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Abstract—In this paper, we propose an analysis framework for
the performance of heterogeneous cognitive radio networks with
multiple different secondary users (SU) coexisting and competing
for spectrum access. In order to model the operation of different
SUs in a feasible manner, we use a bank of Markov models, where
each SU is modeled by a separate Markov model. The individual
Markov models are connected implicitly in their transitional
probabilities. Expressions for the transitional probabilities are
derived by analyzing the mutual interference among the SUs.
The throughput of each SU and the overall CRN can thus
be calculated. In addition, to set up a comparison basis for
evaluating the optimality of the CRN throughput, we optimize
the SU channel access by solving a sum-of-ratios linear fractional
programming. Simulations are conducted to verify the proposed
techniques and to compare the throughput of the CRN under
random channel access over the throughput under the optimized
channel access.

I. INTRODUCTION

Cognitive radio network (CRN) and dynamic spectrum
access (DSA) are new radio spectrum access technologies
that can potentially ameliorate the spectrum shortage problem
faced by today’s rapidly increasing wireless services. It allows
new wireless systems to reuse the spectrum currently occupied
exclusively by primary systems. As a unique feature, CRN
conducts spectrum sensing and accesses the spectrum that is
not occupied by the primary users (PU). It must vacate the
spectrum if finding that the PU becomes active.

There are extensive research published in CRN. However,
the majority of the existing work on CRN are for homogeneous
CRN, where all SUs have the same strategies and parameters,
such as the performance analysis of CRN MAC protocols [1]-
[5]. In reality, CRNs are highly likely heterogeneous. Different
SUs may have different implementations, different spectrum
sensing and spectrum access algorithms. Since the PU signals
are different temporarily and geographically, the SUs may
adopt more conservative or more aggressive policies toward
sensing errors. Some SUs may exploit handshaking or common
messaging more than others. The flexible software implemen-
tation makes CRNs subject to user modifications. There are
very limited study on heterogeneous CRN and the coexistence
of a large number of different SUs in heterogeneous CRN.

It has been a challenge to analyze the performance of
CRN. It is especially challenging to analyze the performance
of heterogeneous CRN with multiple different cognitive radio
users coexisting and competing for spectrum access. The large

number of different SUs makes the performance analysis sub-
stantially difficult, as evidenced in [5] even though significant
simplifications were adopted for Markov modeling.

In this paper, we develop a framework to analyze the
performance of heterogeneous CRN with a large number
of different SUs. We use a Markov Model Bank (MMB),
i.e., a bank of Markov models, to model the operations of
the CRN. Each SU has its own Markov model, and the
interference from all the other SUs is abstracted into its
state transition probability. This makes it tractable to treat the
complex coupling among a large number of SUs. We focus
on analyzing the throughput under a generic random spectrum
access strategy only. Consideration of more advanced strategies
such as [6] will be reported elsewhere. In addition, since it is
important to evaluate the optimality of the CRN performance,
or how far away the CRN performance is from certain ideal
performance [7], we further develop a method to optimize SUs
spectrum access by solving a sum-of-ratios linear fractional
programming.

This paper is organized as follows. In Section II, we give
the system model. In Section III, we develop the framework of
throughput analysis of the heterogeneous CRN. In Section IV,
we develop the method to optimize the throughput. Simulations
are then conducted in Section V to compare the throughput of
the heterogeneous CRN to the optimized throughput. Conclu-
sions are then given in Section VI.

II. SYSTEM MODEL

The CRN we consider in this paper consists of a set of
I SUs and some PUs. Each SU is a transmitting-receiving
pair of nodes. When transmitting to the receiving node, the
transmitter node creates interference to other SUs as well. An
example of the network is shown in Fig. 1. We assume there
are K channels (spectrum resource) available for the I SUs to
choose from.

