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ABSTRACT

In this paper, we propose a joint machine learning and human
learning design approach to make the training data labeling
task more efficient and robust in linear regression problems.
We consider a sequential active learning scheme which relies
on human learning to enlarge training data set, and integrate
with it some outlier detection algorithms to mitigate the in-
evitable human errors during training data labeling. First,
we assume sparse human errors and integrate sparse outlier
detection within the sequential active learning procedure.
Then, we consider non-sparse human errors and exploit the
IRT (item response theory) to model the distribution of hu-
man errors, based on which appropriate data can be selected
to reconstruct a training data set with sparse human errors.
Simulations with some typical linear regression data set and
human-subject experiment data are conducted to show the
desirable performance of the proposed scheme.

Index Terms— machine learning, human learning, item
response theory, linear regression, active learning, training

1. INTRODUCTION

Machine learning has found wide applications today due to
the rapidly increasing amount of data which is becoming pro-
hibitively demanding for human to process. While machine
learning is dominating, the role of human learning should not
be overlooked, and it is especially interesting to investigate
how to integrate machine learning and human learning to-
gether so as to take both of their advantages and to use one
of mitigate the challenge of the other.

It is well known that human plays important roles in ma-
chine learning design, feature selection, algorithm develop-
ment, etc [2]. Some machine learning algorithms are devel-
oped from the inspiration of human learning principles. In
addition, human learning has many important characteristics
that can be helpful to resolve many inherent challenges of ma-
chine learning, such as case representation, feature selection,
over-fitting, generalization, etc. On the other hand, human
learning suffers many inherent weaknesses such as the lim-
ited data amount capability, errors, bias, etc. Innovative ma-

chine learning algorithms can be developed to mitigate such
weaknesses while exploiting the benefits of machine learning.

To show the great benefits of integrating machine learn-
ing and human learning together, we focus on a typical task
that needs both of them, i.e., training data optimization in ro-
bust linear regression. Linear regression is one of the im-
portant data processing tasks where machine learning has at-
tracted great research effort and has found wide application
[1]. Supervised machine learning such as linear regression
requires a human-labeled training data set that must be suffi-
ciently long, well case-representative, and correctly labeled.
However, considering the high complexity and dimensional-
ity of many practical linear regression tasks, training data may
be insufficient, biased, skewed, and error-prone. This causes
many problems, such as the well-known over-fitting problem
in machine learning [2].

To resolve the insufficient training data issue, one of the
popular approaches is active learning [3]-[6]. In contrast, the
human labeling error issue is more challenging. The cause
of human error is complex, and may depend on the data pro-
cessing task, noise level, human workload, human cognition
capability, etc.

In this paper, we address these issues together within a
framework of joint human learning and machine learning de-
sign. Specifically, we consider the case when the initial train-
ing data labeled by human are both insufficient and error-
prone. We will develop two new robust linear regression al-
gorithms based on both the active learning method [6] and the
robust linear regression method [7]. In case the error proba-
bility is low enough so that the labeling errors become sparse,
we integrate the robust linear regression approach of [7] into a
sequential active learning scheme adapted from [6] to resolve
this issue, which can estimate the sparse labeling errors while
learning the linear regression vectors. We apply sequential ac-
tive learning with human learning to look for extra and better
training data under appropriate human workload considera-
tions. Then, more importantly, in case the error probability
is not low and the labeling errors are not sparse, we apply
the item response theory (IRT) [8] to convert the non-sparse
human error cases into the sparse human error case.



The organization of this paper is as follows. In Section
2, we give the linear regression model. In Section 3, we de-
velop the new algorithms with machine learning and human
learning tightly coupled together. Simulations are conducted
in Section 4, and conclusions are given in Section 5.

