes is error accumulation. Estimation

errors of source signals are propagated to the subsequent procedures.

The accumulated errors will degrade the estimation accuracy of the

source signals recovered later. In this paper, we propose an exact

solution subspace searching-based deflationary blind source extrac-

tion (ESSS-DBSE) algorithm, which can greatly alleviate the error

accumulation problem.

The rest of this paper is organized as follows. In Section 2, we

formulate the BSE problem. In Section 3, we develop the new ESSS-

DBSE algorithm. Simulations are conducted in Section 4 and con-

clusions are drawn in Section 5.

2. PROBLEM FORMULATION

Consider the instantaneous mixing model

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xJ (t)]
T

is a vector of J observation sig-

nals, s(t) = [s1(t), . . . , sR(t)]
T

is a vector of R source signals,
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A ∈ R
J×R is an unknown full column rank mixing matrix, and

n(t) represents additive noise. Note that (·)T denotes transpose,

and R means real domain.

We make the following assumptions for the source signals s(t)
and noise n(t): 1) The source signals are zero-mean, spatially uncor-

related but temporally correlated; and 2) the additive noise n(t) is a

stationary, temporally white zero-mean random process independent

of the source signals.

The covariance matrix of x(t) with a time lag τi is defined as

Ci = E{x(t)xT (t+ τi)}. (2)

Since the noise is assumed temporally white, Ci is not affected by

the noise for nonzero time lags. Therefore, if τi 6= 0, then Ci =
ADiA

T , where Di = E{s(t)sT (t + τi)} is a diagonal matrix.

Specifically,

Ci = Adiag[di1, · · · , diR]A
T

(3)

where diag[di1, · · · , diR] = Di.

When the number of the observation signals is more than the

number of the source signals, i.e., J > R, a preprocessing step is

usually applied to reduce the dimensional redundancy of the obser-

vation signals. First, we compute the singular value decomposition

(SVD) of C0 = E{x(t)xT (t)} as

C0 = [U, Un]

[

Σ 0

0 Σn

]

[V, Vn]
T

(4)

where U ∈ R
J×R and V ∈ R

J×R are columnwise orthonormal

matrices whose columns correspond to R principal singular values,

Σ = diag[σ1, . . . , σR] is a diagonal matrix of the R principal sin-

gular values, and Σn = diag[σR+1, . . . , σJ ] is a diagonal matrix of

the (J − R) smallest singular values, i.e., σ1 ≥ σ2 ≥ . . . ≥ σR >
σR+1 ≥ . . . ≥ σJ . Next, with the left singular vectors contained in

U, we perform the preprocessing of x(t) as

x̄(t) = U
T
x(t). (5)

Then, the covariance matrices Ri = E{x̄(t)x̄T (t + τi)}, i =
1, . . . , N , can be expressed as

Ri = U
T
CiU. (6)

BSS recovers the source signals by a separating matrix W ∈
R

R×R such that

y(t) = Wx̄(t) = WU
T
x(t) = Gs(t) (7)

has spatially uncorrelated components. BSS is considered success-

ful when y(t) = [y1(t), . . . , yR(t)]
T is a permuted and scaled ver-

sion of s(t), which implies that the global mixture-separation matrix

G = WUTA is a generalized permutation matrix of the form

G = PΛ (8)

where P is a permutation matrix and Λ is a non-singular diagonal

matrix.

Let us denote by w a row of the separating matrix W. Accord-

ing to (7) and (8), ATUwT = ek, where ek = [0, · · · , γk, · · · , 0]
T

is a vector with only one nonzero element γk in the kth place. Hence,

Riw
T = dikγkU

T
ak, Rjw

T = djkγkU
T
ak (9)

where ak denotes the kth column vector of the mixing matrix A.

For BSE, the extraction operation boils down to estimating a row

vector w at a time to extract a source signal as y(t) = wx̄(t).

3. EXACT SOLUTION SUBSPACE SEARCHING

ALGORITHM

3.1. Extraction Detecting Device

According to (9), the following equation holds

Riw
T = γRjw

T
(10)

where γ is a scalar. The vector wT is the generalized eigenvector

of the matrix pencil (Ri,Rj), and can be roughly estimated by the

generalized eigenvalue decomposition (GEVD). Nevertheless, in or-

der to obtain more accurate and non-trivial solutions, we need to use

a series of covariance matrices R1, . . . ,RN rather than only two of

them.

