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ABSTRACT

In this paper, for single-source wireless ad hoc networks, we develop

a joint re-encoding and successive interference cancellation (SIC)

scheme to realize interference-immune multi-hop relaying. Interfer-

ence immunity means that the transmission rate is not affected by

the mutual interference among the relays. This leads to a greedy

near-optimal algorithm that is similar to the Dijkstra’s algorithm for

wireless relay selection and multi-hop routing. To evaluate the prac-

tical performance of this scheme, we analyze quantitatively the per-

formance of SIC under channel model errors and channel estimation

errors. The vital role of the relative signal strength and the train-

ing sequence length is determined. Simulations are conducted to

demonstrate that the proposed scheme maximizes transmission rate

and reduces scheduling overhead drastically.

Index Terms— successive interference cancellation, multi-hop

relay, wireless networks, signal to noise ratio, cross-layer design

1. INTRODUCTION

For wireless ad-hoc networks consisting of an arbitrary number of

wireless nodes, a basic routing problem, i.e., selecting relays to

construct multi-hop relaying paths to maximize source-destination

transmission rates, is a long-standing open problem. In wired net-

works, sophisticated algorithms such as Dijkstra’s algorithm can be

used to solve this basic multi-hop routing problem [1]. In wireless

networks, however, this problem is difficult because of the mutual

interference among the relays.

This optimal multi-hop routing problem was studied in [2] but

for a linear wireless network only. For the general Gaussian ad-hoc

networks, the optimal multi-hop rate with decode-and-forward re-

lays was given in [3] [4], where it was shown that the rate is not

affected by the mutual interference. Nevertheless, the routing prob-

lem, i.e., optimal relay selection and multi-hop path construction,

was still a challenge. Under a different model, in [5][6] we gave the

optimal decode-and-forward rate and, more importantly, developed

an efficient algorithm to select relays and to construct the optimal

multi-hop paths from a source node to all destination nodes.

So far the optimal multi-hop rates were derived with the ideal

asymptotic equipartition property (AEP), where random codes with

infinite length, full-duplex relaying, and perfect successive interfer-

ence cancellation (SIC) were used. In this paper we address this

problem under more realistic assumptions. Specifically, we con-

sider half-duplex decode-and-forward relays. In addition, we pro-

pose a practical joint re-encoding and SIC scheme to realize the

interference-immune multi-hop relaying. We also analyze the per-

formance of SIC under practical constraints.

Currently, there is a great interest for the upper-layer protocols

to apply SIC for interference mitigation [7]. Thus, it is important to

analyze the performance of SIC in practice. The results of this paper

can play an important role. A significant drawback of existing upper-

layer studies such as [7]-[9] is that they can only take some limited

benefits of SIC. In contrast, in this paper we show that by applying

appropriate re-encoding with the SIC, more benefits can be achieved.

In addition, by simulations we show that the proposed scheme can

potentially reduce drastically the overhead of upper-layer protocols.

The organization of this paper is as follows. In Section 2, we

give the multi-hop wireless network model. In Section 3, we de-

velop the joint re-encoding and SIC scheme and analyze the SIC

performance. Simulations are conducted in Section 4, and conclu-

sions are presented in Section 5.

2. MULTI-HOP WIRELESS NETWORK MODEL

In a wireless network with N +2 nodes, we need to construct multi-

hop transmission paths from a source node to multiple destination

nodes. The multi-hop routing problem is to determine the optimal

number of hops (hop count), to select a relay for each hop, and to

determine the relay’s transmission power so as to maximize source-

destination transmission rate.

Consider the single-source single-destination case first. Denote

the source node as node 0, the destination node as node N + 1, and

all the N candidate relay nodes as the set N = {1, 2, · · · , N}. Let

the hop count be h + 1, where 0 ≤ h ≤ N , and the relay node in

hop i be ri ∈ N . We define r0
△
= 0 and rh+1

△
= N + 1.

With the half-duplex decode-and-forward relaying strategy,

we adopt a slotted multi-hop packet forwarding scheme, where

even-numbered relays transmit in even-numbered slots, and odd-

numbered relays transmit in odd-numbered slots. Define Q = ⌊h
2
⌋,

where ⌊x⌋ is the maximum integer not larger than x. As shown in

Fig. 1, during the even-numbered slot 2k, k = 0, 1, · · · , each even-

numbered relay r2q , q = 0, 1, · · · , Q, re-encodes a packet u(k− q)
into a signal u[r2q , k − q], and transmits this signal. Meanwhile,

each odd-numbered relay r2q+1 receives (and decodes) a packet

u(k − q), where q = 0, 1, · · · , Qo, and

Qo =

{

Q, if h is odd;
Q− 1, if h is even.

