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ABSTRACT

Demand side management (DSM) is an essential function to sched-

ule and optimize the energy consumption in smart grids. One of the

challenges of DSM is how to take the complex human behavior into

consideration. In this paper, we apply a special population dynamic

model to investigate the performance of DSM algorithms under hu-

man behavior effects. Specifically, we adapt the SISa (susceptible-

infected-susceptible with autonomous infection) model to describe

the population behavior of smart grid customers. The SISa model

and the DSM algorithms interact with each other via the recovery

probability and the DSM population size. The convergence and the

equilibrium of the composite model are studied both analytically and

numerically.

Index Terms— demand side management, smart grid, smart

meter, human behavior, game theory

1. INTRODUCTION

One of the major objectives of demand side management (DSM) is

for utility companies to schedule and optimize the energy consump-

tion of their customers. DSM brings a number of benefits to the grid,

such as balancing energy consumption, and reducing peak to average

load ratio, etc [1][2]. DSM is especially useful for today’s power sys-

tems due to the emergence of new heavy appliances (such as plug-in

hybrid electric vehicles) and distributed energy sources (such as so-

lar panels) at the customer’s side. To address these new challenges,

smart grid technologies, such as smart meters and home energy man-

agement systems (HEMS), can be applied to develop more effective

DSM schemes [3].

With smart meters and HEMS, it is possible to develop au-

tonomous DSM schemes, where energy consumers optimize their

own energy consumptions automatically in a distributed manner.

This has many advantages, such as high performance, cost-effective

implementation, and increased privacy [4] [5]. Nevertheless, one of

its severe barriers is the complex human behavior. Human behavior

is hard to model and can make the DSM schemes to have dynamics

and performance quite different from their laboratory results. Al-

though the impact of human behavior to DSM has attracted great

attention, most of the studies happen in management, economics

and sociology, where the focus is DSM administration and policy

only [6]-[8].

On the technology side, such as designing DSM algorithms un-

der human behavior considerations, a popular way is to apply game

theory. Many game theoretic DSM schemes have been developed

[9]-[11], which can address the selfish nature of smart grid cus-
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Fig. 1. A smart grid with an energy source and N users.

tomers. Nevertheless, the rationality assumption sets a severe limit

in dealing with other and more complex human behaviors. For ex-

ample, many game theoretic schemes, including those in [9]-[11],

adopt pricing as an incentive. However, some human behavior sur-

veys suggest that pricing alone is hardly enough [12]. People sensi-

tive to small price changes are usually from low-income population

who use less energy and thus have less impact to the grid. In addi-

tion, customers may adopt DSM after a sustainability education, or

may abandon DSM for convenience rather than price.

For large populations, many population dynamic models are ex-

tremely effective in addressing the complex human behavior, with

many successful results. In this paper, we adapt a special one, the

SISa model developed in [13][14], to model the behavior of the

DSM population. Based on it, we study the convergence and the

equilibrium of both a centralized DSM scheme and a decentralized

DSM scheme. The integration of human behavior models and DSM

schemes into composite models can give us a more incisive under-

standing of DSM in practical situations.

The organization of this paper is as follows. In Section 2, we

give the DSM system model. In Section 3, we develop and study

the composite model. Simulations are conducted in Section 4 and

conclusions are given in Section 5.

2. SMART GRID DSM MODEL

Consider a smart grid consisting of one energy source and N con-

sumers or energy users. As shown in Fig. 1, each user has a smart

meter with two-way communication capability and is equipped with

HEMS to control household appliances. The energy source has a

central controller to communicate with the users and to collect their

energy usage data through the smart meters. Either centralized or

decentralized DSM schemes can be supported in this smart grid.

