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A fundamental problem for wireless networks is how to select relays
from all available network nodes to realise the optimal multi-hop relay-
ing between a source node and a destination node. Mutual interference
among wireless nodes makes this problem challenging. A surprising
result of the reported work is that interference-free multi-hop relaying
can be achieved in full-duplex decode-and-forward relaying. The
broadcast nature of wireless transmissions can be exploited without
suffering from mutual interference. Then, an efficient relay selection
algorithm is developed that finds the optimal hop count and all the
relays to maximise the source-destination multi-hop transmission
rate. The complexity of the algorithm is O(N2) only, where N is the
number of available network nodes or network size. Interestingly,
this wireless network algorithm is similar to the well-known
Dijkstra’s algorithm of wired networks. Simulations are conducted to
demonstrate its optimality and efficiency.
Introduction: In networks, one of the basic problems is to select optimal
relays to maximise the transmission rate between a source node and a
destination node via multi-hop relaying. In wired networks, there are
many well-known algorithms such as Dijkstra’s algorithm [1] developed
to solve this problem efficiently. In wireless networks, however, the
problem becomes significantly more challenging because the broadcast-
ing nature of wireless transmissions creates complex mutual interference
among wireless nodes.

Theoretically, wireless network capacity and optimal multi-hop relay
selection are described by exhaustive search over all possible node com-
binations [2, 3]. Unfortunately, exhaustive search has prohibitively high
computational complexity. Specifically, the complexity is exponential in
network size or the number of available network nodes. Owing to this
complexity hurdle, most relay network capacity research is limited to
very small networks with one or two hops [2]. Most multi-hop relaying
study is limited to a few fixed relaying nodes only [4]. Optimal hop
count and optimal multi-hop relay selection have been studied in
[5, 6] but for a special linear network with fixed relaying nodes only.
The exponentially complex relay selection problem is still an open
challenge.

Noting the key issue of interference, we show in this Letter that
interference-free multi-hop relaying can be realised by full-duplex
decode-and-forward relays. This resolves fundamentally the mutual
interference issue, and leads to efficient algorithms for optimal relay
selection in arbitrarily large wireless networks.

Multi-hop relaying model: For an ad-hoc wireless network with N + 2
nodes, we consider the problem of determining a multi-hop transmission
path from a source node to a destination node. Let node 0 be the source
node, node N + 1 be the destination node, and the index set
N = {1, 2, . . . , N} denote all candidate relay nodes. We need to deter-
mine the optimal hop count (number of hops) h + 1, where 0≤ h≤N
and h = 0 means direct source-destination transmission without relaying.
We also need to select a relay node rj for each hop j, where rj [ N , 1≤
j≤ h, to maximise the source-destination multi-hop transmission rate.
For notational simplicity, we define r0 W 0 and rh+1 W N + 1.

We consider causal full-duplex decode-and-forward relays. While a
relay is receiving a packet, it can transmit simultaneously another
packet that it has already decoded. This relay model is adopted widely
in information theory research [2, 5]. Its practical implementation is
also promising, as demonstrated by a number of research activities in
recent years [6].

We adopt a slotted multi-hop packet forwarding scheme. During slot
k, the source node r0 encodes a packet u(k) into u0(k) and transmits it.
Each relay rj receives (and decodes) a packet u(k−j+1) while transmit-
ting simultaneously another packet uj(k−j). The destination node rh+1
receives (and decodes) packet u(k−h). This procedure is illustrated in
Fig. 1 (top). Each hop node rj, 1≤ j≤ h + 1, receives the summation
of all transmitted signals

xj(k) =
∑h
i=0
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PriGri ,rj

√
eIuri ,rj ui(k − i)+ vj(k) (1)
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where Pri is the transmission power of the node ri,
������
Gri ,rj

√
eIuri ,rj is the

instantaneous propagation channel coefficient from the transmitting
node ri to the receiving node rj, I =

����−1
√

, and vj(k) is additive white
Gaussian noise (AWGN). xj(k), ui(k) and vj(k) are vectors containing
all the samples in the slot k. The signals are illustrated in Fig. 1 (bottom).
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Fig. 1 Transmission and receiving schedule of multi-hop relaying

RX denotes receiving and decoding; TX denotes transmitting

We assume complex flat fading channels with gain Gi,j, zero-mean
AWGN with power s2

j , and individual relay power limit
0 ≤ Pj ≤ Pmax

j . All encoded packets uj(t) have unit power.