2. LINEAR REGRESSION MODEL WITH ACTIVE
LEARNING

We consider the classical linear regression problem, where
a scalar response y; is to be predicted using N known (in-
put) data samples X; = [Z;.1, -+ , &3 n]7, where (-)7 denotes
transpose. The data model of the linear regression problem is
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where = [01,---,0x]" is the N x 1 regression vector,

€; is the noise (or modeling error), and I is the total num-
ber of data records. We assume i.i.d. Gaussian noise €¢; with
zero-mean and variance o2. The functions ¢,(X;) are fixed
linearly independent functlons and x; = [x;1, -
where x; ¢ = ¢¢(X;).

Without loss of generality, as in typical supervised lin-
ear regression algorithms, we label and use the first L data
records (y;,%;), ¢ = 1,---, L, as the training data set. The
values of y; are labeled by human. Stacking together all the
training data records, we have
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where X1, = [x1,--- ,xz]7 is the L x N input data matrix,
yr = [y1,- - ,yn]T is the N x 1 labeled output data vector,
and ey, = [e1,--- ,er]T is the Gaussian noise vector. Assume
that the training data X, is obtained with distribution p(x)
while the testing data (or the overall data) x; has distribution
q(x). Define the N x N diagonal matrix D with the i-th di-
agonal element as D, ; = ¢(x;)/p(x;). A standard weighted
least-squares learning gives the optimal estimation of € as

6 = (X'DX,)" XDy, 3)

where (-)¥ denotes Hermitian, and (-)* denotes pseudo-
inverse. The use of pseudo-inverse rather than matrix inverse
permits us to consider many special training data issues,
such as labeling errors, skewed training data, or insufficient
amount of training data, etc. These issues may make the
matrix X DX, singular or ill-conditioned.

The estimated @ can then be used to predict the output
§; = x70 for all the unlabeled data x;,i = L+1,--- , 1. The
performance is measured by the generalization error f (9; —
yi)2q(xi)dx;.

Active learning is a general methodology to deal with
the insufficient training data issue. With active learning, lin-
ear regression algorithms select some extra data records from
{x;|L +1 < ¢ < I} and ask human for labeling. These
newly labeled data records will be used together with the
initial training data set (yr,Xp). Considering the human
workload constraint, the number J of the newly labeled data
records can not be too big. Therefore, active learning needs
to find the extra data records that contribute the most to the
existing training data set. The sequential active learning algo-
rithm adds these extra data records iteratively (sequentially)
so as to minimize the expected generalization error.

3. INTEGRATING MACHINE LEARNING WITH
HUMAN LEARNING IN SEQUENTIAL ACTIVE
LEARNING

3.1. Combining sequential active learning and sparse op-
timization for sparse human error

Consider first the insufficient training issue in linear regres-
sion. We adapt the active learning algorithm of [6] into a
sequential active learning algorithm to label J extra training
data, where J < I — L. This can be implemented iteratively
in Jp iterations. In each iteration j, where j = 1,--- | J1, we
need to select some new training data vector z; from the set
Xj={x¢|L+1<t<1I, x¢#2,1<i<j—1}. There
are [ — L — (j — 1)J/Jy data vectors x; in the set X;.

Without loss of generality, let us consider the jth itera-
tion. In the beginning this iteration, before selecting z;, we
have the labeled training data set (yr4j—1,Xr+;—1), where
Yi+i—1 = [yr, ui, -+, uj—1)7, and u; is the correct la-
beling of the data record u; = z! 0 + ¢;. Note that (u;, z;),
1 =1,---,j — 1, are the extra training data selected and la-
beled in the previous 7 — 1 iterations. With this labeled data
set, from (3) we have the estimation

A top
0(] - 1) (XL+7 1DXL+J‘—1) XL+j—1DYL+j—1~ “4)
We let 6(0) 29 of (3) as the initial condition.

To select the new training data vector z;, we solve the
following optimization. First, we pre-select a set of proba-
bility density functions P which provides various approxima-
tion of the true distribution ¢(x). For each density function
p(x) € P, we select a set of new J/.J; training data follow-
ing the distribution p(x) and calculate

F(p(x)) = tr (U (X2, DX, ) XE, D
+
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where the matrix U is N x N with the (¢, j)-th element as

Uiy = [ 6:60; (x)alx)ax. ©)



Then, we determine the best distribution p(x) and the associ-
ated new data training set by solving the optimization

z; = arg :?ean? J(p(x)), @)

Details are similar to [6], where the difference is that we
adapted it into a sequential active learning scheme.