Each SU follows the generic cognitive radio operation
policy that includes four states: spectrum sensing, data trans-
mission, waiting (idling) and channel switching, as illustrated
in Fig. 2. The operation of a cognitive radio always begins with
the spectrum sensing state. If the spectrum sensing indicates
the channel is available for secondary access, then the cognitive
radio transmits a data packet, and the model shifts into the
data transmission state. If the spectrum sensing indicates
the channel is not available, then the cognitive radio enters
the waiting (idling) state which is followed by the channel
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Fig. 1. An example of the CRN with I = 10 secondary users and one
primary user.
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Fig. 2. Illustration of the cognitive radio operation with four basic states:
spectrum/channel sensing, data packet transmission, waiting (idling) and
channel switching.

switching state. In this paper we consider the generic channel
selection strategy: each SU randomly selects a channel to sense
and access. Each of the K channels thus has probability 1

K
being selected. This also means that each SU uses just one
channel each time. We assume that the operation always shifts
back to the spectrum sensing state after the channel switching
state or the data transmission state.

Spectrum sensing results depend on the PU activity, the
interference from other SUs, and the offered load of the SU.
We assume that the SU can successfully detect the activity
of the PUs which is described by the probability θk, i.e., the
channel k is not accessed by any PU. We further assume that
the offered load of the SU i be αi, i.e, with probability αi the
SU i has data packet to transmit. Such assumptions allow us
to focus on analyzing the mutual interference among the SUs,
which is necessary for studying their coexistence.

Let P k
i be the transmission power of the SU i when using

the channel k, where i = 1, · · · , I , and k = 1, · · · , K . The
signal received by the SU i’s receiver when using the channel
k is

yk
i (n) =

√
P k

i hk
iisi(n) +

I∑
j=1,j �=i

fk
j

√
P k

j hk
jisj(n) + vk

i (n)

(1)
where si(n) is the discrete-time signal transmitted by the SU
i, hk

ji is the complex Gaussian distributed flat fading channel
from the SU j’s transmitter to the SU i’s receiver, and vk

i (n)
is the AWGN with zero-mean and power σk2

i . The variable
fk

j = 1 (or 0) denotes the SU j is (not) currently using the
channel k.

Without PU activity, the signal-to-noise ratio (SNR) during
the SU’s spectrum sensing state is

γk
si =

∑I
j=1,j �=i fk

j P k
j |hk

ji|2
σk2

i

(2)

We assume that if the SNR is larger than some detection
threshold Γk

si, then the SU makes a decision that the channel
is occupied by other SUs, and is thus not available for
transmission.

During data transmission slot, the SNR of the SU i in the
channel k is

γk
i =

P k
i |hk

ii|2∑I
j=1,j �=i fk

j P k
j |hk

ji|2 + σk2
i

(3)

Note that a channel may be shared by multiple SUs simulta-
neously only if their sensing SNRs γk

si are small enough.

As the performance metric, we consider the summation of
the throughput Ri of all the I SUs

R =
I∑

i=1

Ri, (4)

where Ri is the throughput that the SU i obtained in all
the channels. The throughput depends on the fraction of time
spent in data packet transmission state and the capacities of
transmission channels log(1 + γk

i ).

III. HETEROGENEOUS CRN THROUGHPUT ANALYSIS

We use a Markov Model Bank (MMB) to model the
operation of the I SUs. As shown in Fig. 3, the MMB
consists of an individual Markov model for each SU, where
πk

si,π
k
di,π

k
wi are the probabilities of the SU i staying in the

channel sensing, data packet transmission and waiting states
when accessing the channel k. The state probability πci refers
to channel switching. The transitional probability q k

si denotes
the probability that the channel can be used for data packet
transmission, which is the result of spectrum sensing. Although
the different SU’s Markov models look separated from each
other, they are inter-related through this transitional probability.

For each SU i, let the durations of the spectrum sensing
slot, data transmission slot, waiting slot, and channel switching
slot be T k

si, T k
di, T k

wi and Tci, respectively. In heterogeneous
CRN, different SUs may have different parameter values, as
illustrated in Fig. 2.

In the sequel, to derive the CRN throughput, we first
analyze the steady state of the MMB, and then derive the
transitional probabilities qk

si through interference analysis.

First, conditioned on qk
si, we can analyze the steady state

property of the MMB by considering each SU separately.
This is one of the key advantages of our proposed MMB for
analyzing large heterogeneous CRNs. According to the steady
state property of the Markov models, we can find the state
probabilities πk

si, πk
di, πk

wi and πci of the SU i from⎡
⎢⎢⎣

A1 a1

. . .
...