Let N = {1, 2, · · · , N} be the user set. Each user n ∈ N
has a number of household appliances a ∈ An, where An denotes

the set of all the appliances of the user n. Each appliance consumes



energy xn,a(h) during time h ∈ H, where H = {1, 2, · · · ,H} is

the optimization time horizon. The energy usage (or load) of the

whole system during time h is

L(h) =
∑

n∈N

∑

a∈An

xn,a(h). (1)

The cost of energy usage is defined as fh(L(h)) which is a function

of the energy usage L(h). Each function fh(ℓ), h ∈ H, is assumed

convex. A special example is the monotonically increasing quadratic

cost function given in [10], i.e.,

fh(L(h)) = ahL
2(h) + bhL(h) + ch, (2)

where ah > 0, bh ≥ 0 and ch ≥ 0 are time-dependent parameters.

The total energy usage of the whole system is

∑

h∈H

L(h) =
∑

h∈H

∑

n∈N

∑

a∈An

xn,a(h) (3)

and the total cost of the system is

C(x) =
∑

h∈H

fh(L(h)) =
∑

h∈H

fh

(

∑

n∈N

∑

a∈An

xn,a(h)

)

, (4)

where

x = {xn|∀n ∈ N}, xn = {xn,a(h) | ∀a ∈ An, h ∈ H}. (5)

The DSM problem considered in this paper is to schedule and

shift the energy usage profile x so as to minimize C(x). If fh(ℓ) is

monotonically increasing, then minimizing the cost C(x) is equiv-

alent to minimizing the energy usage (3). We assume that each ap-

pliance a of the user n consumes a total energy En,a and can work

during time set Tn,a ⊆ H. During each time h ∈ Tn,a, this appli-

ance has an upper bound and a lower bound on its energy consump-

tion, which are denoted as γmin
n,a and γmax

n,a , respectively. This gives

constraints on x as






En,a =
∑

h∈Tn,a
xn,a(h),

xn,a(h) = 0, if h 6∈ Tn,a,
γmin
n,a ≤ xn,a(h) ≤ γmax

n,a , if h ∈ Tn,a.

(6)

In this paper, we focus on studying the impact of human be-

havior to DSM by analyzing composite models that integrate human

behavior models and DSM schemes together. For the DSM schemes,

we directly use those of [10]. Specifically, for centralized DSM, the

central controller collects the parameters En,a, Tn,a, γmin
n,a , γmax

n,a

from all the users and solves the optimization problem

min
x

C(x), s.t., xn ∈ Xn, ∀ n ∈ N , (7)

where Xn is the domain of the optimization variable xn defined as

Xn = {xn|xn,a(h) satisfies (6) for all a ∈ An, h ∈ H}. (8)

Since the functions fh(ℓ) are convex, (7) is a convex optimization

with a unique global minimum. Note that there may have multiple

solutions x∗ that can achieve this minimum cost [10].

For decentralized DSM, the elegant game theoretic algorithm

developed in [10] is used, which can in fact achieve the global min-

imum of (7). It has a straightforward distributed algorithm imple-

mentation, where each user just adopts the best response strategy

to optimize minxnC(x). Note that no human behavior model was

considered in [10].
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Fig. 2. The SISa (susceptible-infected-susceptible with autonomous

infection) model for DSM.

3. INTEGRATE HUMAN BEHAVIOR MODEL WITH

DEMAND SIDE MANAGEMENT SCHEMES

3.1. Adapting SISa model for DSM

In the DSM model outlined in Section 2, all users are assumed to fol-

low the same optimization rule and to adopt the optimization results

unanimously. However, in practice, users quite often show different

behaviors. For example, some users may abandon the DSM when

they find it inconvenient to use. Such unexpected human behavior

will change the performance of the DSM schemes. The convergence

and the optimality of (7) can be different than those derived in [10].

Human behavior is complex to model and analysis. Many

methodologies have been developed for it, such as bounded ratio-

nality in game theory and descriptive models in behavior science.

Population dynamic models, which use succinct nonlinear differen-

tial equations to model the interactions among a large population,

have the strength of catching the essential interactions while averag-

ing out the variability of the population. The SISa model developed

in [13] is one of the examples. As a variation of the well-known

disease propagation model ISR (infected-susceptible-recovered),

the SISa model is designed specifically for modeling inter-personal

propagation of human behaviors, states, ideas, emotions, etc. More

importantly, its effectiveness has been verified by real data analysis

in [13] (modeling the spread of obesity) and in [14] (modeling the

spread of emotions such as content).

