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9.1 OBJECTIVES

Media forensics is the youngest subfield associated with information hiding and
most closely related to the detection techniques discussed in previous chapters
of this book. Like all forensic sciences, media forensics concerns the provision
of evidence to support decisions, for example in the court of law. Over the past
decade, scholars in media forensics have developed and evaluated a growing set
of tools to extract information from media objects pertaining to the authenticity of
digital media as valid representations of reality, such as the natural scene depicted
in a digital image. Media forensics exploits the fact that potentially compromising
editing operations (e. g., tampering) leave traces that render forgeries statistically
distinguishable from authentic media objects. Forensically useful traces are often
imperceptible, which connects to the theme of information hiding. However, unlike
for the hiding techniques discussed in previous chapters, forensically useful traces
are not actively embedded but emerge as side effects of other processing [1].

While ensuring authenticity is closest to the objectives of watermarking and
fingerprinting, many known forensic methods are inspired by steganalysis: media
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forensics at its core is a signal detection problem. The forensic analyst tests if an
observed signal X is compatible with the distribution of authentic media objects:

H0 : X ∼ pa, (9.1)
H1 : X 6∼ pa. (9.2)

As in the case of covers for steganalysis, the distribution of authentic media
objects pa is generally not known, arguably unknowable [2], and often conditional
to the context and the prior knowledge of the analyst. Therefore, most analysis
methods approximate the optimal statistical test using heuristics and often also
human expertise. The role of the human analyst is to select and parametrize analysis
methods as well as to cross-check and interpret the results.

Media forensics also shares similarities with other forensic sciences, such as
computer forensics [3]. A common feature of both media forensics and computer
forensics is the focus of analysis on digital evidence, which is data represented in
discrete and perfectly observable symbols stored in computer systems. But media
forensics and computer forensics assume different generation processes for the
digital data. Computer forensics analyses data structures generated by (in principle)
deterministic computer programs, such as file system tables in the case of data
recovery. By contrast, the distinctive feature of media data is that it originates from
the outside of a computer system. A sensor maps parts of reality into imperfect and
not fully deterministic digital representations. We will see that sensors and their
imperfections play a very important role in many techniques of media forensics.

The notion of media data as data acquired by sensors is very general. It
comprises audio, image, and video signals as well as more exotic sensory inputs
(e. g., location, acceleration). For a number of reasons, researchers have mainly
focussed on forensic techniques for still images. Reflecting this state of the art,
we focus our discussion in this chapter on digital image forensics. Many of the
principles can be adapted to other kinds of media data, and we point to important
characteristics for the forensics analysis of other media in Section 9.3.

9.1.1 Digital Image Forensics

A simple system model puts the forensic analysis at the end of a processing chain,
which consists of at least one acquisition step with optional subsequent processing
(see Figure 9.1). The abstract acquisition function takes as input a natural scene
and outputs a digital signal. This involves the analog-to-digital conversion of a
sensor. Every processing step assumes digital signals as inputs and outputs. The
abstract processing step can be instantiated by the identity function (resulting in
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Figure 9.1 Image generation process and forensics.

authentic images) or any combination of operations used to produce a forgery. The
intended result of a forensic analysis is a decision about unknown properties of
the processing chain, for example whether the processing step was the identity
function (H0) or not (H1). If ground truth is available, then forensic methods can be
benchmarked by measuring decision errors with similar metrics, as introduced for
steganalysis. The possibility of repeated transformations between analog and digital
representations—for instance by redigitizing a 2 D-print of a digital photograph—is
reflected by the loop in Figure 9.1. While the possibility of such complex processing
chains must always be on the mindset of forensic practitioners, many methods
presented in the literature assume simple processing chains without digital-to-
analog conversions. Another difficulty in practice is that the distinction between
acquisition and processing is not always as clear-cut as this model suggests. Many
acquisition devices do substantial post-processing on the digitized data in order
to compensate for mechanical or optical shortcomings, offer image processing
operations to their users, or presume some sort of post-processing for instance with
specialized software installed on a mobile device (e. g., smartphone) connected to
the acquisition device (e. g., body-mount camera).



4

The notion of passive image forensics generally assumes no knowledge of
the analyst about the specific instance of the processing chain. However, hypoth-
esis tests for the signal detection problem are not possible without assumptions
about typical processing chains. Formally, these assumptions are encoded in the
probability distribution of authentic images pa. As it is hard to deal with the high-
dimensional joint distribution pa in practice, assumptions about different steps of
the processing chain are tested independently. Technically, this approach is a projec-
tion of the unknown distribution pa on several low-dimensional subspaces, where
for each subspace the distribution of a decision criterium between authentic and
forged images can be obtained experimentally. One can organize the assumptions,
their corresponding subspaces, and decision criteria along the stages of the system
model. As illustrated at the bottom of Figure 9.1, known methods make use of as-
sumptions on scene properties, device characteristics, data structures like the image
file format, and traces of processing.

The properties of processing chains of interest to the forensic analyst can be
broadly divided into properties indicating the source of an image and properties
indicating possible manipulations. For authentic images we expect that

• The signal contains statistical traces of a plausible acquisition function (con-
sistent throughout the entire signal);

• There are no traces of manipulation present in any part of the signal.

In practice, the question of authenticity is often tackled step by step.

