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ABSTRACT

In this paper we show that the extensive results in blind/non-blind
channel identification developed within the community of signal
processing in communications can play an important role in guaran-
teeing big data privacy. It is widely believed that the sheer scale of
big data makes most conventional data privacy techniques ineffec-
tive for big data. In contrast to this pessimistic common belief, we
propose a scheme that exploits the sheer scale to guarantee privacy.
This scheme uses jointly artificial noise and secret matrix transform
to scramble the source data. Desirable data utility can be supported
because the noise and the transform preserve some important geo-
metric properties of the source data. With a comprehensive privacy
analysis, we use the blind/non-blind channel identification theories
to show that the secret transform matrix and the source data can not
be estimated from the scrambled data. The artificial noise and the
sheer scale of big data are critical for this purpose. Simulations of
collaborative filtering are conducted to demonstrate the proposed
scheme.

Index Terms— big data, privacy, signal processing, channel
identification, blind source separation

1. INTRODUCTION

Big data refers to the seemingly unlimited data generated from vari-
ous sources such as social media, web surfing or market transactions.
We rely on big data analytics to discover useful information from the
data [1]. Big data has some unique characteristics in terms of vol-
ume, variety and velocity [2], where volume denotes the sheer data
scale or the huge data size, variety refers to the heterogeneous data
structures, and velocity describes the time sensitive and time varying
nature of the data.

The full potential of big data cannot be realized without massive
data sharing. Nevertheless, sharing of big data faces the challenge
of data privacy. Many data records contain personally identifiable
information that can be linked to the data owner. Experience has in-
dicated that it is not enough to just remove the identity of the data
owner from the source data. With advanced data analysis and some
outside knowledge, it is often possible to discover a lot of private
information from the published data. Despite significant accom-
plishments of privacy research in areas like statistical database [3],
privacy-preserving data mining [4] and privacy-preserving data pub-
lishing [5], privacy remains one of the major challenges for big data.

To guarantee privacy, source data must be processed for anonymiza-
tion. Many data anonymization techniques have been developed, in-
cluding cryptographic techniques such as homomorphic encryption
or secure multi-party computation [6], and non-cryptographic tech-
niques such as perturbation or k-anonymity [3][4]. In perturbation,
the original data is modified by adding noise, or generalized to less
accurate values, etc. In k-anonymity, the original data is modified
such that a given data is not distinguishable from at least k other
data.

Unfortunately, each of these techniques has some problems
when applied to big data [4] [7]. The popular k-anonymity methods
can no longer anonymize the data without losing an unacceptable
amount of information. The algorithms become impractical because
the underlying problem is NP-hard. The noise-perturbation methods
become less effective because it is possible to estimate the original
data from the perturbed data when the data volume becomes large.
The encryption based approaches are computationally prohibitive.

Considering the sheer scale of big data, techniques based on ma-
trix transform looks promising because of their efficiency in both
computation and data scrambling. Within the conventional database
research, many of such techniques have been studied, such as ma-
trix rotation [8][9], matrix multiplication [10][11], sketches [7], can-
cellable biometrics [12], etc. Unfortunately, they have been chal-
lenged with a number of inverse-transform attacks [10][13], and has
since been looked as insecure. Note that most of these works did not
take the special characteristics of big data into consideration.

In this paper we show that, with the help of the sheer scale of
big data, the matrix transform technique can be strengthened into an
efficient and secure big data privacy preserving methodology. We
propose an innovative scheme that exploits both secret matrix trans-
form and distance-preserving artificial noise, and the latter plays a
critical role to guarantee both the required scale and the privacy.

As another major contribution, we conduct a comprehensive pri-
vacy analysis based on advanced communication signal processing
theories, in particular non-blind and blind channel identification and
source separation theories. The analysis shows that quantifiable met-
rics such as SNR or estimation accuracy used in signal processing
can be applied to study the level of privacy.

The organization of this paper is as follows. In Section 2, we
give the big data publishing model and develop the proposed privacy
preserving scheme. In Section 3, we give a comprehensive privacy
analysis. In Section 4, we conduct simulations based on a typical big
data application scenario. Finally, a conclusion is given in Section 5.
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Fig. 1. Privacy-preserving data publishing model.