AK aK

b · · · b −1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

...
xK

πci

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
...
0
0

⎤
⎥⎥⎦ , (5)
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Fig. 3. Markov Model Bank (MMB) for heterogenous CRN. Only the Markov
model for the SU i is shown. All other SUs have similar Markov models.

where b = [0, 0, 1], and

Ak =

⎡
⎣ −1 1 0

qk
si −1 0

1 − qk
si 0 −1

⎤
⎦ ,ak =

⎡
⎣ 1

K
0
0

⎤
⎦ ,xk =

⎡
⎣ πk

si

πk
di

πk
wi

⎤
⎦ .

Under the constraint

πci +
K∑

k=1

(πk
di + πk

si + πk
wi) = 1, (6)

we can solve (5) to find all the states’ steady state probabilities.
Specifically, from (5) we can derive

πk
di = qk

siπ
k
si, πk

wi = (1 − qk
si)π

k
si, πci = K(1 − qk

si)π
k
si. (7)

Substituting (7) into the constraint (6) gives

2
K∑

k=1

πk
si = 1 − πci. (8)

Considering the last equation in (7), we see

πk
si

π�
si

=
1 − q�

si

1 − qk
si

. (9)

From (8) and (9) we have the steady-state probabilities⎧⎪⎨
⎪⎩

πci = K

K+2
∑K

�=1
1

1−q�
si

πk
si = 1(

K+2
∑

K

�=1
1

1−q�
si

)
(1−qk

si
)

(10)

The other state probabilities πk
di and πk

wi can be obtained from
(10) and (7).

Next, to specify qk
si, we need to analyze the mutual

interference among the SUs. In our model, the transitional
probability

qk
si = θkαiP [γk

si < Γk
si]. (11)

From (2), The sensing SNR depends on other SUs through
the binary parameter f k

j , where f k
j = 1 denotes the SU j is

currently transmitting in the channel k. Based on the steady
state probabilities, we have

P [fk
j = 1] = δk

siδ
k
dj , (12)

where the probability that the SU i senses the channel k is

δk
si =

πk
siT

k
si

πciTci +
∑K

�=1

(
π�

siT
�
si + π�

diT
�
di + π�

wiT
�
wi

) , (13)

whereas the probability that the SU j is transmitting data
packet in the channel k is

δk
dj =

πk
djT

k
dj

πcjTcj +
∑K

�=1

(
π�

sjT
�
sj + π�

djT
�
dj + π�

wjT
�
wj

) . (14)

Based on (10), we can readily derive

P [fk
j = 1] =

qk
sjT

k
siT

k
dj

Qk
i Qk

j

(15)

where Qk
i and Qk

j are

Qk
i = K(1−qk

si)Tci+
K∑

�=1

[
T �

si + q�
siT

�
di + (1 − q�

si)T
�
wi

] 1 − qk
si

1 − q�
si

.

(16)

The probability

P [γk
si < Γk

si] = P

⎡
⎣ 1

σk2
i

I∑
j=1,j �=i

P k
j |hk

ji|2fk
j < Γk

si

⎤
⎦ (17)

is the probability distribution of the weighted summation of
I − 1 Bernoulli random variables f k

j . When the number of
SUs I is not too big, we can simply list all possible values of
the weighted summation with their corresponding probability
mass so as to find the probability (17). Otherwise, we can
take some appropriate approximations, such as the Gaussian
approximation, to simplify the calculation.

With the state and transitional probabilities, we can define
and evaluate the average throughput of the SU i as

Ri =
K∑

k=1

δk
diE[log(1 + γk

i )] =
K∑

k=1

qk
siT

k
di

Qk
i

E[log(1 + γk
i )], (18)

where γk
i is the data transmission slot SNR defined in (3). The

expectation is conducted over the Bernoulli random variables
fk

j on which the SNR γk
i depends. Similarly as the evaluation

of (17), we can list all possible cases of the f k
j with the

corresponding probabilities and channel capacities, and find
the average capacity E[log(1 + γk

i )] for the channel k.

In the sequel, we consider an assumption in order to
analyze heterogeneous CRN with a large number of SUs
efficiently. We assume that the sensing threshold Γk

si is small
when compared with the mutual interference among the SUs.
In other words,

Γk
si <

J

min
j=1,j �=i

P k
j |hk

ji|2
σk2

i

. (19)

This assumption is valid if the CRN exploits its extreme
sensitivity of spectrum sensing, or if the CRN have limited
spatial spread.