(1)

The transmission-receiving schedule in odd-numbered slots can

be defined similarly. The destination node rh+1 receives signals in

both even-numbered and odd-numbered slots.
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Fig. 1. Multi-hop transmission and receiving schedule in an even-

numbered slot 2k for an even hop count h.

During the even-numbered slot 2k, the signal received by the

relay r2q+1, 0 ≤ q ≤ Qo, is

x[r2q+1, 2k] =

Q
∑

i=0

√

P (r2i)G(r2i, r2q+1)e
jθ(r2i,r2q+1)

× u[r2i, k − i] + v[r2q+1, 2k], (2)

where P (r2i) is the transmission power of the relay r2i, j =√−1,
√

G(r2i, r2q+1)e
jθ(r2i,r2q+1) is the instantaneous propa-

gation channel, and v[r2q+1, 2k] is additive white Gaussian noise

(AWGN). Note that x[r2q+1, 2k], u[r2i, k] and v[r2q+1, 2k] are

vectors containing all the samples in the slot 2k.

Similarly, during the odd-numbered slot 2k + 1, the relay r2q ,

0 ≤ q ≤ Q, receives signal

x[r2q, 2k + 1] =

Qo
∑

i=0

√

P (r2i+1)G(r2i+1, r2q)e
jθ(r2i+1,r2q)

× u[r2i+1, k − i] + v[r2q , 2k + 1]. (3)

We assume complex flat fading channels with gain G(i, j) from

node i to node j, zero-mean AWGN with power σ2(i) for node i
in all slots, and individual relay power limit 0 ≤ P (i) ≤ Pmax(i).
All re-encoded signals u[i, t] have unit power. We also assume that

all channel coefficients and re-encoding rules are public knowledge.

Note that for the general frequency selective fading channels, we can

apply OFDM signaling to convert them into flat fading channels.

3. MULTI-HOP RELAY OPERATION AND

OPTIMIZATION

3.1. Joint re-encoding and SIC for relay signal processing

Let us consider first the odd-numbered relay r2q+1 which has re-

ceived signal (2). Because this relay has full knowledge of all the

packets transmitted by the relays in its subsequent hops, it can sub-

tract signals u[r2i, k − i], i = q + 1, · · · , Q, from (2). Then it

proceeds to decode the packet u(k − q) during the slot 2k.

Proposition 1. The maximum decode-and-forward rate of the

relay r2q+1, 0 ≤ q ≤ Qo, is

R(r2q+1) =
1

2
log2

(

1 +

∑q

i=0 P (r2i)G(r2i, r2q+1)

σ2(r2q+1)

)

. (4)

Proof. The proof follows [3] based on AEP and random codes.

In our case the relays can not conduct coherent transmit beamform-

ing, which is more practical for ad hoc networks. In addition, we has

half-duplex relaying and thus the parameter 1/2. �

Similarly, the maximum rate of the even-numbered relay r2q ,

0 ≤ q ≤ Q, is

R(r2q) =
1

2
log2

(

1 +

∑q−1
i=0 P (r2i+1)G(r2i+1, r2q)

σ2(r2q)

)

. (5)

The maximum rate of the destination node rh+1 = N + 1 is

R(rh+1) =
1

2
log2

(

1 +

∑Q

i=0 P (r2i)G(r2i, rh+1)

σ2(rh+1)

)

+
1

2
log2

(

1 +

∑Qo

i=0 P (r2i+1)G(r2i+1, rh+1)

σ2(rh+1)

)

. (6)

From (4)-(6), the most interesting observation is that there is no

mutual interference left in the rate expressions of the relays. In other

words, multi-hop relaying becomes immune to mutual interference.

What’s more, each relay can collect the transmission power of all

the even- or odd- numbered transmitting relays in its preceding hops.

This means a nice and surprising property: Enjoy benefits of wireless

broadcasting without suffering from interference.