2. JOINT ARTIFICIAL NOISE AND SECRET MATRIX
TRANSFORM

2.1. Data scrambling in big data publishing

Consider a set of data consisting of N data records. Each of the data
records has M attributes, i.e., dimensions or values. This data set can
be described by an N ×M matrix D. For example, in collaborative
filtering or recommender generating, each entry D(i, j) denotes the
user i’s preference of the item j [14] [15]. The sheer scale of big
data means that N and M can be very large, e.g., in millions [14].
Such a large data set may consist of several separated data blocks
Dk in practice, which are stored physically in different places.

We consider a privacy-preserving data publishing model [5], as
illustrated in Fig. 1. We assume that there is a trustable data broker
that collects the data D from the data owners, anonymizes them, and
makes them publicly available to all the data users. Data privacy in
our case means that no data user can estimate the source data with
sufficient accuracy from the scrambled data and possibly some out-
side knowledge about the source data and the scrambling scheme. To
preserve privacy, the data broker applies both artificial noise and se-
cret matrix transform to scramble the data matrix Dk, and publishes
the scrambled data matrix Ak.

For the data publishing model, what makes privacy challenge
is to keep desirable data utility to any data user, even the privacy
attacker. Both of them should be allowed to conduct normal data
analytic functions with the scrambled data and obtain similar results
as using the unscrambled source data. Alternatively, our proposed
techniques can be applied to guarantee the privacy of data stored in
untrusted cloud servers. What makes privacy challenge in this case
is that the data owners have to use the cloud to process the data for
big data analytics.

We propose the following data scrambling scheme. The data
broker transforms the source data matrix Dk into the scrambled data
matrix

Ak =
[
Dk Wk

]
Hk, (1)

where (·)k denotes the kth block of the huge big data set D. Each
block Dk has Nk rows, and

∑
k Nk = N . Therefore, the dimension

of Dk is Nk ×M . Processing each block separately fits nicely with
the big data processing platforms like MapReduce. Wk is an Nk ×
K matrix of artificial noise, and Hk is the (M + K) × J secret
transform matrix. The dimension of Ak is Nk × J . We can adjust
M ≤ J ≤ M +K to control the published data size.

While somewhat similar to conventional matrix transform meth-
ods such as [8][9], the inclusion of the extra artificial noise matrix
Wk is new and makes our scheme fundamentally different. The pur-
pose of Wk is to both add intentional noise and guarantee the sheer
scale of the matrices. Without it, the transform matrix along may not
guarantee privacy in some special cases.

To support data utility, similar to conventional matrix transform
methods, our proposed scheme preserves some important geometric
properties among the data records during scrambling, such as dis-
tance and manifold. Therefore, many important data analytic func-
tions such as dimension reduction, classification and clustering can

be conducted with the scrambled data and produce the same results
as using the unscrambled source data. Note that many big data an-
alytics functions are based on matrix factorization and dimension
reduction techniques such as singular value decomposition (SVD),
principle component analysis (PCA) and non-negative matrix fac-
torization [16][17].

To preserve the distance among the rows of Dk, we need to find
Wk and Hk such that [Dk Wk]HkH

′
k[Dk Wk]

′ − DkD
′
k is

diagonal or diagonal matrix plus certain constant, where (·)′ de-
notes matrix transform. A simpler way is to find Wk such that
Dk(WkW

′
k−IM )D′

k is diagonal or diagonal plus certain constant.
A special way is to make Wk orthogonal. Similarly, the secret trans-
form matrix Hk can be set as the J columns of an (M+K)×(M+
K) orthogonal matrix Tk, where T′

kTk = IM+K .

2.2. Collaborative filtering with the scrambled data

Privacy-preserving techniques make tradeoff between utility and pri-
vacy [18]. In our case, although not as flexible as using the un-
scrambled source data, many important big data analytic functions,
especially those based on dimension reduction, clustering or classi-
fication, can still be conducted. In the sequel, we demonstrate this
by the collaborative filter based recommender generation.

Let us consider collaborative filtering for preference prediction
[14]. Taking the movie rating as example, we need to use existing
ratings to predict a user’s preference (rating) on an item that he has
not rated. In this case, a data user’s own data is within Dk, i.e., this
data user is also a data owner. He can use all the published scrambled
data, but should not be able to get access to the unscrambled data
except his own data.