9.1.2 Source Identification

Image source identification tries to infer information about the acquisition device
from a given signal. Known methods differ in their levels of granularity depending
on available information and accessibility of the presumed acquisition device.

The most basic question is to distinguish between natural and computer-
generated images [4]. A general approach analyzes the noise characteristics of
image pixels, which emerge from imperfections of sensor-based acquisition devices
and are generally not modeled or mimicked in rendering software [5]. For specific
image contents (e. g., landscapes, faces) approaches based on computer vision have
been proposed. They try to identify imperfect modeling of physical or physiological
properties in typical rendering software [6].

The next question to ask for natural images is to identify the class of acquisi-
tion devices, for example whether an image was digitized with a digital camera or
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a flatbed scanner. Methods dealing with this question leverage knowledge of funda-
mental engineering differences between types of sensors. Images acquired with line
sensors (e. g., in flatbed scanners) exhibit distinct noise characteristics compared to
images acquired with sensor arrays (e. g., in digital still and video cameras). More-
over, many flatbed scanners do not interpolate color information from a filter array.
The absence of the characteristic interpolation artifacts of color filter arrays (CFA,
see Section 9.2.2.4) can identify scanned images [7, 8].

Each class of acquisition devices can be further divided into different models1

(or makes). Images acquired with devices of the same model share characteristics
introduced by the combination of hardware or software components in this model’s
processing chain. Emphasis is on the combination because there is no single
characteristic known that systematically varies between models and is similar for
all devices of a model. Typical methods measure a broad range of features spanning
optical aberrations, noise metrics, digital signal processing artifacts, and parameter
choices of the primary image compression. They feed the resulting feature vector
to machine learning algorithms for classification [9]. To generate the labeled data
necessary for supervised learning, example images from at least one (preferably
more) devices of each model are needed. As the number of models grows constantly,
maintaining a comprehensive training database becomes quite challenging [10].

If the actual acquisition device (possibly among others) or sufficiently many
test images from that device are available to the forensic analyst, a digital image
can even be linked to its acquisition device with high certainty by leveraging traces
of inevitable manufacturing imperfections and wear and tear of the sensor (e. g.,
defective pixels) in the resulting image signal. (See Section 9.2.2.3 for details.)

9.1.3 Manipulation Detection

Manipulation detection tries to detect and possibly specify content-changing post-
processing after the acquisition of a digital image. It broadly takes two approaches.
First, if sufficient information about the acquisition device is known (from context
or preparatory source identification forensics), then the device-specific characteris-
tics can be checked for consistency. Global or local deviations from the reference
values can be interpreted as indications of post-processing. For example, an image
acquired with a specific digital camera may exhibit linear dependencies between
pixels of different color channels resulting from the CFA interpolation in the acqui-
sition device. If the dependence structure is missing or differs in parts of the image,

1 For consistency with the terminology in the literature, we overload the term model. It refers to a
device type in this paragraph and to a set of simplifying assumptions in the rest of the chapter.
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it is very likely that this region has been edited locally [11]. Other features of this
kind include parameters of measurable aberrations relative to the optical center of
the image, inconsistent sensor noise, or linear independence at block boundaries of
the primary JPEG compression.

Second, many content-changing processing operations add statistical traces to
the signal independent of how it was acquired. For example, geometric transforma-
tions, often used to adjust size and orientation of pasted objects to the environment,
leave traces that are characteristic for the resampling method and the parameters
of the transformation [12, 13]. Other traces of processing include duplicated image
regions resulting from attempts to cover up manipulations with local operations like
the copy stencil, or artifacts introduced after repeated quantization if intermediate
states of a processing chain are stored in a lossy compressed image format.

9.2 METHODS

Traces useful for forensics, whether generated by the acquisition device or pro-
cessing operations, appear on different layers of analysis. We broadly distinguish
between scene level, signal level, and data structure level.

9.2.1 Layers of Analysis

The data structure level refers to the syntactical encoding of the data stream,
which is defined—albeit loosely—by the file format or communication protocol
specification. Forensic evidence emerges from different implementations of the
specification as most complex standards include many optional elements and do
not support a single canonical form. The multitude of metadata options available in
image file formats (e. g., EXIF and custom application headers in JPEG files) has
turned out to be a most valuable resource for image forensics on this layer [14].
Also the order of elements in a tagged data structure as well as the parameters of
lossless encoding add variability that helps to identify at least the last encoder of
the processing chain [15]. While critics argue that forensic analyses based on data
structures alone are unreliable because metadata can be changed with relatively little
effort, it still requires substantial knowledge, skill, and patience to do this plausibly
and consistently. Another strong argument for analyses on more than one layer is
that data structures may indicate some processing but do not reveal much about what
operation has been applied. It may make a difference whether an image has been
recompressed by a social media platform (unavoidable in many cases) or locally
edited and then recompressed.
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The borderline between scene level and signal level is less clear. As a rule of
thumb, we speak of scene level if the forensic method tries to analyze macroscopic
properties of the image to support a decision based on the extracted semantics.
The last qualifier is important because, for instance, a global histogram is also a
macroscopic property, but it conveys little information about the scene. Therefore,
scene level analysis is more related to computer vision than to signal detection.
Most known methods require more human intervention and are more sensitive to the
human part than methods operating on the signal level. For example, [16] proposes a
computer-aided method to estimate the direction of diffuse light at selected points in
a suspect image. This may help to substantiate claims about inconsistent lighting of
multiple objects in the same scene, which may indicate a composition from multiple
source images. In a similar vein, [17] study light directions at specular reflections
and [18] support the analysis of complex shading and shadows. All mentioned
approaches fit geometric models of the physical world depicted in a scene to the
digital representation.