Considering the strength of the SISa model for human behavior

study, we adapt it to DSM in this paper. We define two states: the

susceptible state (i.e., not use the DSM scheme), and the infectious

state (i.e., use the DSM scheme). We use the sets S and I to include

all the users in each of these two states, respectively. Obviously,

S ⊆ N , I ⊆ N , S ∩ I = φ, and S ∪ I = N .

As shown in Fig. 2, a user in the set S can autonomously, or

spontaneously, switch to the set I, which means adopting the DSM

scheme. This happens with probability α, where 0 ≤ α ≤ 1. For

example, after a sustainability education, each user has probability

α to adopt the DSM scheme. In addition, users in the set I may

infect users in the set S , where “infect” means draw from S to I.

For example, a user may adopt the DSM scheme if his friends have

already adopted it. This happens with probability β, where 0 ≤ β ≤
1. It models the effect of social network behavior. Finally, each user

in the set I has probability g, where 0 ≤ g ≤ 1, to switch back to S .

For example, a user may find the DSM scheme inconvenient to use

and thus abandon it. The parameter g depends on the benefit or cost

of DSM.

At time t, let the number of users in S be S(t) and the number

of users in I be I(t). Then the population sizes evolve according to

{

dS(t)
dt

= −βS(t)I(t) + gI(t)− αS(t)
dI(t)
dt

= βS(t)I(t)− gI(t) + αS(t)
(9)

where I(t) + S(t) = N for any t.



We consider a well-mixed population only in this paper, i.e.,

each user has equal probability to be in contact with other users.

Structured population can be studied by following [14]. The equi-

librium of (9) can be obtained by letting dS(t)/dt = dI(t)/dt = 0.

At equilibrium, the probability for a user to adopt the DSM scheme

is

PI =
I(t)

N
=

1

2



1−
α+ g

βN
+

√

(

1−
α+ g

βN

)2

+
4α

βN



 .

(10)

As a market penetration problem, in order to get at least NPI

users to I, from (10) we need

g <

(

βN +
α

PI

)

(1− PI). (11)

In practice, advertising the DSM scheme can increase α, while in-

creasing social contacts with people in I results in larger β. By

improving DSM performance (i.e., reducing cost C(x)), we can re-

duce g. These parameters can be estimated from smart grid data by

following techniques of [13][14].

3.2. Integrating the SISa model with centralized DSM

Let us consider the centralized DSM scheme (7) first. Based on the

SISa model, only the I(t) users in the set I participate in the opti-

mization. Therefore, the cost function (4) is changed to

∑

h∈H

fh

(

∑

n∈I

∑

a∈An

xn,a(h) +
∑

m∈S

∑

a∈Am

xm,a(h)

)

. (12)

Users in S do not participate in the DSM. If the central controller can

still read their energy consumption data Lm(h) =
∑

a∈Am
xm,a(h)

through smart meters, it calculates ES(h) =
∑

m∈S Lm(h) and

optimizes

C1(xI) = min
xI

∑

h∈H

fh

(

∑

n∈I

∑

a∈An

xn,a(h) +ES(h)

)

, (13)

where xI = {xn|n ∈ I}. Otherwise, the central controller has to

skip ES(h) and optimizes

C̃1(xI) = min
xI

∑

h∈H

fh

(

∑

n∈I

∑

a∈An

xn,a(h)

)

. (14)

In both cases, we have constraint xn ∈ Xn, ∀ n ∈ I.

We assume that the recovery probability g is a function of

C1(xI). The rational is that the probability that a user abandons

the DSM scheme depending on the cost of the scheme. The smaller

the cost, the smaller the probability g. Some typical functions

can be used, such as linear function g(x) = λx + η, exponen-

tial function g(x) = η(1 − e−λx), or sigmoid/logistic function

g(x) = η/(1 + e−λ(x−x0)), with appropriate parameters.