Define yi = Riw
T= [rTi1, . . . , r

T
iR]

TwT= [yi1, . . . , yiR]
T ,

yj = Rjw
T= [rTj1, . . . , r

T
jR]

TwT= [yj1, . . . , yjR]
T , where rik

and rjk are the kth row vectors of Ri and Rj , respectively. Accord-

ing to (10), yi and yj are proportional. Therefore, we have

yisyjt − yityjs = 0, 1 ≤ i < j ≤ N, 1 ≤ s < t ≤ R. (11)

With vector notation, (11) can be rewritten as

(risw
T
rjt − ritw

T
rjs)w

T = 0 (12)

or

(rjtw
T
ris − rjsw

T
rit)w

T = 0. (13)

Furthermore, equations (12) and (13) can be written more concisely

as

Pw
T = 0 (14)

where P ∈ R
M×R, M = N(N−1)R(R−1)

4
, and 0 is a zero vec-

tor. The M rows of P are risw
T rjt − ritw

T rjs + rjtw
T ris −

rjsw
T rit,1 ≤ i < j ≤ N, 1 ≤ s < t ≤ R. Because (14) provides

a criterion for detecting whether the extraction is achieved or not, we

term it “extraction detecting device”. Note that (14) is the starting

point of our new BSE algorithm that will be derived in the next two

subsections.

3.2. Optimization and Iterative Update Rule for First Signal Ex-

traction

To extract a source signal from the mixtures, let us consider the con-

strained optimization problem

min J (b) = b(BT
B)bT

, s.t., ‖b‖ = 1

where b ∈ R
1×R and ‖·‖ denotes the Frobenius norm. The M rows

of B are risb
T rjt − ritb

T rjs + rjtb
T ris − rjsb

T rit,1 ≤ i <

j ≤ N, 1 ≤ s < t ≤ R. From (14), the solution to this constrained

optimization is an estimate of w.

For this nonlinear optimization problem, we can use the iterative

update rule [25] to search for the solution

b← b+ v, b←
b

‖b‖
(15)

where v is the eigenvector of the matrix BTB corresponding to the

eigenvalue with the smallest magnitude. Note that the matrix B has

to be updated as well by the vector b estimated in the previous iter-

ation. After reaching a stationary point, b is an estimated row ŵ1 of

W and used to extract a source signal as ŝ1(t) = bx̄(t).
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3.3. Exact Solution Subspace Searching-Based Deflation for the

Extraction of Other Source Signals

After extracting one signal component, we can apply the deflation

technique to extract other source signals from the mixtures sequen-

tially. Let us assume that we have estimated l rows of the matrix

W, denoted as ŵ1, . . . , ŵl. With them, we have estimated l source

signals, denoted as ŝl(t) = ŵlx̄(t). Then, our objective is to find

ŵl+1 and recover ŝl+1(t).
To explain the deflation principle, we denote by Ψ1 the sub-

space corresponding to the solutions which minimize the objective

function b
(

BTB
)

bT , and by Ψ2 the subspace that does not con-

tain the previously estimated row vectors ŵ1, . . . , ŵl. The solution

of ŵl+1 belongs to their intersection Ψ1

⋂

Ψ2, which we term “ex-

act solution subspace”.

To address Ψ2, we design a penalty term b
(

uuT
)

bT , where

u ∈ R
R×1 is orthogonal to ŵ1, . . . , ŵl. The application of this

penalty term prevents the vector b from converging to ŵ1, · · · , ŵl

and consequently fixes it to the subspace Ψ2.

In order to search for the solutions in the subspace Ψ1

⋂

Ψ2,

which we term “exact solution subspace searching” (ESSS), we

combine the objective function and the penalty term together as

λ =
b
(

BTB
)

bT

b (uuT )bT
. (16)

As a special case, if b makes b
(

BTB
)

bT = 0 and b
(

uuT
)

bT 6=
0, then λ takes the minimum value of 0, and b is the required ŵl+1.

Hence, the minimization of (16) forces b to be different from

ŵ1, . . . , ŵl.