The signal level is by far the best researched and so far the most promising
approach to image forensics [19]. It combines many desirable properties such as
the independence of the scene content (disregarding pathologic cases of singular
scene content), high accuracy of automated decisions for simple processing chains,
and sufficient information to carry out in-depth manual investigations of complex
processing chains. The signal level carries characteristics of the acquisition device.
In addition, characteristic traces of typical processing operations are measurable in
the signal level as well. Taken together, all these characteristics offer a wealth of
information to the forensic analyst. We will review the most important principles
and methods to extract and interpret signal level information in the following
sections.

9.2.2 Device Characteristics

Device characteristics refer to image characteristics that can be attributed to the
acquisition device. They serve for source identification and as a kind of inherent
watermark to track further processing, which may partly erase or transform the
device characteristics, thereby unveiling the processing operation and its parame-
ters. Considering the widespread use of digital cameras, our review will follow the
literature and will emphasize digital camera characteristics. We refer to [20] for a
comprehensive review of scanner characteristics.
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Figure 9.2 Digital image acquisition with a digital camera: stylized pipeline.

9.2.2.1 Digital Camera Pipeline

Figure 9.2 shows a stylized processing pipeline of a digital camera with its most
relevant components. Incoming light of the scene is focused on the sensor by a
complex system of lenses. An optical filter to reduce undesired light components
(e. g., infrared light) sits between these components. Typical camera sensors capture
image pixels by individual CCD or CMOS sensor elements, which output an electric
charge proportional to the light received at the corresponding position on the two-
dimensional sensor plane. These sensor elements are color-blind; they can only
measure light intensity. Color information is obtained by arranging the sensor plane
in the form of a color filter array (CFA) where each sensor element is sensitive to
light of a certain wavelength only—red (R), green (G), and blue (B) in most cases.
Missing color information can then be estimated from surrounding pixels of the raw
intensity map. This process is also known as CFA interpolation or demosaicing.
After CFA interpolation, the image is subject to a number of camera-internal post-
processing steps, including for instance color correction, edge enhancement, and
finally compression.

9.2.2.2 Lens Distortions

Modern digital cameras are equipped with a complex optical system that projects
a scene to a sensor of much smaller dimension. This projection is in general not
perfect. As a result, a plethora of lens distortions (also known as aberrations) are
present in digital camera images. Forensic source identification assumes that shape
and strength of lens distortions depend on the lens(es) in use. Tractable models of
aberrations are typically parametrized by the radial distance to the optical center of
the image. For the purpose of manipulation detection, these models can be fitted
globally and then tested for local consistency throughout an image.

Prevalent types of distortion are lens radial distortion, vignetting, and chro-
matic aberrations. Lens radial distortion is a nonlinear geometric distortion that lets
straight lines appear curved. This effect is generally more pronounced toward image
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Figure 9.3 Lateral chromatic aberration in a digital camera image. Red color fringes along edges are
marked by arrows in the magnified (and contrast-enhanced) details on the right. The occurrence and
strength of color fringes generally varies with the position of edges in the image. This image was acquired
with a Nikon 18–200 mm zoom lens at a focal length of 150 mm.

corners, typically modeled by a polynomial of small degree [21]. Some cameras try
to correct for it during post-processing, which may leave characteristic traces by
itself [22]. Vignetting refers to the radial decrease of light intensity toward the cor-
ners of an image. It is best visible and measurable in homogenous images captured
with wide apertures [23], for which only a fraction of the light reaches the outer
regions of the sensor plane.

Chromatic aberrations are perhaps most relevant for forensics. They describe
the effect that polychromatic light is spread over different positions on the sensor
plane because the lens’ dispersion index varies with the wavelength. Lateral chro-
matic aberrations often produce visible color fringes along edges. They are partic-
ularly well measured by the spatial displacement (i. e., contraction or expansion) of
different color channels relative to each other [24]. Let the green channel, G, be the
reference. Then the coordinates of the displaced red or blue channel D ∈ {R,B}
with optical center (i′D, j

′
D) are modeled as(
iD
jD

)
=

(
αD · (iG − i′D) + i′D
αD · (jG − j′D) + j′D

)
. (9.3)

The tuple of model parameters, (αD, i′D, j
′
D), can be estimated efficiently from a

single image [25]. Figure 9.3 illustrates how the orientation of these displacements
varies across the image. The red channel expands relatively to the other channels
in this example (i. e., αR > 1). This can be exploited for manipulation detection,
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Figure 9.4 Manipulation detection based on sensor noise [26]. Image manipulation (left): part of the
image was copied, rotated by 30◦ and then reinserted at a different position. The two regions are marked
in the image. Correlation map (center): each intensity value in the map corresponds to the correlation
score of a 128 × 128 pixel block from the image’s noise residual with the corresponding fingerprint
estimate. The manipulated region lacks the expected sensor noise pattern, yielding low correlation
between local sensor noise estimates and the fingerprint of the image’s camera (indicated by darker
colors in the map). Detector output (right): post-processing and binarization of the correlation map gives
a clear indication of the manipulated region.

for instance if one region of an image is copied to another region with a different
expected aberration profile [24].