One of the well known ways is to use SVD to find the reduced-
dimensional reconstruction of Dk, which can then be used to gener-
ate preference prediction. With the scrambled data, we first find the
SVD of Ak

Ak = UaΣaV
′
a (2)

where Ua and Va are Nk × Nk and J × J orthogonal matrices,
respectively, and Σa is the Nk × J diagonal singular-value matrix.
Then, we consider the reduced dimension L ≤ min{Nk, J}. Let the
matrices Ũa and Ṽa consist of the first L columns of the matrices
Ua and Va, respectively. Let Σ̃a be the L × L left-top submatrix
of Σa. The reconstructed L-dimensional subspace matrix

Ãk = ŨaΣ̃aṼ
′
a (3)

can be used to generate the preference predictions. Specifically, the
(i, j)th entry Ãk(i, j) is a prediction of the user i’s preference (or
rating) on the item j.

To see the relationship between the preference predictions made
with the scrambled data, i.e., using (3), and those made using the
original data matrix Dk, let the SVD of Dk be

Dk = UdΣdV
′
d. (4)

Without loss of generality, we consider the case when Wk and Hk

are orthogonal matrices, which also means K = Nk and J = M +
K. From (1), we have

U′
dAk =

[
U′

dDk U′
dWk

]
Hk (5)

=
[
Σd U′

dWk

]
[

V′
d 0

0 IK

]
Hk

=
[
Σd IK

]
[

V′
d 0

0 U′
dWk

]
Hk (6)

=
[
[Σd 0] + IK 0

]
Q

[
V′

d 0
0 U′

dWk

]
Hk,



where Q is an orthogonal matrix that combines Σd and IM together
(which can be realized by a sequence of right Givens rotations).
Defining

V̂ = Q

[
V′

d 0
0 U′

dWk

]
Hk, (7)

which is an orthogonal matrix, we have

Ak = Ud

[
[Σd 0] + IK 0

]
V̂. (8)

Comparing (8) with (2) and (4), we can see that the matrix Ak shares
the same left orthogonal matrix Ud with Dk. They have the same
row vector space. The singular values of Ak equal the singular val-
ues of Dk plus 1. The column vector space (i.e., orthogonal matrix
V̂) is scrambled by the secret transform matrix Hk and the artificial
noise matrix Wk.

The reduced dimension L in (3) is equivalently as determined
according to the singular values (diagonal elements) in [Σd 0]+IM .
Obviously, this is the same as determining L according to Σd of (4).
From (6), we can verify that the L-dimensional subspace matrix Ãk

in (3) also equals

Ãk =
[
D̃k W̃k

]
Hk, (9)

where D̃k is the L-dimensional subspace reconstruction of Dk.
Each ith row of the matrix Ãk is a preference prediction for the data
owner i scrambled by W̃k and Hk. If a user i can provide a row of
source data Dk to the data broker (to verify that he is the owner of
the data, or he knows this user’s data anyway) and the corresponding
row Ãk(i) in Ãk, then the data broker can descramble the predic-
tion results simply via Ãk(i)H

′
k and return the descrambled results

to the user i. Note that there is no loss of privacy in this procedure.
If the proposed scheme is applied to preserve the privacy of

the data outsourced to untrusted cloud, then the cloud conducts the
above big data analytics based on the scrambled data, and feedbacks
the results Ãk(i) to the data owner. The data owner can remove
the scrambling via Ãk(i)H

′
k. This procedure does not lose any data

privacy.
Another popular big data analytic task is to generate a list of rec-

ommendations that best fit a user’s preference [14] [17]. An example
is to recommend a list of movies to a user. This can be conducted
by finding a set of users whose preferences are most similar to that
of this user, and then looking for the items that this set of users rated
highest. Since the SVD of the scrambled data matrix Ak shares the
same row space as the source data matrix Dk, the selection can be
conducted simply based on (2), and the result is the same as that
based on (4). In other words, since our scheme preserves distance,
distance calculation and neighborhood selection can be conducted
by just using the scrambled data.