In this paper we focus on developing a practical joint re-

encoding and SIC scheme for the relays to achieve closely the

maximum rates (4)-(6). This scheme exploits the characteristics

of multi-hop relaying, i.e., a packet is transmitted repeatedly by

multiple nodes in multiple slots. With appropriate re-encoding tech-

niques, mutual interference in the received signals (2)-(3) can be

compensated for successfully.

Without loss of generality, consider the case that the relay r2q+1

decodes the packet u(k − q) in the slot 2k. The packet u(k − q)
is transmitted not only by the one-hop ahead relay r2q (re-encoded

to signal u[r2q , k − q] in slot 2k) but also by all preceding even-

numbered relays r2i (re-encoded to signal u[r2i, k−q] in slot 2(k−
q + i)), where 0 ≤ i ≤ q. The optimal way for the relay r2q+1 is

to store and exploit all the signals x[r2q+1, 2(k− q+ i)] received in

the past q even-numbered slots 2(k − q + i), 0 ≤ i ≤ q.

Specifically, before decoding the packet u(k− q) in slot 2k, the

relay r2q+1 has already decoded and transmitted all packets u(t),
t ≤ k − q. Subtracting signals related to these known packets from

(2), the signal received in slot 2(k − q + i) is reduced to

x̃[r2q+1,2(k − q + i)] =
i
∑

ℓ=0

√

P (r2ℓ)G(r2ℓ, r2q+1)e
jθ(r2ℓ,r2q+1)

× u[r2ℓ, k − q + i− ℓ] + v[r2q+1, 2(k − q + i)]. (7)

Based on (7), for each i, the relay r2q+1 can detect a signal u[r2i, k−
q], which is re-encoded from the packet u(k− q) by r2i. The signal

to interference and noise ratio (SINR) for this signal detection is

Γ(r2q+1, r2i) =
P (r2i)G(r2i, r2q+1)

i−1
∑

ℓ=0

P (r2ℓ)G(r2ℓ, r2q+1) + σ2(r2q+1)

. (8)

Obviously, only a portion of the packet u(k − q) is decoded in (8).

If each relay r2i re-encodes u(k − q) into u[r2i, k − q] appro-

priately so that the relay r2q+1 decodes a different portion of this

packet from each signal x̃[r2q+1, 2(k − q + i)], the optimal rate for

the relay r2q+1 is

R(r2q+1) =
1

2

q
∑

i=0

log2 (1 + Γ(r2q+1, r2i)) . (9)

We can show that (9) is equal to (4).

It is non-trivial for all the even-numbered relays r2i to re-encode

the packet u(k − q) so that all odd-numbered relays r2q+1 can

achieve the maximum rates (4). Each even-numbered relay r2i needs



to transmit a portion of its data to each odd-numbered relay r2q+1.

Denote the rate of this portion of data as R(r2q+1, r2i). Then

R(r2q+1, r2i) ≤ 1

2
log2 (1 + Γ(r2q+1, r2i)) . (10)

Since a relay’s transmitted data is limited by its receiving rate, we

have

R(r2q+1, r2i) ≤ R(r2i). (11)

In addition, the sum of all rate portions received by a relay should be

no less than this relay’s rate. Therefore, we have







R(r1, r0)
...

. . .

R(r2Qo+1, r0) · · · R(r2Qo+1, r2Qo)






1 ≥ Ro, (12)

where Ro = [R(r1), R(r3), · · · , R(r2Qo+1)]
T is a vector of all

the odd-numbered relay rates, and 1 is a (Qo + 1) × 1 vector

with all elements being 1. From (10)-(12), we can determine each

R(r2q+1, r2i).
The challenge comes from the fact the data bits received by

all the odd-number relays from a common even-numbered relay

form a subset chain. To resolve this, we use the following re-

encoding procedure. Let b = [b1, · · · , bM ] denote the symbols of

a packet. The relay r2i re-encodes b into [c2i1 , · · · , c2iM ] = bE2i,

where E2i is an M × M full-rank re-encoding matrix for the

relay r2i. Then the first ℓ symbols c
2i
ℓ = [c2i1 , · · · , c2iℓ ], where

ℓ/M ≥ R(r2q+1, r2i)/R(r2i), are assigned with appropriate trans-

mission power so that the SINR Γ(r2q+1, r2i) can be satisfied. This

way, the relay r2q+1 can receive successfully c
2i
ℓ . With all such

symbols received from the even-numbered relays, the relay r2q+1

can decode the packet b by solving the equation

[c0ℓ , · · · , c2qℓ ] = bD2q+1, (13)

where D2q+1 consists of the corresponding columns of all the re-

encoding matrices E2i and has full row rank with probability 1.