In summary, in our composite model, the SISa model (9) affects

the cost C1(xI) by changing the user set I, while the cost C1(xI) of

(13) affects the SISa model through the parameter g. Since the SISa

model evolves at a much slower pace than the optimization (13), in

analysis and simulations we can assume that during each iteration

of (9) we have time to finish a new optimization (13) and use the

optimized cost C1(xI) to update g(C1(xI)).

Proposition 1. Assume monotonically increasing cost functions

fh(ℓ). For any two subsets I1 ⊆ N and I2 ⊆ N , if I1 ⊆ I2, then

C1(xI1) = C̃1(xI1) ≥ C1(xI2) = C̃1(xI2).
Proof. If the cost functions fh(ℓ), h ∈ H, are monotoni-

cally increasing, then the optimal values of both (13) and (14) are

achieved at the same minxI

∑

n∈I

∑

a∈An
xn,a(h). Therefore,

C1(xI) = C̃1(xI), which means the energy consumption data

of the users in S can be safely skipped from the optimization. In

addition, if I1 ⊆ I2, then (minxI1

∑

n∈I1

∑

a∈An
xn,a(h)) +

∑

m∈I2\I1

∑

a∈Am
xm,a(h) ≥ minxI2

∑

n∈I2

∑

a∈An
xn,a(h)

for all h ∈ H. Hence C1(xI1) ≥ C1(xI2). �
Therefore, the more users involved in the DSM, the better the

performance.

To analyze the size I(t) of the set I at equilibrium, from (9), the

system can converge to the best case I = N if dI(t)/dt > 0, which

means g(C1(xI)) < (β + α/I(t))(N − I(t)) for all possible sets

I ⊂ N . If g(C1(xI)) > (β + α/I(t))(N − I(t)) for all I ⊂ N ,

then no user participates in the DSM. The system may consist of a

mixture of users in both I and S otherwise. See Fig. 3 in Section 4

for an illustration of applying these rules to analyze the equilibrium

and to determine the equilibrium I(t).
To analyze the optimal cost at equilibrium, we need to use the

aggregate load L(h) of (1) as the optimization variable. We assume

L(h) ∈ [Lmin
h , Lmax

h ], which may just be the limit of the energy

source’s capacity. The aggregate loads of the users in I and S are,

respectively, PIL(h) and LS(h) = (1 − PI)L(h). The DSM opti-

mization (13) becomes C̄1 = min{L(h),h∈H}

∑

h∈H fh(PIL(h) +
LS(h)), and

C̄1 =
∑

h∈H

fh
(

PIL
min
h + LS(h)

)

. (15)

Next, we use (15) to calculate g(C̄1) and then PI(C̄1) based on (10).

Finally, in (15), replacing PI with PI(C̄1), we get

C̄1 =
∑

h∈H

fh
(

PI(C̄1)L
min
h + (1− PI(C̄1))L(h)

)

. (16)

We can find roots of (16) numerically, which is the cost C̄1 at equi-

librium. Note that multiple solutions mean multiple equilibria.

As a simple example, let g(C̄1) = λC̄1 with parameter λ, which

means that a user’s probability to leave the DSM reduces linearly

with the DSM performance. With N large enough so that βN ≫

4α, from (10) we have PI(C̄1) ≈ 1− α+λC̄1

βN
. If linear cost function

fh(L(h)) = ahL(h) is used, from (16) we have

C̄1 =

(

∑

h∈H

ah(L
min
h − L(h))

)

PI(C̄1) +
∑

h∈H

L(h). (17)

The closed-form solution of (17) is

C̄1 =

(
∑

h∈H L(h)
)

+
(
∑

h∈H ah(L
min
h − L(h))

)

βN−α

βN

1 +
λ
∑

h∈H
ah(Lmin

h
−L(h))

βN

(18)

which is the optimal cost at equilibrium.