9.2.2.3 Sensor Imperfections

Sensor imperfections created by inevitable variations in the manufacturing process
of sensor elements and sensor wear-out are valuable device characteristics. Sensor
outputs are generally noisy: the intensity values fluctuate slightly even if the sensor
plane is lit absolutely homogeneously. Sensor noise is composed of temporal and
spatial noise. Temporal noise subsumes noise components that are stochastically
independent between different images acquired with the same sensor. Shot noise
and read-out noise are typical sources of temporal noise. By contrast, spatial noise
is relatively stable over time and only varies between individual sensor elements.
This makes spatial noise particularly interesting to forensic analysts. It can serve
as a camera “fingerprint”, and can also be tested for consistent appearance in
different regions of an image [27, 28]. This quality is commonly attributed to photo-
response nonuniformity (PRNU), a noise source that adds a camera-specific unique
multiplicative pattern to the signal. It is caused by inevitable material imperfections
and variations in the manufacturing process of individual sensor elements. A sensor
fingerprint K can be estimated by some form of pixel-wise averaging of noise
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residuals over a number of images X(n) taken with the same camera,

K̂ =

N∑
n=1

H(n)W(n) =

N∑
n=1

H(n)
(
X(n) − F (X(n))

)
, (9.4)

with H(n) = 1/N for simple averaging [27], or H(n) = X(n)
/∑N

n=1

(
X(n)

)2
for

a maximum likelihood estimator of multiplicative noise [28]. The noise residuals
W are obtained by processing images with a denoising filter F (·). Cameras can
be identified by extracting the noise residual from the image under investigation
and measuring its similarity to an estimated camera fingerprint. Suitable similarity
metrics include Pearson correlation [27], normalized cross-correlation [28], and
peak-to-correlation energy (PCE) [29].

For manipulation detection, the similarity between an image’s noise residual
and the camera fingerprint estimate is evaluated for small (possibly overlapping)
blocks. If the processing operations of interest corrupt the local sensor noise pattern
as a side effect, then low local similarity scores indicate a forgery. The two leftmost
panels of Figure 9.4 illustrate this effect. Modern detectors apply more sophisticated
criteria. For instance, the right panel of Figure 9.4 shows the outcome of a state-of-
the-art detector that employs a Bayesian Markov random field model to account for
local dependencies between blocks in close proximity [26].

Photo-response nonuniformity has also been applied to examine scanned im-
ages [30, 31]. Typical line sensors of flatbed scanners repeat spatial noise character-
istics along rows. This directional characteristic of the noise pattern allows forensic
investigators to distinguish between digital camera images and scanned images [32].

Sensor noise estimates may also contain traces of sensor defects (i. e., sensor
elements that constantly output too high or too low intensity values). The occurrence
of these defects is characteristic for individual cameras [33] and accumulates over
time, enabling temporal forensics [34]. A similar effect is caused by dust particles
on the sensor protective glass [35]. Yet many cameras try to correct sensor defects
and sensor dust particles with post-processing. In general, their appearance also
depends strongly on the image content and on lens settings. All these factors limit
the usefulness of sensor defects compared to sensor noise.

9.2.2.4 Color Filter Array Characteristics

To acquire color images with sensors that are physically limited to measure light
intensity only, the incoming light has to be split up in several components. Most
digital cameras do this by combining a single sensor with an array of color filters
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Figure 9.5 Typical digital cameras employ a color filter array (usually one of the four Bayer configu-
rations shown on the right). Each sensor element is sensitive to light of a certain wavelength (here red,
green, and blue) only. A color image is produced by interpolating the remaining color information from
surrounding pixels of the raw image.

so that different sensor elements capture different color information. The missing
information is then interpolated, a procedure that is also known as demosaicing
(because color filters are arranged like mosaics; see Figure 9.5).

A CFA configuration describes how color filters are arranged. As different
camera models use different CFA configurations, this parameter is a valuable device
characteristic for forensics [36, 37, 38]. Although, in principle, a wide variety of
CFA configurations is conceivable, the dominant CFA layout repeats a 2× 2 Bayer
pattern over the entire sensor pane. Bayer patterns exist in four configurations and
are characterized by two green elements arranged diagonally with one red and one
blue element filling up the remaining space (see Figure 9.5).

Demosaicing a Bayer pattern implies that at most one-third of all pixels in
an RGB image contain genuine information from a sensor element. The remaining
pixels are interpolated from the local neighborhood of the raw signal. As a side
effect, pixels become locally dependent even stronger and more systematically than
local correlations in the original signal. The repetition of a fixed pattern over the
entire image causes periodic dependency structures in the image [11]. (See Sec-
tion 9.2.3.3 below for a method to identify periodic dependencies.) The specific
form depends not only on the CFA configuration, but also on the demosaicing al-
gorithm. This observation has motivated CFA-based camera model identification
approaches [36, 39]. Similar dependencies occur between the color channels of
an image. Some forms of post-processing destroy these demosaicing traces. The
resulting local inconsistencies have successfully been exploited to localize tamper-
ing [40]. Finally, the absence of any CFA traces is an indication that a given image
was not acquired with a digital camera [7, 8].
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Figure 9.6 Requantization after applying continuous functions on discrete data. Depending on the
curvature of the mapping (here: gamma correction) and the quantization step size (here: 1), some output
values appear twice as frequently and others not at all. (This holds strictly for uniformly distributed input
data and approximately for smooth marginal distributions as in typical media signals.)