Multi-hop transmission rate optimisation: Since the relay rj has full
knowledge of packets transmitted by itself and by relays in its following
hops, it can subtract signals ui(k−i), i = j, j + 1, …, h, from the mixture
(1). The received signal (1) can thus be reduced to

x̂j(k) =
∑j−1

i=0

���������
PriGri ,rj

√
eIuri ,rj ui(k − i)+ vj(k) (2)

To decode packet u(k−j+1) in slot k, it needs to detect the signal uj−1(k
−j+1) from (2) by treating all the other signal contents as interference.
The signal-to-interference-plus-noise ratio (SINR) is

gj(k) =
Prj−1Grj−1 ,rj∑ j−2

i=0 PriGri ,rj + s2
j

(3)

The achievable data rate is log2[1+γj(k)]. In (3) we see that there is no
interference coming from rj’s following hop relays. However, there is
interference coming from its preceding hop relays.

The key point for complete interference-free multi-hop relaying is to
exploit the fact that the packet u(k−j+1) is not only contained in signal
uj−1(k−j+1). This packet has in fact been re-encoded into signals ui(k−j
+1) and transmitted in slots k−j+1+i by the preceding relays ri, respect-
ively, for all 0≤ i≤ j−1. Therefore, to decode the packet u(k−j+1) in
slot k, the optimal way for the relay rj is to store and exploit all the j
signals xj(k−j+1+i) received in the past j slots k−j+1+i, 0≤ i≤ j−1,
by a successive interference cancellation (SIC) procedure.

Specifically, before decoding the packet u(k−j+1) in slot k, the relay rj
has already decoded all packets u(t), t ≤ k−j. Subtracting signals related
to these known packets, the signal received in slot k−j+1+i is reduced to

x̃j(k − j + 1+ i) =
∑i

ℓ=0

���������
PrℓGrℓ ,rj

√
eIurℓ ,rj uℓ(k − j + 1+ i− ℓ)

+ vj(k − j + 1+ i), 0 ≤ i ≤ j − 1

(4)

For each i of (4), the relay rj can detect the signal ui(k−j+1), which is
transmitted by the preceding relay ri in slot k−j+1+i, with SINR

gj(k − j + 1+ i) = PriGri ,rj∑i−1
ℓ=0 PrℓGrℓ ,rj + s2

j

(5)

The overall rate of rj is thus

Rrj =
∑j−1

i=0

log2 1+ gj(k − j + 1+ i)
[ ]

= log2 1+
∑ j−1

i=0 PriGri ,rj

s2
j

( ) (6)

After decoding the packet u(k−j+1), the relay rj can subtract it from all
its received signals (4) to prepare for the decoding of the next packet in
the next slot. This SIC procedure is repeated by all relays in all slots.
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The most interesting result is that there is no mutual interference left
in the rate (6). In other words, multi-hop relaying becomes interference-
free. What is more, each relay can collect the transmission power of all
its preceding relays. This means a nice and surprising property: enjoying
benefits of wireless broadcasting without suffering from interference.

The source-destination transmission rate is defined as min1≤j≤h+1Rrj .
The problem of hop count determination, relay node selection, and rate
optimisation can be formulated as max-min optimisation

R = max
0 ≤ h ≤ N

rℓ [ N ,1 ≤ ℓ ≤ h

min
1≤j≤h+1

log2 1+
∑ j−1

i=0 PriGri ,rj

s2
j

( )
(7)

under node power constraint 0 ≤ Pj ≤ Pmax
j , 0≤ j≤N.

