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i 1. Introduction to this project

= Heterogeneous dynamic spectrum access
(DSA) systems
= Flexible spectrum sensing/access strategies
= Flexible transmission parameters
= Flexible software implementations

= Coexistence of heterogeneous intelligent users

= Competition and cooperation - complex dynamics
-—> Impact efficiency & fairness of spectrum access

BINGHAMTON

UNIVERSITY
State University of New York



= Objective of this project

= Develop a framework for modeling and analyzing
coexistence behavior of heterogeneous DSA
systems
= Support new DSA techniques/systems development

= Employ thought-provoking methodologies from
theoretical ecology to study coexistence of
Intelligent users
= Evolution of cooperation, population dynamic models

= Promote integration between wireless
communications and theoretical ecology



= Expected outcomes

= DSA analysis framework

= Developing technigues integrating Markov Model Bank,
evolutionary game theory, evolution of cooperation, etc

= Modeling and analyzing dynamic interactions among
different DSA strategies
= Spectrum-usage model stimulated by similar
population dynamic models in ecosystems
= Modeling and analyzing spectrum sharing of large DSA
systems
= A framework for DSA policy modeling and analysis

= Support policy design and optimization :



i 2. Major Results

= What is the best a DSA/CRN can do?

= Formulated sum-of-ratios linear fractional
programming (SoR-LFP) to derive theoretically
optimal CRN throughput

= A benchmark for evaluating the optimality of practical
DSA/CRN strategies

= What is the performance of practical CRN?

= Developed Markov Model Bank (MMB) to model
heterogeneous CRN and to analyze throughput

= Developed Network decomposition techniques for
feasible and efficient analysis
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i 2.1 System Model

= Consider CRN with I secondary users (SU)
and K channels

= Channel avalilable probability 6,, SU offered load
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= What is the throughput of the CRN under
heterogeneous setting?

= Heterogeneous CRN performance analysis is
challenging

= Mostly done by simulation rather than analysis

= Limited analysis results exist for simplified &
homogeneous CRN, or for small CRN with a few
users only

= Optimal benchmark performance is unknown



i 2.2 Optimal throughput

= Optimal power control for max sum-capacity

lelog 1+ R
= Zj;ti Pih; +Ry

= Centralized optimization: non-convex, still a
challenge

= Distributed optimization: Iterative water-filling,
various game-theoretic solutions, etc

= We explore: sum-of-ratios linear fractional
programming (SoR-LFP)




= Assume SUs allocate powers optimally among
all channels under individual power constraint
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= Basic equations for SU o
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= Formulation of centralized optimization

problem
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» We find this can be treated as a variation of

SoR-LFP. Other variations include popular

metrics like
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= Sum-of-ratios linear fractional programming

|
max Z Qo Ty X + -+ 3 X,

Doy 4 By + 0 X -+ X
= A global optimization problem that has wide
applications, decades of research

= Generally non-convex. But there are some
algorithms to solve it.

= Great effort is still needed to revise/re-develop the
algorithms to solve our problems.
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4-ratio 4-variable example (0 < x. <1):
5.4+1.6x, +1.7X, +6.9%; + 2.3X,

71T 87+ 1.1x +8.2%, + 2.6%, +1.8x,
10+ 7.9%, +6X, + 7.5%; +9.1X,

72 T 5.8+9.6% 18.7x, + 8% +2.6%,
0.8+3.1x, +2.6X, +4.5%; +1.5X%,

73T 551 0.8x, + 4.3x, +1.5%,

y = 4.4 4+ 5.3X, +6.5X, +0.8x, +8.3X,

=

1.4+7.7x +4x, +9.1x, +1.4X,

4 4
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: =

700 T —o ° zd

: =

300 &

200 /

100 Q/

0

0 100 200 300 400 500 600 700 800 900 1000

4

4
ys = Max Z7i R= Max Zlogz(1+7i)

X1, X5, Xg, X, .
[1’21314] i=1

X1, X, X3, X4] 4
X4, %2 %3, %4] i—1

Optimal solution: Optimal solution:
[X., %,, %5, %,]1=[0,0,0,1] | [x,, X, X5, X,]=[0,0,1,1]

¥, =6.75

R=3.39
13



= Our current algorithm can work with a large
number of variables, but with a few ratios only

= Need to improve convergence if there are more

ratios " /£
Simulation of two-way relaying:
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2.3 Modeling CRN and st dve
i Analyzing Throughput

= Model CRN’s four basic workking modes
« Spectrum sensing: duration T, SNR threshold re

= Spectrum access (data packet transmission):

duration Tdf , max transmission power P,

« Idling: duration T ¢
L S
= Channel switching: duration ‘i

Useri: (shaded: spectrum sensing, duration T si )
i\: waitin channel
\\ 8 switching

duration Tg; duration T duration T

Data Packet

4/

User j: : time

Channel Switching \\s Data
T, Packet T .
d AN dj
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= Markov model bank (MMB)

= N Markov chains: A separate chain for each user
= 3K + 1 states in each separated Markov chain

= Users & chains connected implicitly by
transitional probability (0

dik . channel k

channel 1

qs : prob. of channel sensed available
Z; . - prob. of channel selection

7 prob. of spectrum sensing

7! - prob. of data transmission

7 prob. of ideling

7, - prob. of channel switching 6



s Essential idea of MMB

= Reduce complexity of Markov chains, leave
complexity to transitional probability analysis
= Convenient for modeling heterogeneous systems
= Feasible mutual interference analysis
= Efficient network decomposition

= Steady-state probability
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= General throughput expression
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= Complexity is high since all users (i =1...1) and

channels (k = 1...K) are coupled together
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= Apply network decomposition for efficiency

= Spatial decoupling: separate weak interferer from
strong interferer, like CSMA

= Channel decoupling: users in different channels
become uncorrelated, via translation of z; ; to x;

K
R = Zci,kqi,kxi,k’ Q.
k=1

A ¢ oL

N
. :i H (1_quj’kxj’k) Removed

dj,e

= User decoupling: each user’s throughput can be
evaluated individually, via invariance property
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3. Simulations

Random network with distance-based path-loss model. Random
PU activity in K white-space channels.
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1. Analysis results are verified as accurate.
2. Gap between CRN throughput and optimized throughput.
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Random network. Three access strategies: random, fixed order,
potential game (minimize interference).
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1. Coexistence reduces throughput of random-access strategies.
2. Unfairness is more severe for larger networks.
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i 4. Conclusions

= This project is to develop a framework to
study the coexistence of heterogeneous DSA
systems, inspired by theoretical ecology.

= We developed Markov Model Bank (MMB) to
model and analyze CRN,

= MMB allows network decomposition for efficient
analysis.
= We formulated Sum-of-Ratios Linear
Fractional Programming (SoR-LFP) for
benchmark optimal CRN throughput.
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