Considering that

(

B
T
B
)

b
T = λ

(

uu
T
)

b
T

(17)

is a sufficient condition for (16), we can limit our solution search

within the generalized eigenvectors of the matrix pencil (BTB,uuT ).
This can greatly enhance convergence.

Therefore, in the deflation procedure of the sequential BSE, we

first update the matrix B using the value of b estimated in the previ-

ous iteration. Then, we calculate

v
∗ = arg min

b∈{v1,...,vR}

b
(

BTB
)

bT

b (uuT )bT
(18)

where v1, . . . ,vR are the generalized eigenvectors of the matrix

pencil (BTB,uuT ). Next, we update b as

b← b+ v
∗
, b←

b

‖b‖
. (19)

These three steps are executed iteratively until the stationary point is

reached.

In order to find the vector u orthogonal to ŵ1, . . . , ŵl, we first

stack ŵ1, . . . , ŵl into the matrix Ŵ(l) =
[

ŵT
1 ,· · · ,ŵ

T
l

]

. Then, we

compute the eigenvalue decomposition (EVD)

Ŵ
(l)
(

Ŵ
(l)
)T

=
[

Ue, U
(l)
]

[

Σe 0

0 0

]

[

Ue, U
(l)
]T

. (20)

The vector u can be chosen from the columns of U(l) ∈ R
R×(R−l).

After convergence, b is the (l+1)th estimated row ŵl+1 of W.

Consequently, the (l+1)th estimated source signal can be computed

as ŝl+1(t) = ŵl+1x̄(t). This sequential extraction procedure can be

continued until all the desired source signals are estimated.
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Fig. 1. Speech source signals.

It is worth noting that the estimation errors of ŵ1, · · · , ŵl af-

fect the estimation accuracy of the vector u only. They do not af-

fect b
(

BTB
)

bT explicitly. Therefore, as long as we find a vec-

tor b that minimizes b
(

BTB
)

bT while keeping b different from

ŵ1, · · · , ŵl, b is an estimate of ŵl+1 and the estimation errors of

ŵ1, · · · , ŵl are not propagated to ŵl+1. Hence, it is possible that

ŵl+1 is as accurate as ŵ1, · · · , ŵl. This means that the new defla-

tionary BSE procedure can effectively mitigate error accumulation.

4. SIMULATIONS

In this section, we illustrate the performance of our proposed ESSS-

DBSE algorithm and compare it with the SOBI [26] and FastICA

[27] algorithms by simulations. We consider R = 3 speech source

signals, each is 2 seconds long (see Fig. 1). They are the truncated

versions of the sound signals provided by [28]. These source signals

are mixed with a randomly generated 5× 3 mixing matrix

A =











−1.6877 0.8435 −0.3982
−0.2161 0.9629 1.0942
−0.7075 0.6267 1.8387
0.7050 −0.2705 0.3615
−0.6629 −0.9120 −0.8982











.

Fig. 2 shows the observed mixtures of the speech source signals.

0 4000 8000 12000 16000 20000 24000 28000 32000
−10

−5

0

5

0 4000 8000 12000 16000 20000 24000 28000 32000

−5

0

5

10

0 4000 8000 12000 16000 20000 24000 28000 32000

−5

0

5

0 4000 8000 12000 16000 20000 24000 28000 32000

−2
0
2

0 4000 8000 12000 16000 20000 24000 28000 32000
−10

−5
0
5

Samples

Fig. 2. Observed mixtures of speech source signals.
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Fig. 3. Performance index (PI) versus SNR. J = 5, R = 3, N = 10.

4.1. Performance Comparison

In simulations, noise is added to introduce signal-to-noise ratios

(SNRs) varying from -5 dB to 30 dB. The number of covariance ma-

trices is N = 10. The vector b is initialized with a row of Ŵ which

is roughly estimated by the GEVD of the matrix pencil (R1,R2).
As performance measure, we use the performance index [1]

PI =
1

R(R− 1)

R
∑

i=1

{(

R
∑

k=1

|ĝik|

maxj |ĝij |
− 1

)

+

(

R
∑

k=1

|ĝki|

maxj |ĝji|
− 1

)}
(21)

where ĝij is the (i, j)-element of the estimated global matrix Ĝ =

ŴUTA. The PI measures to what extent the estimated global ma-

trix is close to a generalized permutation matrix. Obviously, the

smaller the value of PI, the better the separation performance.