This assumption simplifies the transitional probability (11)
into

qk
si = θkαiP [fk

j = 0, ∀ j �= i]

= θkαi

I∏
j=1,j �=i

(
1 − qk

sjT
k
siT

k
dj

Qk
i Qk

j

)
. (20)

Similarly, the throughput (18) is reduced to

Ri =
K∑

k=1

qk
siT

k
di

Qk
i

log
(

1 +
P k

i |hk
ii|2

σk2
i

)
. (21)

The throughput is now a function of the transitional prob-
abilities qk

si only. It is not explicitly relied on all other SUs’
activity. In this case, the data transmission is conducted without
interference from other SUs due to the perfect spectrum
sensing. There is no need of searching exhaustively through
all other SUs activities.

Note that for large CRN, another way of simplification is to
exploit jointly the simplified expression (21) and the exhaustive
expression (18) by classifying the SUs into two classes: those
cause large interference (and thus in close distance) to the SU
i, and those with small interference (and thus in long distance)
to the SU i. This can be conducted by adjusting the spectrum
sensing threshold Γk

si in practice.

Recall that to find the throughput Ri (21) we need to
evaluate all transitional probabilities qk

si, which can be cal-
culated from (20). Obviously qk

si is a function of all other
q�
sj , j = 1, · · · , I and � = 1, · · · , K . Non-linear numerical

algorithms can be used to find some solutions to qk
si. Obvi-

ously, there may have many different solutions. These different
solutions are corresponding to the different throughputs of
the heterogeneous CRN, or the different equilibriums of the
heterogeneous CRN when the SUs compete for spectrum
access.

IV. CRN THROUGHPUT OPTIMIZATION

The derivation in the Section III is based on the distributed
(uncooperative) spectrum access. Obviously, it may not achieve
the best throughput obtainable under the centralized (coopera-
tive) spectrum access optimization. In order to provide a basis
for measuring the optimality of CRN operations, in this section
we develop a way to optimize the SUs’ spectrum access and
to evaluate the optimized throughput.

From the system model in Section II, P k
i is the trans-

mission power of the SU i spent in the channel k, where
i = 1, · · · , I , and k = 1, · · · , K . Differently from the previous
sections, we assume that each SU can use multiple available
channels simultaneously under an overall transmission power
limit P̄i.

Consider an arbitrary set of Lm channels

Cm = {k1, · · · , kLm}, 1 ≤ k� ≤ K, 0 ≤ Lm ≤ K. (22)

Note that there are altogether 2K such sets, i.e., m =
1, · · · , 2K . The probability that only the channels in Cm are
not occupied by the PUs is

P [Cm] =
Lm∏
�=1

θk�

K∏
k=1,k �∈Cm

(1 − θk). (23)

For each set Cm, we can determine the optimal transmission
power P k

i , where 1 ≤ i ≤ I and k ∈ Cm, to maximize the
sum of the throughputs of all the I SUs, i.e.,

R =

max
{P k

i
}
∑I

i=1 αi

∑Lm

�=1 log
(

1 + P
k�
i

|hk�
ii

|2∑
I

j=1,j �=i
P

k�
j

|hk�
ji

|2+σ
k�2
i

)

s.t.
∑Lm

�=1 P k�

i ≤ P̄i, P k�

i ≥ 0. (24)

Note that P k
i = 0 for all k �∈ Cm.

Define the ILm × 1 dimensional normalized transmission
power vector

zm =

[
P k1

1

P̄1
, · · · ,

P
kLm

1

P̄1
, · · · ,

P k1
I

P̄I
, · · · ,

P
kLm

I

P̄I

]T

. (25)

We can rewrite (24) into

R = maxzm

I∑
i=1

αi

Lm∑
�=1

log
(

1 +
aT

i�zm

bT
i�zm + 1

)
, (26)

s.t. Bzm ≤ 1, zm ≥ 0.