9.2.3 Processing Traces

Recall from Section 9.1.1 that processing traces emerge as side effect of the image
processing operations used to produce a perceptually convincing forgery (see also
Figure 9.1). The presence of processing traces in a suspect image indicates ma-
nipulation and their exact realization may reveal information about the parameters
of processing operations. Processing traces may permeate an entire image or parts
of it. In the latter case, the distribution of traces within an image helps to localize
tampering.

9.2.3.1 Requantization

Arguably the most important source of processing traces is requantization: already
quantized discrete numbers are used as inputs of functions defined for continuous
domains and codomains. The return values are quantized again in order to be
mapped to the discrete alphabet of typical signal representations.



14

An introductory example for requantization is a detector of gamma correction.
Gamma correction refers to the point operation defined by the continuous function

yij = (xij)
γ
, (9.5)

where parameters γ < 1 decreases the contrast of a grayscale image X and
γ > 1 increases the contrast. If X and Y are integer arrays interpreted as `-
bit fixed-point representations of numbers in the normalized intensity range [0, 1],
then the assignment in Equation (9.5) is implemented as discrete function f :
{0, . . . , 2` − 1} → {0, . . . , 2` − 1}. Specifically,

yij = f(xij) =

[
(2` − 1)

(
xij

2` − 1

)γ]
, (9.6)

where square brackets denote rounding to the nearest integer.
Figure 9.6 shows this mapping for x ∈ {0, . . . , 9}. Observe that for the

chosen parameters, f can never take the value 5 because no discrete input maps to
it. Likewise, two values in the domain of f , 4 and 5, map to the same value 8. If the
input signal’s histogram is broadly smooth, this coincidence will add up to a peak
in the output histogram. This is exactly what we can observe in gamma-corrected
grayscale images as illustrated in Figure 9.7. The contrast-reduced (γ = 0.6) lower
half of the image exhibits gaps in the left tail of the histogram and peaks on the right
side. For comparison, the histogram of the unprocessed upper half is locally smooth
and does not contain such artifacts.

Gamma correction is a relevant operation in typical image processing chains,
in particular for producing visually plausible compositions from parts of images
taken under different lighting conditions or exposures. A simple way to automati-
cally detect the resulting processing traces is to analyze the histogram of suspect im-
age in the frequency domain. Gaps and peaks produce strong high-frequency com-
ponents in the spectrum that do not appear in natural images. If the high-frequency
components, after some necessary windowing close to the boundary values 0 and
2` − 1, exceed a certain threshold, a suspect image (or image region) is flagged as
processed with gamma correction [41].

This simple method works best for images in spatial domain representations.
Transformations to the frequency domain, like the DCT used in the popular lossy
JPEG compression, tend to smooth the histograms of intensity values after back-
transformation to the spatial domain. This attenuates peaks and gaps in the his-
togram and makes gamma correction more difficult to detect.
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Figure 9.7 Processing traces realized as gaps and peaks in the histogram after gamma correction.

But lossy compression itself involves several requantization steps, which
leave forensically useful processing traces. For example, requantization happens
at many stages in a JPEG compression–decompression cycle:

• After color transformation from RGB to YCbCr;

• After chrominance channel subsampling;

• During the (fast) 2D-DCT transformation;

• During and after the (fast) inverse 2D-DCT transformation;

• After chrominance channel upsampling (for certain implementations);

• After color back-transformation to RGB;

and, most importantly,

• When DCT coefficients are explicitly quantized with frequency-dependent
step sizes taken from the quality-dependent JPEG quantization matrix.

Every stage in the enumeration above can be written as a continuous function
f with subsequent rounding (although some implementations reuse intermediate
results for efficiency, complicating the analysis). A save-and-open sequence of
image editing software goes through all these stages, thereby leaving traces of
requantization in the form of perceptible or imperceptible compression artifacts.
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9.2.3.2 Lossy Compression

The complexity of the popular JPEG compression and the interaction of many fac-
tors precludes a formal or even comprehensive treatment in the context of this chap-
ter. What matters is that virtually all traces useful for the forensic exploration of the
(potential) JPEG compression history [42] emerge from requantization in one form
or another. In this sense, most forensic methods analyzing compression artifacts can
be seen as special cases of detectors of requantization. The approaches proposed in
the literature differ in how processing traces are extracted, in the supported image
formats, and the assumed knowledge of (candidate) quantization matrices and of
the specific implementation of the JPEG standard. For instance, methods exists to
check spatial domain images for prior JPEG compression and its parameters [43]
or to identify local inconsistencies in JPEG errors indicating compositions [44].
Images in JPEG format can be analyzed for double or multiple compressions [45].
The literature is so specialized that it contains already tailored methods to evaluate
one form of requantization traces (e. g., JPEG history detection) in the presence of
distortion by other forms of requantization (e. g., contrast enhancement) [46].