Efficient algorithm for multi-hop relay selection: To solve (7), rather
than an exhaustive search over all possible h and relay combinations,
more efficient algorithms can be developed. Since the rate R increases
monotonically with relaying powers, each relay simply transmits at
full power, that is, Pri = Pmax

ri
. A relay is not affected by the relays in

its following hops. Instead, it only increases their rates. Based on
these observations, we have the following efficient algorithm to
solve (7).
Optimal multi-hop relay selection algorithm

for iteration j=1, 2, …, N, do

Update rates Ri for all remaining nodes i = rℓ, 1 ≤ ℓ ≤ j − 1.
Select relay rj = argmaxi=rℓRi for hop j.
Update current multi-hop rate R = min1≤ℓ≤jRrℓ .
If rj=N+1, then h=j−1, R = min {R, Rrj }, stop.
If R≤RN+1, then h=j, rh+1=N+1, stop.
The algorithm begins with r0 = 0. In each iteration j, we select, from
all the remaining N−j+2 candidate nodes (include the destination node),
a node with the highest rate as the relay rj in hop j. Rates of the remain-
ing candidate nodes are updated (calculated) based on (6) and relays
selected for hops 1 to j−1. The algorithm stops with optimal hop
count h, maximum rate R, and relay selections rj, 1≤ j≤ h.

Proposition: The optimal multi-hop relay selection algorithm finds the
optimal hop count h, selects relays rj and maximises transmission rate
R of (7) with computational complexity O(N2).

Proof: Let us consider the iteration j. The current multi-hop rate up to relay

rj−1 is R(j−1) = min
1≤ℓ≤j−1

Rrℓ = min
1≤ℓ≤j−1

log2
[
1+ s−2

ℓ

∑ℓ−1
i=0 PriGri ,rℓ

]
. We

need to select a relay rj from the rest (N+1)−( j−1) nodes. We first
update their rates R(j)

i according to (6). If the node rj has the
maximum rate, then it should become the relay node in the hop j
because min {R(j−1), R(j)

rj
} ≥ min {R(j−1), R(j)

i } for all i. This remains
true for arbitrary relay selection patterns in subsequent iterations.
Specifically, comparing the case of not selecting rj as a relay in hop j
to the case of selecting rj, we can easily show that the former still has
smaller rates for any relay selection pattern without rj in subsequent
hops. On the other hand, for a pattern that selects rj being a relay in a
subsequent hop q > j, we can get higher rates by moving rj forward to
the hop j.
If rj =N+1 or R(j) ≤ R(j)

N+1, then no extra hop can further increase the
multi-hop transmission rate.

As to computational complexity, in the worst case the algorithm runs
N iterations. In each iteration j, it updates N−j+2 rates. Therefore it cal-

culates a total of
∑N

j=1 (N − j + 2) = (N2 + 3N )/2 rates, which has

complexity O(N2) if implemented as iterative updating. □

For the simplest 3-node relay network (N = 1), it is easy to verify that
this algorithm gives the same optimal decode-and-forward rate as the
theoretical analysis result given in [2].

This wireless algorithm is essentially similar to the well-known
Dijkstra’s algorithm. The major difference lies in history dependence.
ELECTRONICS LETTERS
Node rates are not fixed. Rather, they are changed by each new relay
selected during each iteration.

Simulations: We simulated a wireless network whose nodes are placed
randomly within a square of 1000 × 1000 m. We considered two scen-
arios: Rand (source and destination nodes are placed randomly) and
fixed (source is in the original point and destination is in position
(1000,1000)). The channel gain between two nodes with distance dij
is Gi,j = Kd−3

ij . Parameters and transmission powers are normalised so
that a transmission distance of 1000 m has a signal-to-noise ratio of
10 dB.

For each network size N, we generated 1000 random networks, ran
our algorithm in each of them, and calculated the average multi-hop
rate. We denote the result of our algorithm by ‘New Alg’, and
compare it with the direct (no relay) transmission result (‘Direct’) and
the brute-force exhaustive search result (‘Exhaust’). Simulation results
in Fig. 2 clearly show that the proposed algorithm gives the same
result as the exhaustive search method. This demonstrates that our pro-
posed algorithm is optimal. The proposed algorithm works efficiently
for even extremely large networks.
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Fig. 2 Average multi-hop transmission rate R against network size N

Conclusion: In this Letter we first show that full-duplex
decode-and-forward relaying with SIC can realise interference-free
multi-hop relaying. Then we develop an efficient algorithm to find the
optimal hop count and select relays to maximise the multi-hop trans-
mission rate. The new algorithm is similar to the Dijkstra’s algorithm,
and is useful for exploring large wireless networks.
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