After z; is selected, human learning kicks in to la-
bel the output u;. Then we can insert the new training

data (uj,z;) into the existing training data set to form

T
(YL+j;XL+j) where XL+j = [Xg—i-j—l Z; } and

Vit = [¥F;_1,u;]". and calculate 8(j) similarly to (4).
After this, the new iteration j + 1 will start.

We need to address the inevitable human labeling errors
in this active learning procedure. Human errors can affect
all the training data. Following the robust linear regression
formulation of [7] which deal with outliers, we model the la-
beling error by o; which changes the true value model (1) to
the error labeling model

yi=x10+¢+o;, i=1,---,I 8)
Note that the labeled value y; in (8) may no longer be the
true value of (1). However, for notational convenience, we
reuse the same variable y;. Similarly, although o; exists in
the training data set only, we have defined o; for all 1 < ¢ <
I since each i is the selection and labeling candidate in the
sequential active learning procedure.

We assume that the vector oy = [0, -+, 0r]T is sparse in
this subsection. Non-sparse oy will be addressed in the next
subsection.

Consider again the jth iteration of the sequential active
learning procedure. We need to revise (4) so as to estimate
9( j — 1) robustly from human labeling errors. This can be
conducted by the joint optimization

min |yrij-1 = 0r+j-1 = X410/ + Aollor+j-1llo,

sOL+j—1
) ©
which estimates #(j — 1) and the sparse labeling error vec-
tor op4;—1 = [01, " ,0L+j_1]T simultaneously. The £y
norm |lop4;—1|lo is to guarantee the sparsity of the human
error vector or,4 ;1. By choosing appropriate weighting co-
efficient Ag, we can make or1;_1 to have various sparsity
values.
Because ¢y norm is not convex, we can replace it by the
convex {1 norm. Then the optimization (9) is changed to

min ||ys4+j-1 = 0r4j-1 — Xp4j-10] + Arllortj—1ll1,
sOL45—1
(10)
which is convex in either § or oz ;.

As shown in [7], a two-step procedure can find the so-
lution to (10). First, conditioned on @, we estimate or,4 ;1

from the convex optimization
Or4j—1=arg min |yr4j-1 —0r4j-1— Xr4;-160]
OL+4j—1
+ Mozl (11)

Second, with the estimated 671, we estimate #(j — 1) as

. +
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—or4i1). (12)

Furthermore, we can replace @ of (11) by 9(] — 1) of (12),
which changes the optimization (11) to

Oryj—1=
arg min ||(Ip4j-1 — Xp4—1 (X7, DXpqj1) T
OL+j—-1
x X Dy —orei—1)ll + Mllorti—1ll,
(13)

where Iy ;_qisan (L+j—1)x(L+j—1) dimensional iden-
tity matrix. The vector 67 ;_1 now depends on the training
data set (yr+;j—1, Xr4;—1) only, not on the regression vector
0.

Therefore, to solve the optimization (10), we first solve
(13) to obtain 67,41 via convex optimization, and then use
(12) to calculate é( j — 1). This replaces (4) in the sequential
active learning procedure.

To conduct the next step of the sequential active learning,
i.e., optimizing (7) so as to select the new data record z;, we

need to evaluate 5( 7). Based on (7) and (12), we have

~ S — + 5 i—1— Or4+j—
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The estimation 64 ;1 of (13) is still used in (14).
In summary, the algorithm for the sequential selection of
the extra training data while mitigating the sparse human la-
beling errors is given below.