Technically, many methods rely on (recomputed) JPEG DCT coefficients and
apply adapted versions of Benford’s law on the distribution of numerical digits to
test for singularities resulting from requantization [47]. This approach can draw on
solid theory [48] and is surprisingly effective given that only first-order statistics
are evaluated [49]. (Part of the reason is that good statistical models are known for
histograms of DCT coefficients, unlike for spatial domain intensity histograms.)
However, the approach loses precision if multiple compressions use exactly the
same parameter and it reaches its limits if the quantization step sizes are very small
(i. e., for images compressed with JPEG quality close to 100%).

Under these conditions, another approach is more reliable. It leverages the
fact that JPEG compression cuts the image into nonoverlapping blocks of 8 × 8
pixels and then applies the compression–decompression chain on each block inde-
pendently. Repeated requantization introduces complicated dependencies between
pixels within a block. These effects are not fully modeled yet and do not seem to be
measurable with first-order statistics, like histograms. However, a key observation is
that blocks converge to a stable state after a small but seemingly random number of
iterations. In this context, a block is called stable if all its pixel intensity values in the
spatial domain representation take exactly the same values after a full compression–
decompression cycle.

Empirical evidence from natural images as well as from synthetic data sug-
gests that the distribution of the time until convergence is fairly independent of the
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Figure 9.8 Convergence of JPEG blocks after repeated requantization. White marks indicate 8 × 8

blocks that remain stable between the first and the second JPEG compression (left) and the second and
third JPEG compression (center and right). The right image has been locally manipulated after the first
JPEG compression and the result was stored as JPEG. All experiments use libjpeg default settings
for compression and decompression and quality factor 100 %. The test image size is 512× 512 pixels.

image content (disregarding flat blocks, which are always stable after one iteration).
By tabulating the steps until convergence for all blocks of an image, the estimated
distribution can be matched against ground truth distributions obtained under con-
trolled conditions. This enables a detector for prior JPEG compression up to the
highest possible quality of 100% where all scale factors in the quantization matrix
are set to one. This detector can also reveal the number of recompressions, which
may indicate the depth of the image editing chain [50].

Block convergence can also help to localize tampered regions as illustrated
in Figure 9.8. The left image has been compressed with JPEG quality factor 100%
once. The white marks superimposed in the figure indicate blocks that remain stable
after another compression–decompression cycle with the same parameters. Observe
that the number of stable blocks increases substantially if the whole JPEG image
is opened and resaved (i. e., recompressed) unaltered with image-editing software
(center). Hence, the ratio of stable blocks indicates the compression history. The
right image shows the distribution of stable blocks if local editing happened between
opening and resaving the image: blocks in the altered region appear like never-
compressed content and converge slower on average than the surrounding blocks.

In summary, block convergence analysis complements the analysis of DCT
coefficient histograms in situations where the JPEG quality is high and the parame-
ters of multiple compressions remain constant. However, the lack of solid theory and
the reliance on more subtle higher-order dependencies observable only by counting
steps until convergence makes block convergence more sensitive to the implementa-
tion of the JPEG standard, in particular the DCT and inverse DCT algorithms [51].



18

There also exist forensic methods evaluating artifacts of compression algo-
rithms other than JPEG [52], but these methods are omitted here for their lower
practical relevance in still image forensics.

9.2.3.3 Resampling

Realistic manipulations often involve resizing or rotating images or parts thereof.
Technically, such geometric transformations can be described as resampling of the
original image grid. A rather naive approach would be to transform the discrete
source coordinates of every pixel with a continuous function and round the resulting
coordinates to destination coordinates. This would result in severe visual distortion
because the mapping between source and destination pixels is not always bijective.
The effect is comparable to the source of requantization artifacts described in
Section 9.2.3.1 with the only difference that it affects spatial coordinates rather than
intensity values.

Researchers in image processing have recognized this problem for long and
use interpolation to produce smooth and visually appealing transformations. Very
similar to color filter array interpolation (cf. Section 9.2.2.4), resampling introduces
linear dependencies between adjacent pixels. These dependencies vary periodically
throughout the image and can be understood as traces of resampling [12, 53]. Fig-
ure 9.9 illustrates the formation of periodic linear dependencies for the particularly
indicative case of upscaling by factor two using bilinear interpolation. Arbitrary
geometric transformations produce similar artifacts (except strong downscaling and
rotations by multiples of 90◦). The periodicity and amplitude generally depend on
the transformation parameters as well as on the interpolation method [13].

The standard output of resampling detectors is a so-called p-map [12], where
“p” stands for the probability that a pixel has been interpolated. P-maps have the
same size as the image under investigation and can be computed from a linear
predictor of pixel intensities [13],

rij = xij − Pred(Nij) , (9.7)

as known from steganalysis. Function Pred(·) is a linear predictor that estimates the
intensity of pixel xij from its local neighborhood Nij [13]. The predictor residuals
contain relevant information because interpolated pixels are more correlated with
their neighbors pixels and have a better fit with the linear model. Therefore they
produce comparably lower absolute prediction residuals than pixels with more gen-
uine signal information. A simple variant of the p-map evaluates for each pixel the
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Figure 9.9 Bilinear resampling of a 2× 2 pixel block (left) by a factor of two. Every other pixel in the
resized block is a linear combination of its direct neighbors (right). Geometrically transformed images
are composed of a large number of such blocks (i. e., periodic linear correlations occur).

likelihood pij that its predictor residue rij obeys a suitable global distribution as-
sumption. An i. i .d. zero-mean Gaussian model has been found to work sufficiently
well in practice,

pij =
1√
2πσ2

exp

(
−
r2ij
2σ2

)
. (9.8)

The empirical variance σ2 can be estimated from the residual image. Periodic
artifacts in a resampled (part of an) image are particularly well detected after
transforming its p-map to the frequency domain, where distinct peaks become
visible in the magnitude spectrum. The center panel of Figure 9.10 shows a typical
example.

