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ABSTRACT

Oscillation is one of the leading stability concerns in complex power

systems. Detecting oscillations timely and accurately is vital for a

power grid operator to take effective remedial reactions to stabilize

the power system. This paper uses the minimum variance distortion-

less response (MVDR) method to estimate the magnitude squared

coherence function for oscillation detection. A derivative constraint

is integrated into the MVDR method, which can greatly mitigate the

“blind spots” problem of the conventional MVDR method. The phe-

nomenon of the “blind spots” and the mitigation performance of the

new technique are analyzed. Simulations based on power system

models are conducted to demonstrate that the new technique can ef-

fectively avoid the “blind spots” and thus increase the accuracy of

oscillation detection in power systems.

Index Terms— power system, oscillation, magnitude squared

coherence, MVDR, Capon method, spectrum.

1. INTRODUCTION

Oscillations with growing amplitudes can cause serious problems

to power systems such as system break-ups and large-scale out-

ages [1][2]. Sustained oscillations can negatively affect the life

expectancy of equipment [3]. To ensure the stability and reliability

of a power grid, it is important to detect the oscillations timely and

accurately in their early stages.

Oscillations in a power grid can be categorized into free and

forced oscillations. Free oscillations are the results of internal in-

teraction among the system equipment, while forced oscillations are

caused by external inputs. Over the last twenty years, many meth-

ods have been proposed to study the free oscillations [4]. Recently,

forced oscillations have gained a lot of attention because they happen

more frequently in power grids [5] [6].

One of the early studies on forced oscillations goes back to 1966

when Ness proposed a method to study the system response to large

cyclic load variations [7]. Using the widely deployed phasor mea-

surement units (PMUs), a hybrid dynamic simulation method is pro-

posed in [8] to locate forced oscillations. An energy based method

is introduced in [9] to locate the disturbance source. Follum et al.

[10] proposes to detect the oscillations before locating them. Zhou

in [11] proposed a coherence method to detect the oscillations. This

method is further developed in [12] into a self-coherence method us-

ing only one channel of data. To quantify the detection results of

the self-coherence method, a bootstrap-based threshold is given in

[13]. A cross-coherence method is developed in [14] to use multiple

channel data.

These coherence methods are based on the coherence spectrum,

a.k.a, the magnitude squared coherence (MSC) function, for oscilla-

tion detection [15][16]. The MSC function can be estimated by many

different spectral estimation methods such as the Welch’s method

[17] and the ARMA method [18]. It is shown in [14] that the mini-

mum variance distortionless response (MVDR) method, also known

as the Capon method [19], has many advantages such as real-time

applicability, multi-channel data adaptability, low risk of false alarm,

and high estimation accuracy. It can achieve smaller variance and

higher accurate than the Welch’s method and the ARMA method.

However, one major drawback of the MVDR method is that the

estimated MSC does not cover all the frequencies. There are many

“blind spots” where the MSC values are always small or zero. In this

paper, we analyze the “blind spots” phenomenon and show that this

problem can be mitigated effectively by simply adding a derivative

constraint into the MVDR optimization.

This paper is organized as follows. In Section 2, the oscillation

problem in power system and the application of the MSC function

are introduced. In Section 3, we develop the new MVDR method

with a derivative constraint. Simulations are conducted in Section 4

and conclusions are presented in Section 5.

2. OSCILLATION DETECTION IN POWER SYSTEMS

Based on [1], a power system’s dynamic response to small motions

can be described as

ẋ(t) = Ax(t) + b1f(t) +
M
∑

m=1

b2mqm(t) (1)

where A is the state transition matrix,x(t) is the N × 1 dimensional

system state vector, t is time, f(t) is the forced oscillations, and

qm(t) are noises.

Because the frequency of the steady-state responses to forced

oscillations will remain the same, to simplify the study of oscillation

detection, we can just use a simplified version of the power system

response that carries a forced oscillation only, i.e.,

x(t) = f(t) + q(t), (2)

where the forced oscillation f(t) is modeled as a sinusoidal signal.

With the data x(t), we need to detect the frequency of f(t)
timely and accurately, even in extremely large noise. Coherence

spectrum is one of the promising ways for power system oscilla-

tion detection. For two discrete-time signals x1(n) and x2(n), the
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coherence spectrum (MSC function) is defined as

γ2
x1x2

(ω) =
|Sx1x2

(ω)|2
Sx1

(ω)Sx2
(ω)

, (3)

where Sx1x2
(ω) is the cross-spectrum between the two signals [20],

while Sx1
(ω) and Sx2

(ω) are the power spectrum density (self-

spectrum) of the two signals. Note that x1(n) and x2(n) can be

two sampled signal components of x(t) based on (1). They can also

be x(n) and its delayed version x(n − τ ) based on (2) when only

one channel of data is available [12].