Alg. 1: Sequential active learning & sparse human error

i) Initialize: Learning with training (y,, X ) (13) (12)

i) For iteration j = 1,2,--- , J;, do

1) for each z € X}, calculate (j) (14),

2) select the optimal z; that optimizes (7),

3) label u; for new training data (u;, z;) (human learning),
4) form (yr.+j, X1+;), update linear regression (13) (12).

Output §(J1) and linear prediction y; = X;0(J;).

Inside this machine learning algorithm, the step (3) in-
volves human learning to label the extra training data. There
are Jp iterations to find J extra training data, and there is a
convex optimization in each iteration. The value J can be
adjusted according to human workload and human error prin-
ciples.




3.2. Robust linear regression for non-sparse human er-
rors

One of the major limitations of Algorithm 1 is that the label-
ing error vector oy, ; has to be sparse in order for the convex
sparse optimization to work. There are many cases that hu-
man errors are non-sparse. In this subsection, we develop a
way to reconstruct a new training data set with sparse human
labeling errors. This is conducted by removing the training
data that are more likely to have errors. By using those data
that are less likely to have errors, we can effectively change
the non-sparse error cases into the sparse case so Algorithm 1
can still be used.

We model the human labeling error by the item response
theory (IRT). The basic idea of IRT is to use some item re-
sponse function (IRF) to describe the probability for human
to make correct decisions on a task [8]. As a typical IRF, a
person with cognition capability (or intelligence) s can label
the 7th training data correctly with probability

1—Ci
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g = ¢ +
where the parameter b; denotes the difficulty level of label-
ing the ¢th data, ¢; and a; are systematic parameters regarding
the data labeling task. We assume that b; depends only on
the noise magnitude |;|, since higher noise makes human la-
beling more difficult. The probability of error-labeling of the
data record (y;,x;) is then

1
pllel) = (1 —c) (1 - Hea(slf)) , (16

which is an increasing function of |e;].
From the model (8), if the data are real, then |¢;| has
folded normal distribution with probability density function
2

g(x) = Uf/ﬁei;fg. It has mean o./2/7 and variance

(m — 2)02 /. If the data are complex, then |¢;| has Rayleigh
2

distribution with probability density function g(z) = Ze 207
whose mean and variance are o.+/7/2 and (4 — 7)02 /2, re-
spectively.

The percentage of error-labeled training data, or the aver-
age probability for a data to be labeled in error, is

oo

P [ st a7
We have P € [0,1]. (L + 7)P is the number of non-zero
entries in o7 ;. Obviously, a small P means sparse labeling
error while a large P means non-sparse labeling error. Note
that the value of the error o; can have various distributions
which are assumed unknown in this paper.

Consider the jth iteration of the sequential active learning
with labeling error mitigation. Define vy ; 1 = yr4;-1 —
Xr4j—10 = or4j—1 + €r4j—1, which contains all the error

and noise information. Replacing € with the standard linear
regression vector estimation 6 of (3), we have

Vitj—1 = Totj-1

_XL+j—1(Xg+j—1DXL+j—1)+Xf+j—1) Dyryj1-
(18)

Then we can use vyij_1 = [v1, - ,vr4j—1)° of (18) to
determine approximately whether each v; has error or not.

Without the error o;, the distribution of v; = ¢; is
N(0,02). With the error o;, the distribution of v; = 0; + ¢;
is the convolution of the distributions of ¢; and o; which is
unknown. Nevertheless, based on the error-labeling distribu-
tion p(|e;|) of (16), to reduce the percentage of labeling errors
from P to P, we just need to find a threshold value v such
that

(1 = p(leD)Plles] <A1 > (1 = nP)P[lvi| <.

With the threshold v, we select all the labeled data that sat-
isfy |v;| < =y to construct the new training data set. All the
data with |v;| > ~ are removed from the new training data
set. Some approximated estimation of y based on the numer-
ical evaluation of v;’s distribution from (18) will be reliable
enough for us to create a new training data set that have sparse
labeling errors.