Linear predictor residuals and p-maps computed from them are not only
sensitive to resampling artifacts, but naturally capture a much wider range of image
characteristics. CFA interpolation, for example, is known to produce high-frequent
periodic artifacts similar to upscaling by a factor of two [11]. As well, JPEG
compression leaves traces in the p-map. The right panel of Figure 9.10 indicates that
increased prediction errors along JPEG block boundaries result in periodic artifacts
with a frequency of 1/8. Forensic analysts need to carefully differentiate between
these types of artifacts in practice.
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p-Map spectrum, rotation spectrum, authentic

Figure 9.10 Resampling detection for the manipulation depicted in Figure 9.4. Plain p-map (left):
brighter shades indicate that pixels are more correlated with their spatial neighbors. JPEG blocking
artifacts are visible in authentic image regions. The rotated image region (marked by the left square)
exhibits distinct characteristics. Fourier spectra from rotated and authentic regions of the p-map (right
panels): rotation yields strong high-frequency peaks, visible at the borders of the left spectrum; JPEG
blocking artifacts cause characteristic peaks (at multiples of 1/8) in the spectrum of the authentic region.

9.2.3.4 Duplicate and Near-Duplicate Regions

Copy–move forgeries are another common class of image manipulations where a
region of an image is copied, possibly filtered, and then reinserted at a different
position in the same image. The copied region will typically undergo some form of
post-processing for a more realistic alignment with its surroundings. Copy–move
forgeries contain near-duplicate image regions, which can be localized with a suit-
able matching procedure. A straightforward approach considers (possibly overlap-
ping) blocks of small size and compares local image contents block-wise. A manip-
ulation is declared if a sufficiently large number of near-duplicate blocks share the
same spatial relation [54]. To achieve robustness against operations beyond simple
copying (e. g., geometric transformations of the reinserted region, image filtering, or
lossy compression), image blocks are transformed to a suitable feature space prior
to running the matching procedure. The rotation-invariant Zernike moments are
among the most promising feature representations for this purpose [55, 56]. Post-
processing the correspondence map from the matching procedure helps to remove
isolated false positive matches.

A major challenge of block-based matching is computational complexity: an
exhaustive search over all block pairs is prohibitive for megapixel-sized images.
More efficient approaches restrict the search space by preordering blocks, by the
use of structured data representations such as kD-trees, or by means of randomized
nearest-neighbor search algorithms like PatchMatch [57]. Figure 9.11 presents a
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Figure 9.11 Copy–move forgery detection for the manipulation depicted in Figure 9.4. Matching
blocks offsets (left): PatchMatch is used to find near-duplicate blocks (in terms of their Zernike moments)
in the image [58]. The map visualizes the magnitudes of spatial offsets between matching block pairs.
Detector output (right): post-processing and binarization of the offset map gives a clear indication of the
duplicated regions.

typical result of a state-of-the-art copy–move detector that combines Zernike mo-
ments computed from overlapping blocks of size 16×16 pixels with a PatchMatch-
based matching procedure [58]. In terms of computational efficiency, the algorithm
is only outperformed by approaches that trade off the high localization accuracy of
spatially dense block matching against a search over the much more sparsely popu-
lated set of key point descriptors (for instance based on the popular scale-invariant
feature transform [59]). We refer to Christlein et al. [55] for a comprehensive bench-
mark of a variety of different feature representations and matching procedures.

A more general variant of copy–move forgery detectors relax the assumption
that the copied region originates from the spurious image under investigation. The
literature often refers to this type of forgery, where the image manipulation can be a
composition of arbitrary image parts, as splicing. Splicing detection is generally
a much more difficult problem. In practice, any forensic technique designed to
uncover inconsistencies across different parts of image can be used as splicing
detector, but we are not aware of a detector that reliably separates all inconsistencies
caused by splicing from differences between spatial segments in authentic images.

9.3 LIMITATIONS AND OUTLOOK

Over the past decade, media forensics has developed as a serious research field
combining security with signal processing. The resulting toolbox of specialized
methods is still growing at an increasing rate. However, the available methods differ
in their maturity. As in many fields, there remains a gap between laboratory results
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and real-world performance. This gap is quite narrow for a few methods where the
forensically useful characteristics have been shown to be robust, and where reliable
benchmark datasets exist to validate the effectivity of known approaches [60, 61].
The gap is larger for methods that require specific conditions and many assumptions
on the exact implementation of the processing chain.