3. PRIVACY ANALYSIS OF THE PROPOSED SCHEME

The privacy in this paper means that the adversary is unable to es-
timate the source data Dk from the published data Ak with certain
accuracy. Equivalently, the adversary should not be able to estimate
the secret transform matrix Hk as well. Since the estimation of Dk

or Hk is similar to channel identification or source separation, ex-
tensive results in blind or non-blind channel identification can be
applied to guide the comprehensive privacy analysis. Considering
the severe space limit of this paper, we can only outline the major
ideas, with an emphasis on showing the critical role of the sheer
scale of big data for guaranteeing privacy. Detailed formulation and
quantitative analysis will be reported elsewhere.

In general, channel identification depends on the knowledge
available to the receiver. Similarly, in our case, we need to consider
different levels of knowledge the adversary may have. Without loss
of generality, we consider the problem of estimating one column of
the secret matrix Hk , which we denote as h, from

y =
[
Dk Wk

]
h, (10)

where y is the corresponding column in Ak. Obviously, we can use
Wk to make the matrix [Dk Wk] to be a wide matrix by setting
M + K > Nk . Then there are infinite number of sets of Dk, Wk

and h that satisfy (10). Therefore, even with full knowledge about
the matrix [Dk Wk], the adversary still can not find the correct se-
cret transform matrix Hk. With less information about this matrix,
the estimation of Hk will only become more difficult. This scale
issue limits fundamentally the capability of the adversary’s system
inversion attacks. Note that existing works do not have this advan-
tage because of the lack of Wk.

More practically, the adversary may know some elements of the
source data Dk only. The adversary can not know Wk or Hk a
priori. Then the problem becomes training-based channel identifi-
cation. Similar to [19], we can rewrite (10) into

y = X1h+X2h, (11)

where X1 contains all the known elements in Dk and X2 denotes
the rest of [Dk Wk]. Denote C as the covariance matrix of X2h
and assume y has Gaussian distribution N (X1h,C). Then we can
formulate the estimation of h into maximum likelihood optimization

ĥ = arg min
h

ln |C|+ E
[
(y −X1h)

′C−1(y −X1h)
]
. (12)

The estimation accuracy is described by the Cramer-Rao Lower
Bound (CRLB) (X′

1C
−1X1)

−1. Thanks to Wk and the large di-
mensions, the matrix X1 is singular almost surely. Therefore, the
estimation accuracy is extremely worse. Even if the majority of Dk

is known, the Wk still prevents any accurate estimation of h.
If the adversary does not know any elements of [Dk Wk],

attacks can still be launched based on statistical information about
[Dk Wk]. The problem changes to blind channel identification.
More generally, considering the matrix Hk in (1), we have the blind
source separation (BSS) problem [20].

If Dk and Wk are independent, it may be possible for the ad-
versary to use BSS to separate Dk and Wk from the mixture Ak.
Specifically, the adversary may try to find a (M +K) × (M +K)
matrix G such that

GH′
k =

[
G1 0
0 G2

]
, (13)

where G1 and G2 are M × M and K × K matrices, respectively.
Applying G to Ak can separate the data matrix Dk from the noise
Wk, albeit with certain permutation and scaling. Note that the per-
mutation and scaling can be removed based on some existing knowl-
edge about the source data. If Dk and Wk are independent, it looks
possible for the adversary to find G so as to separate Dk from Wk .
From BSS theory, we know that the independent source signals can
be separated and estimated unless they are Gaussian distributed with
proportional covariances.

Existing matrix transform methods suffer greatly from the at-
tacks based on blind channel identification and BSS. In particular,
[10] reported the attack that used the correlations of the transformed
data, in a way similar to blind channel identification. BSS-based at-
tacks were discussed in [9], and some unrealistic assumptions, such



as the source data are dependent rather than independent, had to
be applied for privacy. As a matter of fact, these results cast great
doubts on the validity of the matrix-transform based methods.

In contrast to the pessimistic results of the existing works, our
scheme can successfully prevent this class of attacks thanks to the
artificial noise matrix Wk and the data scale. The key point is that
they make the accuracy of source separation extremely low. The
adversary has to estimate an (M +K)× (M +K) matrix G from
just Nk × (M +K) samples, where Nk < M +K. The number of
parameters to be estimated is even larger than the number of source
data. An upper bound of the estimation accuracy can be derived from
the accuracy of estimating the (M + K) × (M + K) correlation
matrix A′

kAk with a limited number of Nk data samples in Ak.
Obviously, the rank of A′

kAk is no larger than Nk when it should
be M +K ideally.