The MVDR method for MSC function estimation is based on the

filter bank principle. Let the kth sub-filter of the filter bank be wk =
[wk,0, · · · , wk,L−1]

H where (·)H denotes conjugate transpose. For

the input signal x(n), the filter output is yk(n) = wH
k x(n), where

x(n) = [x(n), · · · , x(n−L+1)]T and (·)T denotes transpose. The

power of the output signal is

E{|yk(n)|2} = E{|wH
k x(n)|2} = w

H
k Rxwk (4)

where E{.} is expectation and Rx = E{x(n)xH(n)} is the covari-

ance matrix of the input signal x(n) (which is assumed zero-mean).

To find the power spectrum density Sx(ωk) of the signal x(n)
at frequency ωk, we just need to solve the linearly constrained mini-

mum variance (LCMV) optimization






min
wk

Sx(ωk) = w
H
k Rxwk

s.t. c
H
k wk = 1

(5)

with the constraint vector ck = [1, ejωk , · · · , ejωk(L−1)]T /
√
L.

The optimal solution to (5) is

wk,opt =
R−1

x ck

cHk R−1
x ck

(6)

and the power spectrum density (self-spectrum) of x(n) at frequency

ωk is

Sx(ωk) = w
H
k,optRxwk,opt =

1

cHk R−1
x ck

. (7)

Using the filter bank, we can find the power spectrum density at a list

of discrete frequencies ωk, k = 0, · · · ,K−1. Note that we have K
subfilters, each subfilter has order L. If K = L and the frequency

ωk = 2πk/K, then the filters forms the FFT matrix. On the other

hand, we can make K > L to increase resolution.

To estimate the MSC function (3) of x(n), we let x1(n) = x(n)
and x2(n) = x(n − τ ) for certain large enough delay τ . Then

we apply (7) to calculate Sx1
(ωk) = 1

cH
k

R
−1
x1

ck

and Sx2
(ωk) =

1

cH
k

R
−1
x2

ck

. In addition, let y1,k(n) = wH
1,kx1(n) and y2,k(n) =

wH
2,kx2(n) be the outputs of the two sub-filters with inputs x1(n)

and x2(n), respectively. The cross-spectrum is

Sx1x2
(ωk) = E{y1,k(n)yH

2,k(n)} = w
H
1,kRx1x2

w2,k (8)

where Rx1x2
= E{x1(n)x

H
2 (n)} is the cross-correlation matrix.

Based on (6), we can obtain

Sx1x2
(ωk) =

cHk R−1
x1

Rx1x2
R−1

x2
ck

(cHk R−1
x1

ck)(cHk R−1
x2

ck)
. (9)

Therefore, the MSC function (3) can be calculated as

γ2
x1x2

(ωk) =

∣

∣cHk R−1
x1

Rx1x2
R−1

x2
ck

∣

∣

2

(

cHk R−1
x1

ck
)(

cHk R−1
x2

ck
) . (10)

Comparing γ2
x1x2

(ωk) with the noise background, we can determine

whether there is an oscillation with the frequency ωk in the signal

x(n) [12].

3. DERIVATIVE CONSTRAINED MVDR

While the MVDR has a number of advantages for power grid oscil-

lation detection, it suffers from the problem of “blind spots”. This is

mainly because the constraints ck are designed for a list of fixed dis-

crete frequencies only and the frequency gap is usually larger than

the power grid oscillation frequency.

Proposition 1. Assume the signal x(n) is dominated by a single

frequency ω̃, i.e., x(n) = ejω̃n+z(n)+q(n) where E{|z(n)|2} ≪
1 and noise power σ2

q ≪ 1. If ω̃ 6= ωk for all k = 0, · · · ,K − 1,

then the MVDR method gives γ2
x1x2

(ωk) ≈ 0.

Proof. Applying the signal x(n) in the optimization (5), we can

get wH
k Rxwk = wH

k (c̃c̃H+E{z(n)zH(n)}+E{q(n)qH(n)})wk

≈ |c̃Hwk|2 + σ2
q‖wk‖2, where c̃ = [1, ejω̃, · · · , ejω̃(L−1)]T . In

case the noise power σ2
q is small enough, we can easily see that

[

cHk
c̃H

]

wk,opt =

[

1
0

]

. (11)

This means that Sx(ωk) = wH
k,optRxwk,opt ≈ σ2

q‖wk,opt‖2.