To formulate the new learning framework, we introduce a
diagonal (L +j —1) x (L +j — 1) weighting matrix W. If o;
can have value |o;| much larger than |y;/|, it is better to apply
hard decision when selecting the training data. Therefore, we
use W with diagonal elements

_ 1, if ‘Ui| <7
w”_{ 0, if |v;| >+~

19)

(20)

On the other hand, if the value |o;|is mostly comparable to
ly;|, then a soft-decision diagonal matrix W with w;; =
P[|v;| < 7] can also be used.

With the weighting matrix W, the Algorithm 1 can be
easily changed to use just the new training data set. Specifi-
cally, the sparse-optimization (10) becomes

pnin (W(yryj—1=0r1j-1-Xr4j-10)[[+A1[[Wor ;1.
JOL+j—1
21
The solution (13)(12) can be changed to
Optj-1=
arg min (I - Xpajo1 (X DX pyjn)
x X{ i )DW(yryj-1—orj—1)ll + M[[Woryjals,
(22)
and
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Note that even though o7 ;_; may not be a sparse vector,
Woy, ;1 is sparse. In practical implementations, we can
simply remove those data that are not used from the convex
optimization.

In summary, we can modify Algorithm 1 into the follow-
ing Algorithm 2 which can work with training data that have
non-sparse labeling errors.

Alg. 2: Sequential active learning with sparsity recovery

i) Initialize: Determine W based on (18)-(20);
Linear regression with training (y ., X,) (22) (23).

i) For iteration j = 1,2,--- , J, do

1)-4) same as 1)-4) of Algorithm 1, except using (22)(23)
5) Update weight matrix W using training (yr4;, Xz+;)-

4. SIMULATIONS

To verify the performance of Algorithm 1 in resolving prob-
lems of insufficient training and sparse labeling errors, we
used simulation settings similar to [7]. We let I = 100,
N = 10, 0 ~ N(lO X ]—NaIN)a X; ~ N(ON,IN), and
e; ~ N(0,1). We used two human labeling error models:
1) human errors were modeled with Laplacian distribution
0; ~ £(0,10%), and 2) human errors were generated based
on a human subject experiment (where we asked students for
data labeling in some surveys). The initial training data set
size was L. = 15, and an extra J = 10 training data were to
be found in active learning.

We compared our new algorithm (Algorithm 1) with four
other algorithms: KeepOut:L which just implemented (3)
with L training data; KeepOut:L+J which implemented (3)
with L 4 J training data; KeepOut:Active which imple-
mented the active learning algorithm of [6]; and RmvQut:L
which implemented [7] with L training data. Note that the
three KeepOut algorithms did not use any way to mit-
igate labeling errors. We evaluated NRMSE (normalized
root mean square error) of the regression vector estimation

\/E[Hé —0112/]16]1?] over 100 runs of experiments for each
labeling error probability. The simulation results in Fig. 1
clearly show the superior performance of our new Algorithm
1 in robust linear regression.

Next, we evaluated our Algorithm 2 in resolving the prob-
lems of insufficient training and non-sparse human labeling
errors. We set I = 500. While the other algorithms used 10%
data for training, our Algorithm 2 used 15 initial training data
and searched for more extra training data. Human errors were
introduced based on the IRF with appropriate parameters to
create various human labeling error probabilities. Simulation
results in Fig. 2 clearly show that our algorithm had superior
performance because of both using active learning to recruit
more training data and using the IRT model to remove those
training data with high error probabilities.
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Fig. 1. NRMSE of the estimation of @ for sparse labeling
eITors.
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Fig. 2. NRMSE of the estimation of @ for non-sparse human
labeling errors.

5. CONCLUSIONS

In this paper we formulated a joint machine learning and hu-
man learning framework for linear regression so as to enhance
the robustness to insufficient and error training data. Machine
learning is applied to search for more and better training data
and to estimate human labeling errors, while human learning
is applied to label the extra training data. The IRT (item re-
sponse theory) model of human errors is applied for removing
potentially error-prone data so as to keep the sparsity of the
labeling errors. Simulations are conducted to verify the per-
formance of the proposed algorithms.
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