where the ILm × 1 dimensional vector

ai� =

[
0, · · · , 0,

P̄i|hk�

ii |2
σk�2

i

, 0, · · · , 0

]T

, (27)

has only one none-zero element in the entry Lm(i − 1) + �.
The vector

bi� =

[
0, · · · , 0,

P̄1|hk�

1i |2
σk�2

i

, 0, · · · , 0,
P̄I |hk�

Ii |2
σk�2

i

, 0, · · · , 0

]T

(28)
has I − 1 non-zero elements, which are P̄j |hk�

ji |2/σk�2
i in the

entry Lm(j − 1) + � for all j = 1, · · · , I , and j �= i. The
I × ILm matrix B is block-diagonal

B =

⎡
⎢⎣

1T

. . .
1T

⎤
⎥⎦ . (29)

where 1 is the Lm × 1 dimensional vector with all entries as
1.

After obtaining the optimal transmission powers by solving
(26), the CRN throughput is thus maximized. Specifically, for
each available channel set Cm, the SU i has optimal channel
rate

Ri(Cm) =
Lm∑
�=1

log

(
1 +

P k�

i |hk�

ii |2∑I
j=1,j �=i P k�

j |hk�
ji |2 + σk�2

i

)
.

(30)
The optimal throughput of the SU i is thus

Ri = αi

2K∑
m=1

Ri(Cm)P [Cm], (31)

and the overall CRN throughput is R =
∑I

i=1 Ri.

Note that (26) can be solved by the sum-of-ratios linear
fractional programming (LFP) [8]-[11]. Even though it is not
in the standard linear fractional ratio form, we can still simply
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Fig. 4. CRN throughput when I = 1, · · · , 5 SUs compete for K = 1
channel or K = 2 channels.

modify our optimization framework and algorithm developed
in [12] to optimize the sum of the logarithms of linear fractions
(26). Because of the sparsity of the optimization parameters
(each fraction relies on a few optimization variables only), we
may need to modify the nominators of (26) to (a i� + ε)T zm,
where ε → 0 is an arbitrarily small positive constant.

V. SIMULATIONS

In this section, we report our simulation of the numerical
evaluation of the CRN throughput as well as the optimized
CRN throughput. We simulated a random CRN where the
nodes’ positions were randomly generated within a square
of 1000 × 1000 meters. The edge SNRs were calculated as
108d−2.6

ij where dij is the propagation distance. The SUs’
offered loads and the PUs’ activities were uniformly distributed
from 0 to 1 unless otherwise stated. We use the expressions in
Section III to calculate the throughput of all CRN SUs (“Analy-
sis Results”) and use the expressions in Section IV to optimize
the throughput of all the CRN SUs (“Optimized Results”). We
use Monte-Carlo simulations to find the “Simulated Results”
for comparison.

First, we compared the “Analysis results” to the “Simula-
tion results” as well as the “Optimized Results” in Fig. 4. Due
to the slow convergence of the optimization of large networks,
we focused on relatively small networks with K = 1 or 2
channels and up to I = 5 SUs. Each SU had a constant 0.9
offered load, so we could focus on the optimal channel rate. It
can be clearly seen that the “Analysis results” fit well with the
simulated results. In addition, the CRN throughput has a large
gap below the optimal throughput. Therefore, there are still
much room to improve the performance of the CRN, where
better spectrum access strategies can play an important role.

Next, for relatively large CRN with up to K = 9 channels
and up to I = 100 users, we compared the “Analysis results” to
the “Simulated results” in Fig. 5. The SU’s offered load was
randomly distributed in this case. CRN througput increases
with more channels and more SUs. Again, the analysis fits
well to the simulated results.

VI. CONCLUSION

In this paper, we develop an MMB (Markov Model Bank)
based framework for the performance analysis of heteroge-
neous CRN. MMB uses an individual Markov chain to model
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Fig. 5. CRN throughput as function of the number of channels, under two
situations: I = 10 SUs or I = 100 SUs.

each SU’s operations, and embeds the complex mutual inter-
ference among the SUs in the transitional probabilities. MMB
provides a feasible approach to analyze large heterogeneous
CRNs. In addition, to set up a comparison basis to evaluate
the optimality of CRN, we develop a method to optimize CRN
spectrum access and throughput. This task is full-filled by the
sum-of-ratios linear fractional programming. CRN throughputs
are derived in both cases, and simulations are then conducted
to show their validity.
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