Therefore, the sub-filter outputs y1,k(n) and y2,k(n) are just

noises q(n) and q(n− τ ), respectively. This means Sx1x2
(ωk) ≈ 0

if τ > L. Hence γ2
x1x2

(ωk) ≈ 0. �

Since the oscillation frequency may be different from any

ωk, Proposition 1 indicates that the MVDR method will gives

γ2
x1x2

(ωk) ≈ 0 for all k. In this case, the oscillation can not be de-

tected timely and accurately. This is the “blind spots” phenomenon.

Increasing K can mitigate somewhat the “blind spots” prob-

lem. Intuitively, this makes c̃/
√
L closer to ck for some k. Since

‖1 − c̃H/
√
Lwk,opt‖ = ‖(cHk − c̃H/

√
L)wk,opt‖ ≤ ‖cHk −

c̃H/
√
L‖‖wk,opt‖, we see that c̃H/

√
Lwk,opt → 1. More accu-

rately, from Rx ≈ c̃c̃H + σ2
qI, where I is the identify matrix, us-

ing the matrix inversion lemma, we can readily derive Sx(ωk) =
σ2
q/(1 − |cHk c̃|2/(σ2

q + L)). If K = L = 256, then we have

Sx(ωk) ≈ 1.3σ2
q for ω̃ in the middle of ωk and ωk+1. This means

a “blind slot” since the noise floor is σ2
q . If K = 2L = 256, then

Sx(ωk) ≈ 5σ2
q . This provides some relief from “blind spot” because

there are some signal contents in filter output y1,k(n) and y2,k(n).
Nevertheless, a more effective approach of mitigating the “blind

spots” problem is to simply add a derivative constraint to the LCMV

optimization (5) to resolve this problem. Specifically, we set the

first-order derivative of ck with respect to the frequency ωk to be

zero as an addition constraint. By adding the constraint of the deriva-

tive, the amplitude response of the filter is forced to be flat at ωk,

which can mitigate the ”blind spots” problem in the resulting spec-

tra.

The new constraint can be stated as

C
H
k wk = h (12)

where

Ck =
[

ck
dck
dωk

]

, h =

[

1
0

]

, (13)

and dck/dωk = [0, jejωk , · · · , j(L− 1)ej(L−1)ωk ]T /
√
L.

Proposition 2. With the new LCMV optimization






min
wk

Sx(ωk) = w
H
k Rxwk

s.t. C
H
k wk = h

(14)
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we can calculate the MSC function as

γ2
x1x2

(ωk) =

∣

∣hHζζζ1,kC
H
k R−1

x1
Rx1x2

R−1
x2

Ckζζζ2,kh
∣

∣

2

(hHζζζ1,kh)(hHζζζ2,kh)
(15)

where the 2× 2 matrices ζζζi,k = (CH
k R−1

xi
Ck)

−1
, i = 1, 2.

Proof. For the general LCMV optimization (14), using the stan-

dard Lagrange multiplier method, we minimize

min J = w
H
k Rxwk +Re{λλλH(CH

k wk − h)} (16)

where λλλ is the Lagrange multiplier vector and Re{·} takes the real

part. From ∂J/∂wk = wH
k Rx + λλλHCH

k = 0, we obtain wH
k =

−λλλHCH
k R−1

x . Substituting wH
k back into the constraint in (14), we

can obtain λλλH = −hH(CH
k R−1

x Ck)
−1. Therefore, the optimal

solution is

wk,opt = R
−1
x Ck(C

H
k R

−1
x Ck)

−1
h. (17)

Substituting wk,opt into (14), the self-spectrum of xi(n), i = 1, 2,

is

Sxi
(ωk) = h

H(CH
k R

−1
xi

Ck)
−1

h = h
Hζζζi,kh. (18)

Following (9)(10), we can derive the cross-spectrum of x1(n) and

x2(n) as

Sx1x2
(ωk) = h

Hζζζ1,kC
H
k R

−1
x1

Rx1x2
R

−1
x2

Ckζζζ2,kh. (19)

Substituting (18) and (19) into (3), we can get the MSC function

(15). �

To show that the new technique greatly mitigates the “blind

spots” problem, consider again the signal x(n) dominated by

the single frequency ω̃. Exploiting the matrix inversion lemma

and the property of 2 × 2 inverse matrix, we can readily derive

Sx(ωk) = Gσ2
q/(‖d‖2 − |dH c̃|2/(σ2

q +L)), where d = dck/dωk

and G is a constant. If K = L = 256, then we have Sx(ωk) ≈ 4σ2
q

for ω̃ in the middle of ωk and ωk+1. The “blind spot” is mitigated.