3.2. Performance of SIC under practical constraints

So far we have assumed perfect SIC. In practice, SIC is limited by

various practical constraints. One of them is the finite resolution of

quantization. From [10], quantization signal to noise ratio (SNR)

can be described as γQ = 100.602b+1.079 , where b is the number of

bits each sample is quantized to. If the continuous-time signal has

SNR γ, then the digital signal after quantization has SNR

γ̂ =
1

1
γ
+
(

1 + 1
γ

)

1
γQ

. (14)

In Fig. 2(a), we show the SNR of the quantized signal versus the

SNR of the original continuous-time signal. For half-duplex relays,

since the SNR of the received signal (2) is usually less than 100 dB,

a practical A/D with b ≥ 14 should be enough. In contrast, for full-

duplex relays, the self-interference can be too strong. Fortunately,

techniques such as antenna separation and analog interference can-

cellation are commonly adopted to reduce self-interference before

quantization [11].

The next practical constraint is the channel model error, which is

due to the linear finite impulse response (FIR) channel model of the

real channel. Assume the envelope of the power spectral density of

the real channel attenuates exponentially as f(τ ) = Ae−
τ
λ , where

the constant λ can be determined by the maximum excess delay τmax
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Fig. 2. (a) Effect of finite resolution quantization. (b) Effect of im-

perfect SIC.

or channel length. The signal power covered in the channel model is
∫ τmax

0
f(τ )dτ , while the signal power not covered is

∫∞

τmax
f(τ )dτ

which is the power of the channel model error.

We can use a factor βr2i,r2q+1
to describe the channel model

error between the relays r2i and r2q+1. The power of the chan-

nel model error is βr2i,r2q+1
|hr2i,r2q+1

|2, where the channel

is hr2i,r2q+1
=
√

P (r2i)G(r2i, r2q+1)e
jθ(r2i,r2q+1). The ac-

tual signal power from the relay r2i to the relay r2q+1 is (1 +
βr2i,r2q+1

)|hr2i,r2q+1
|2. Even if just considering the channel model

error, the signal’s SNR is 1/βr2i,r2q+1
only. More specifically, if

τmax is defined as η dB below the peak power level [12], then it can

be shown that the SNR is 1/βr2i ,r2q+1
= η (dB) only.

This has a very severe consequence: the more powerful a signal

component is, the more residue error it introduces to other signals

in SIC. Obviously, for full-duplex relays, this problem is even more

severe considering the strong self-interference.

The third practical constraint is the channel estimation error. The

accuracy of channel estimation depends on training sequence length

T . Even though there are various blind or semi-blind channel estima-

tion methods, their performance is secondary to the training method.

Considering the signal model (2), the maximum-likelihood channel

estimator is

ĥr2i,r2q+1
=

(

T
∑

n=1

|u[r2i, n]|2
)−1 T

∑

n=1

x[r2q+1, n]u
∗[r2i, n],

(15)

where u[r2i, n] and x[r2q+1, n] are training symbols and received

samples at time n, respectively.

Proposition 2. Applying channel estimation (15) in SIC, the

SNR of the (q − i)th stage signal detection in (2) is

Γ̂(r2q+1, r2i) =
|hr2i,r2q+1

|2
σ2
a(r2q+1, r2i)

, i = q, q − 1, · · · , 0, (16)

where

σ2
a(r2q+1, r2i) =

i−1
∑

ℓ=0

(1 + βr2ℓ,r2q+1
)|hr2ℓ,r2q+1

|2 + σ2(r2q+1)

+ βr2i,r2q+1
|hr2i,r2q+1

|2 +
q
∑

ℓ=i+1

1

T
σ2
a(r2q+1, r2ℓ) (17)

is the sum power of the mutual interference, the noise, and the accu-

mulated SIC residue errors.