In the ideal case I = N , we have PI = 1 and have the minimum

cost Cmin =
∑

h∈H ahL
min
h . We can easily see that C̄1 > Cmin

since ah ≪ 1 in practice, which means less market penetration re-

duces DSM performance. We can also find a lower bound for the

performance loss as

C̄1 − Cmin

Cmin
> (1− ah)

∑

h∈H L(h)
∑

h∈H Lmin
h

. (19)
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3.3. Integrating the SISa model with decentralized DSM

To implement the DSM (7) distributively, [10] suggested a special

pricing scheme that leads to the game 〈N , (Xn)n∈N , (un)n∈N 〉
[15], where the payoff function to be maximized is

un(xn,x−n) = −
∑

h∈H

fh





∑

a∈An

xn,a(h) +
∑

m∈N ,m6=n

Lm(h)



 .

(20)

Note that x−n denotes {xm|m ∈ N ,m 6= n}. Note also that (20)

is similar to (4).

To play this game, each user n maximizes its own payoff by

solving maxxn un(xn,x−n). This best response strategy can guar-

antee the convergence of the game to its Nash equilibrium that equals

to the global optimum of (7).

In our case, the game is changed to 〈I, (Xn)n∈I , (un)n∈I〉. For

each user n ∈ I, the best-response optimization is revised to

min
xn

∑

h∈H

fh





∑

a∈An

xn,a(h) +
∑

m∈I,m6=n

Lm(h) + ES(h)



 .

(21)

Note that we can remove ES(h) from (21) if it is unknown.

Proposition 2. With the best response strategy, the game

〈I, (Xn)n∈I , (un)n∈I〉 converges to the Nash equilibrium which

equals to the global optimum C1(xI) of (13).

Proof. This game is a potential game where the potential func-

tion is just the payoff function. Since the potential function is con-

cave, the best response strategy (21) converges to the global op-

timum of the potential function [16], which equals to the global

minimum of the centralized case (13). A tricky issue is that be-

cause each user knows its own payoff un(xn,x−n) only, the func-

tion gn(un(xn,x−n)) may have different values for different users.

Nevertheless, such difference will converge to zero. �
Thanks to this proposition, the convergence and the equilibrium

performance can be analyzed similarly as the centralized case.

4. SIMULATIONS

In this section, we use simulations to study the proposed composite

model, which gives the convergence and equilibrium performance

of DSM under human behavior effects. Similar to [10], we simu-

late a smart grid where each user has appliances with fixed or flexi-

ble xn,a(h). fh(ℓ) = 0.3ℓ2 for day-time and 0.2ℓ2 for night-time.
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The parameters of the SISa model are β = 0.005, α = 0.019, and

g(x) = λx/Cmax where Cmax is the highest cost. Based on the

analysis in Section 3.2, Fig. 3 shows the equilibria under these pa-

rameters. It demonstrates that the set I may have a few users only.

Next, we simulate centralized DSM schemes, both our new com-

posite model and the DSM model of [10]. We run the algorithms for

N = 10 to 110 users and find their costs. We assume the initial

condition I = φ for our algorithm and I = N for [10]. Note that

the cost of [10] is the lowest since it has I = N . Simulation re-

sults are shown in Fig. 4. In addition, we simulate the decentralized

DSM schemes, where we compare the convergence of our compos-

ite model with the decentralized algorithm of [10]. We set N = 100
in this case. Simulation results are shown in Fig. 5.

We can clearly see the impact of human behavior to DSM per-

formance. Under some SISa parameters, the DSM can converge to

the global optimum with I = N . However, under some other SISa

parameters, there are only a few users in I so the DSM performance

is extremely worse. On the other hand, the rapid convergence of our

decentralized algorithm to equilibrium can usually be achieved.

5. CONCLUSIONS

In this paper, we adapt the SISa (susceptible-infected-susceptible

with autonomous infection) model to describe the human behavior

in demand side management (DSM) systems. We integrate the SISa

model with the DSM algorithms, for both a centralized DSM scheme

and a decentralized game-theoretic DSM scheme. Convergence and

equilibria of the composite model are studied by analysis and sim-

ulations, which demonstrates the importance of addressing human

behavior in DSM development.
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