If K = 2L = 256, then Sx(ωk) ≈ σ2
q + 1, which is dominated

by the oscillation frequency, and there is no obvious “blind spot”

anymore.

With the PMU signal x(n), we can calculate the MSC function

according to (15) for each frequency ωk. If ωk = 2πk/K, k =
0, · · · ,K − 1, then we can exploit FFT for efficient calculation.
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Fig. 1. MSC function of γ2
x1x2

estimated by the Welch’s method.
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Fig. 2. MSC function of γ2
x1x2

estimated by the generalized MVDR

method.
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Fig. 3. MSC function of γ2
x1x2

estimated by the proposed MVDR

method with derivative constraints.

4. SIMULATIONS

We have conducted extensive simulations to evaluation the pro-

posed derivative constrained MVDR method and compare it with

the Welch method [17] and the Generalized MVDR method [19].

4.1. A simple example of chirp signal

First, we use a simple chirp signal to evaluate the performance of

MSC estimation, in particular the “blind spots”. The chirp signal

x(t) =
√
2 sin(2πf0(t − t0) + kπ(t− t0)

2 + φi) + q(t) has in-

stantaneous frequency changing from f0 to f1. At t0 = 0, the chirp

signal’s power is concentrated at f0 = 5Hz. Then, the frequency

linearly increases at the rate of k = (f1 − f0)/(t1 − t0) = 0.033
Hz/min. Eventually, chirp signal’s power at the 60th minute is con-

centrated at f1 = 7 Hz. Simulation data is generated for 60 minutes

with sampling rate of 30 samples/s. We use a low-pass filter G(s) to

filter the Gaussian white noise to mimic the colored ambient noise

q(t). The standard deviation (std) of the ambient noise is modified

to make the signal to noise ratio (SNR) −10 dB.

The initial setup of the Welch’s method is N = 1024, L =
128, 50% overlapping and Hamming window. The initial set up
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Fig. 5. Single line diagram of the 16-machine, 68-bus system.

of the Generalized MVDR method and the derivative constrained

MVDR method is K = 256, L = 65. Their coherence spectra are

plotted in Figs. 1-4, respectively. As it can be seen, oscillations

can be detected by visually inspecting the coherence spectra on the

heat maps. The Welch’s method has a wide peak, which indicates

that its frequency resolution is low. The problem with the MVDR is

that there are some “blind spots” which can incur missing detection

when oscillations happen in these frequencies. In contrast, the new

method has no “blind spot” in the estimated MSC, and the narrow

peaks indicate that the method retains the high frequency resolution.

In addition, the lower magnitude at all other frequencies except the

oscillation frequency indicates lower rate of false alarm.

4.2. Case study using the 16-machine model

To show the applicability of the proposed method in power systems,

the 16-machine model illustrated in Fig. 5 is used. We use Power

System Toolbox [21] to generate 60 minutes of simulation data.

To consider the effects of random load changes, 5% Gaussian

white noise is added to the load buses. To mimic force oscillation in

power system, the exciter voltage reference of generator 14 is mod-

ulated with a sinusoidal signal of 13.125Hz from the 10th minute

to 30th minute and with a chirp signal of 12 to 14Hz from the 35th

minute to 55th minute. A PMU is located at bus 2 and records the
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Fig. 6. MSC function estimated by the Welch’s method.

Fig. 7. MSC function estimated by the proposed MVDR method

with derivative constraints.

real power from bus 2 to bus 53 at 60 samples/s. To remove the direct

current components, we applied a first-order high-pass Butterworth

filter with cutoff frequency of 0.01Hz.

With the same set up as in Section 4.1, we simulate the Welch’s

method and the proposed MVDR method with derivative constraint

for oscillation detection. As shown in Figs. 6 and 7, both meth-

ods can successfully detect the oscillations. However, the proposed

method has a narrower peak at the oscillation frequency, which indi-

cates higher frequency resolution.

5. CONCLUSIONS

In this paper, a new MVDR method with a derivative constraint is

proposed to detect the oscillations in power systems. The proposed

method extends the original MVDR method by using the derivative

constraint to both increase the estimation accuracy and remove the

“blind spots”. Simulations are conducted to demonstrate that the

proposed method can avoid the “blind spots” problem and thus in-

crease the oscillation detection accuracy.
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