Proof. According to [13], the Cramer-Rao lower bound of the

channel estimator (15) is

E
[

|ĥr2i,r2q+1
− hr2i,r2q+1

|2
]

=
1

T
σ2
a(r2q+1, r2i). (18)



Note that σ2
a(r2q+1, r2i) includes residue errors of all previous SIC

stages. From (2), this stage of SIC leaves residue error (hr2i,r2q+1
−

ĥr2i,r2q+1
)u[r2i, k−i]. Together with the residue errors of previous

stages and the remaining signal components, we can derive (16) and

(17). �

From (17), we can see that a long training sequence length T is

helpful to mitigate the accumulation of SIC residue errors. If T →
∞, then there is not error accumulation, and the channel model error

and the mutual interference play major roles. One way to reduce the

channel model error is to let the training sequence of each relay be

the only transmission for some time. But this will reduce T .

An example is shown in Fig. 2(b), where we need to use SIC to

decode 4 signals, each with an ideal SNR 10 dB. We set η = 30 dB.

We can see that the SIC performance critically depends on T . For

small T , the last several stages of SIC are unreliable.

3.3. Efficient algorithm for multi-hop relay selection

The problem of hop count determination, relay node selection, and

multi-hop rate optimization can be formulated as max-min optimiza-

tion

R = max
0 ≤ h ≤ N

rℓ ∈ N , 1 ≤ ℓ ≤ h

min
1≤i≤h+1

R(ri) (19)

under node power constraint 0 ≤ P (i) ≤ Pmax(i), 0 ≤ i ≤ N .

Because rates R(ri) increase monotonically with relaying pow-

ers, each relay should simply transmit at full power, i.e., P (ri) =
Pmax(ri). This resolves the challenging power control issue. In ad-

dition, a relay is not affected by the relays in its subsequent hops. It

only increases the rates of the relays in its subsequent hops. There-

fore, we can try a greedy procedure to select the relays with the

largest rates, similarly as the algorithm in [6].

The algorithm begins with r0 = 0. In each iteration j, we se-

lect, from all the remaining N − j + 2 candidate nodes (include the

destination node), a node with the highest rate as the relay rj in hop

j. The rates are updated according to (4)-(6) and (16). Each node

keeps two rates (for even and odd j) updated and stored.

This algorithm has computational complexity O(N2). It can

find multi-hop paths from a source node to all destination nodes si-

multaneously. Obviously, this wireless algorithm is essentially sim-

ilar to the well-known Dijkstra’s algorithm.

4. SIMULATIONS

First, we simulated a wireless network whose nodes were placed

randomly within a square of 1000 × 1000 meters. We considered

two scenarios: Rand (source and destination nodes were placed ran-

domly) and Fixed (source was in the origin and destination was in

the position (1000,1000)). The channel gain between two nodes with

distance dij was G(i, j) = Kd−3
ij . Parameters were normalized so

that a transmission distance of 1000 meters had SNR 10 dB.

For each network size N , we generated 1000 random networks,

ran our algorithm in each of them, and calculated average multi-hop

rate. We denoted the result of our algorithm by “New Alg”, and

compared it with the direct (no relay) transmission result (“Direct”)

and the brute-force exhaustive search result (“Exhaust”). Simula-

tion results are shown in Fig. 3, which clearly demonstrates that our

proposed algorithm is near optimal.

Next, we compared the rate R achieved by our algorithm with

the multi-hop transmission rate achieved by a practical routing
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algorithm in a practical WiFi network. We simulated fixed grid

wireless networks where wireless nodes were placed evenly on a

constant square grid. We used NS-3 to simulate the Ad-hoc On-

demand Distance Vector (AODV) routing algorithm [14] over WiFi

IEEE802.11a Physical- and MAC-layer standard. Simulation results

are shown in Fig. 4.

Obviously, practical AODV throughput was just a tiny fraction

of R. This is mainly because practice wireless relays have to share

the spectrum in a time-division manner. Therefore, the practical

throughput reduces exponentially with the number of hops [15]. On

the other hand, the link rate curve indicates that if the relays can

exploit the interference-immune techniques proposed in this paper

to realize full spatial reuse with low scheduling overhead, there lies

great potential for enhancing multi-hop transmission throughput.

5. CONCLUSION

In this paper we develop a joint re-encoding and successive interfer-

ence cancellation scheme for half-duplex decode-and-forward relays

to realize interference immune multi-hop relaying. We also analyze

the performance of SIC under practical constraints of finite quan-

tization resolution, finite-length channel model, and finite-training

channel estimation.
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