This idea can be explained more clearly based on a simpler blind
channel identification model. Consider the nth row of the matrix
[Dk Wk], which we denote as x(n). From (1) we have signal
model

y(n) = H′
kx

′(n), n = 1, · · · , Nk. (14)

Note that x′(n) is an M + K dimensional vector. Each of its el-
ements can be looked as a source with Nk samples. The first M
sources are from the data matrix Dk, while the rest K sources are
from the artificial noise matrix Wk. The artificial noise may be inde-
pendent, and have different distributions, from the source data. The
adversary may try to extract one source in x′(n) based on y(n). The
problem becomes to find a single equalizer vector g such that

gH′
k = ed

�
=

[
0, · · · , 0, 1, 0, · · · , 0 ]

, (15)

where ed is a unit vector with all zero entries except a 1 in the dth

entry. With only Nk sample vectors y(n), it is almost impossible to
estimate the 1×J , whereNk < J ≤ M+K, vector g with sufficient
accuracy. For example, according to the Wiener filter theory, the
optimal MMSE (minimum mean square error) estimation is

g′ = R−1H′
k(d), (16)

where R = E[y(n)y′(n)] is the J × J correlation matrix, and
H′

k(d) is the dth column of the matrix H′
k. We can design the size of

Wk so that the correlation matrix R can not be estimated accurately
enough. This effectively prevents the estimation of g.

Without being able to separate the source data Dk from the arti-
ficial noise Wk , the adversary has to consider all the artificial noise
as unknown additive noise. Then the model (14) becomes

y(n) = H̃kx
′
d(n) + v′(n), n = 1, · · · , Nk, (17)

where xd(n) is the nth row of the source data matrix Dk, and v(n)
is the nth row of the multiplication of the artificial noise matrix Wk

with the corresponding submatrix in the secret transform matrix Hk.
The matrix H̃k is the submatrix of Hk corresponding to the source
data Dk. Compared with (14), besides the insufficient number of
sample vectors, the channel identification is further suffered from a
low signal-to-noise ratio (SNR), thanks to the artificial noise. Specif-
ically, the SNR of y(n) can be derived as

γ =
E[‖H̃kx

′
d(n)‖2]

E[‖v′(n)‖2] =
M

K
. (18)

We can select large enough K to reduce the SNR γ. Fundamen-
tally, information theory specifies that correct symbol recovery are
not available when the SNR is lower than some threshold value. In
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Fig. 2. Comparison of SVD-based rating predictions based on un-
scrambled data or the scrambled data with the proposed scheme.

this sense, even if the adversary knows H̃k a priori, it still can not
estimate x′

d(n) from y(n) with sufficient accuracy.

In summary, the artificial noise matrix Wk plays a critical role
in preventing the estimation of the secret transform matrix Hk as
well as the source data Dk from the scrambled data Ak and some a
priori information. The privacy of the source data can be guaranteed.

4. SIMULATIONS

We used the movie rating data in [14] to verify the data utility of our
proposed scheme. We compared our approach with the scrambled
data against the conventional SVD-based approach with unscram-
bled data [14]. We randomly generated a 1682 × 1682 orthogonal
matrix Hk and random artificial noise to scramble the data. We used
different portions of the rating data as training to generate rating pre-
dictions, and calculated the root mean square error (RMSE) between
the predicted rating and the actual rating. The simulation results are
shown in Fig. 2, which suggests that our approach could keep the
same data utility as the conventional SVD with the original data.

We also simulated some blind or nonblind channel identification
based attacks. The accuracy of the estimation of the source data
Dk was extremely low. For the movie rating data, the RMSE of the
adversary were generally around 3. Note that the rating data were
distributed as integers from 1 to 5. This demonstrates the extremely
low estimation accuracy for the adversary.

5. CONCLUSIONS

For privacy-preserving big data publishing, we propose a scheme
which uses jointly artificial noise and secret transform matrix to
scramble the data. This scheme preserves desirable data utility by
preserving the geometric properties such as distance among the data
records so that many existing big data analytics can be conducted
based on the scrambled data. This scheme preserves privacy thanks
to the artificial noise and the sheer scale of big data. Privacy is ana-
lyzed based on blind and non-blind channel identification and source
separation theories. Simulations are conducted to demonstrate the
proposed scheme.
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