For FastICA, we utilized the MATLAB code from the website

http://www.cis.hut.fi/projects/ica/fastica/

and used the deflation type to extract source signals sequentially

rather than simultaneously. The ESSS-DBSE algorithm and the

SOBI algorithm are simulated with the same set of covariance ma-

trices {C1, . . . ,CN}. The SOBI algorithm is based on the joint

diagonalization technique and recovers source signals simultane-

ously. We used 100 independent runs to calculate the average PI.

Simulation results are shown in Fig. 3.

It can be seen that, with SNR ∈ [−5, 10]dB, the performance of

the proposed ESSS-DBSE algorithm is close to that of SOBI. How-

ever, with SNR ∈ [15, 30]dB, the performance of ESSS-DBSE is

much better than that of SOBI. In contrast, the performance of Fas-

tICA is much worse, especially when the SNR is not too high. This

means that the ESSS-DBSE and SOBI algorithms are more robust

to noise. In general, the proposed ESSS-DBSE algorithm achieves

better performance than SOBI and FastICA.

4.2. Error Accumulation and Convergence of ESSS-DBSE

To evaluate the estimation accuracy of the ith extracted source sig-

nal, we use the accuracy index

ǫi =

R
∑

k=1

|ĝik|

maxj |ĝij |
− 1. (22)

The smaller the value of ǫi, the better the ith extracted source signal

in the sequential extraction procedure.

We first compare ǫi, i = 1, . . . , R, to check whether the pro-

posed ESSS-DBSE algorithm suffers from error accumulation. Let

Ok, k = 1, . . . , 6, denote the orders [1 2 3], [1 3 2], [2 1 3], [2 3

1], [3 1 2], and [3 2 1], respectively. For instance, if ǫ3 < ǫ1 < ǫ2,

then this case corresponds to the order O5. Based on ǫi, we count

the number of Ok , k = 1, . . . , 6, over 100 independent trials. The

results are shown in Table 1. It can be seen that the condition ǫi < ǫj
for any 1 ≤ i < j ≤ R does not hold. In other words, the source

signals extracted later do not necessarily have worse accuracy than

those extracted earlier. This means that the proposed ESSS-DBSE

algorithm can effectively mitigate error accumulation during the de-

flation procedure.

Table 1. NUMBER OF ORDERS IN 100 INDEPENDENT RUNS

orders O1 O2 O3 O4 O5 O6

SNR=-5dB 8 28 13 13 22 16

SNR=0dB 21 23 15 11 14 16

SNR=5dB 19 19 19 7 18 18

SNR=10dB 35 26 7 7 13 12

SNR=15dB 20 30 4 5 29 12

SNR=20dB 14 34 7 1 37 7

SNR=25dB 5 32 6 0 56 1

SNR=30dB 2 12 7 0 79 0

When SNR is high, the performance difference between ESSS-

DBSE and FastICA mainly stems from their abilities to refrain from

error accumulation during the deflation procedure. The numbers of

Oks of FastICA are 24, 0, 12, 58, 6, and 0, respectively, over 100

independent trials for SNR=30dB . It can be seen that ESSS-DBSE

has stronger ability to refrain from error accumulation than FastICA.

Next, we evaluate the convergence speed of the iterative update

rule for the proposed ESSS-DBSE algorithm. We count the num-

ber of iterations and average it over 100 independent trials. Table 2

shows the average number of iterations. From Table 2, it can be seen

that only a small number of iterations are required for the conver-

gence of the ESSS-DBSE algorithm.

Table 2. NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE

SNR (dB) -5 0 5 10 15 20 25 30

Iterations 7 6 5 4 4 4 4 4

5. CONCLUSION

We developed a new algorithm for sequential blind source extrac-

tion from instantaneous mixtures based on the exact solution sub-

space searching technique. The merits of the proposed algorithm

include the ability to refrain from error accumulation during the de-

flation procedure and the high convergence speed. Simulations are

conducted to demonstrate the superior performance of the proposed

algorithm.
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[13] B. Sällberg, N. Grbić, and I. Claesson, “Complex-valued in-

dependent component analysis for online blind speech extrac-

tion,” IEEE Transactions on Audio, Speech, and Language

Processing, vol. 16, no. 8, pp. 1624–1632, Nov 2008.
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