For the case of digital still images, sensor imperfections, specifically PRNU
(see Section 9.2.2.3), and metadata are the most reliable source of information for
nowadays forensic analyses. Device identification using PRNU has been confirmed
in many realistic settings and shown to be robust against various sources of dis-
tortion. Among the processing traces, requantization is pretty robust and most in-
dicative in the special case of lossy JPEG compression. However, there are many
reasons why images are recompressed. Hence, the compression history does not
always answer all questions of the forensic analyst. Traces of resampling interfere
with compression, which limits their applicability. Duplicate detection is computa-
tionally expensive in large images, sensitive to parameter settings, and still prone
to false positives in many natural images. Scene level analyses still suffer from the
subjectivity of the human operator and are by principle limited to specific scene
contents. Nevertheless, while each method has its specific limitations (hopefully
known to the decision maker), the combination of available methods puts forensic
analysts in a much better position than imaginable 10 years ago.

A general limitation of forensic detectors is that most of them are designed
with a signal processing mindset rather than a security mindset: few methods
consider an intelligent adversary who tries to defeat or mislead forensic analyses
by erasing traces or deliberately inserting false traces [62]. Technical methods that
help the counterfeiter in defeating forensic analysts are typically referred to as
counter forensics (or anti forensics). A simple yet effective approach is to reduce
the available information for forensic analyses by downgrading the image quality
after performing a manipulation in high resolution. Since most forensic methods
are statistical in nature and thus rely on the law of large numbers and increase in
precision with the number and precision of observations (samples), this method is
effective in situations where low-quality media are plausible (e. g., on the web).
More serious advances in counter forensics preserve the image quality and are
actively researched in order to assess the limitations of known forensic methods
[63, 64], to develop more robust methods [65, 66], and to erase indicative traces in
legitimate cases [67], such as to protect the privacy of people sharing media data
online. For an overview on digital image counter forensics we refer the reader to
our book chapter [68].
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As alluded above, forensic detectors can identify processing, but they cannot
(and should not) conclude about the authenticity of a media signal in a nontechnical
context. So-called legitimate processing is common practice: many digital images
are resized or recompressed for transmission and almost all art directors adjust
exposure and color before reproduction. Therefore, not every form of processing
that technically qualifies as editing indicates an attempt of deception or other
malicious intentions. There exist approaches to quantify the amount of processing
in a metric that tries to respect editing conventions with customizable weights
[69]. But the inherent subjectivity and unavoidable measurement errors from failing
to recognize the context limits the applicability of this approach to very narrow
domains. Our outlook here is reserved because even perfect technical detectors
cannot answer the socially relevant questions of authenticity or legitimacy: the very
same processing operation can be legitimate in one context and deceptive in another.

While the technical exposition in this chapter focused on digital still images,
the most researched subfield of media forensics, many of the approaches presented
generalize to other media as well (e. g., analyses on the data structure level, traces of
requantization, lossy compression, etc., on the signal level [70]). Yet the detectors
need to be adapted to the specific target signal and format. For example, the common
practice of motion vector estimation in video compression displaces patches of fixed
pattern noise and creates traces similar to copy–move forgeries if predictive-coded
frames are analyzed like still images [71]. Temporal editing (e. g., removing frames)
of compressed video leaves characteristic traces in the recompressed groups-of-
pictures [72]. For audio recordings, the electrical network frequency (ENF) criterion
deserves special attention [73]. It is a different type of trace that exists in the time
domain of many audio recordings and has recently been explored for video as
well [74, 75]. The ENF gets interspersed from the electrical network surrounding
the recording device at the time of recording. As the frequency of this signal
varies slightly around its norm (e. g., 50 Hz in Europe, Africa, and large parts
of Asia, and 60 Hz in the United States and parts of Latin America), isolating
and analyzing the ENF component in recordings allows the forensic analyst to
verify the authenticity by checking the (broad) geolocation and time of recording
(provided that a database of ENF time series is available, as in many forensics
departments of law enforcement agencies). Moreover, inconsistencies in the ENF
frequency or phase can reveal editing operations. A particular challenge is related
to testing new forensic methods for more exotic media types, formats, and editing
operations. Reliable benchmark datasets often do not exist and are expensive to
create, in particular if they should include controlled forgeries that are convincing
to human perception. Simply repurposing data generated for other reasons (e. g.,
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for compression or pattern recognition) is prone to fallacies and often not adequate
because these sources hardly contain any (known) forgeries.

In the future, undoubtedly the relevance and scope of media forensics is going
to grow. What we consider media data today (audio, images, video) continues
to become ever more prevalent. In addition, as sensors become smaller, cheaper,
and more pervasive, the authenticity of sensor data in general will be of utmost
importance for many decisions that affect people’s lives. Key questions will remain
on what confidence we can put in forensic methods, passive and active alike, to
deliver reliable results, automated and without human intervention, in environments
with intelligent adversaries. We should embrace that new methods for sensor and
signal forensics, in a very general sense, will be developed, critically evaluated,
and deployed at large scale. Many of them will draw on principles inspired by
information hiding and signal detection, the foundations of which were reviewed
in this book.
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[66] Lai, S., and R. Böhme, “Countering Counter-Forensics: The Case of JPEG Compression,” in
Information Hiding, 13th International Conference, Vol. 6958 of Lecture Notes in Computer
Science, Springer Verlag, 2011, pp. 285–298.

[67] Dirik, A. E., H. T. Sencar, and N. Memon, “Analysis of Seam-Carving-Based Anonymization of
Images Against PRNU Noise Pattern-Based Source Attribution,” IEEE Transactions on Informa-
tion Forensics and Security, Vol. 9, No. 12, 2014, pp. 2277–2290.
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