
Compression Forensics Beyond The First Significant Digit
Sujoy Chakraborty and Matthias Kirchner
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA

Abstract
We study characteristics of the second significant digits of block-
DCT coefficients computed from digital images. Following previ-
ous works on compression forensics based on first significant digits,
we examine the merits of stepping towards significant digits beyond
the first. Our empirical findings indicate that certain block-DCT
modes follow Benford’s law of second significant digits extremely
well, which allows us to distinguish between never-compressed
images and decompressed JPEG images even for the highest JPEG
compression quality of 100. As for multiple-compression forensics
we report that second significant digit histograms are highly in-
formative on their own, yet cannot further improve already good
performances of classification schemes that work with first signifi-
cant digits alone.

Introduction
The wide-spread use of the JPEG compression standard for

still images makes the analysis of JPEG images a major branch of
media forensics [1]. Most digital cameras store images in JPEG
format, typically using customized compression or file format set-
tings [2, 3], and most likely images will be stored as JPEG again
using a different set of compression settings after processing or
manipulation of any sort. This introduces various forms of requan-
tization artifacts, which may be exploited to infer the compression
history of a given image. Scenarios vary greatly, including for
instance the detection and characterization of previous JPEG com-
pressions of images stored in bitmap formats [4, 5], the detection
and characterization of multiple JPEG compressions [6–11], pos-
sibly in the presence of other forms of processing in between
consecutive compression steps [12, 13], or the detection of local
image manipulations [9, 14–16].

Among the most successful approaches for multiple com-
pression forensics are those that rely on statistics of the first sig-
nificant digits (FSDs) of discrete cosine transform (DCT) coeffi-
cients. It has been observed that block-DCT coefficients of natural
images follow (a generalized) Benford’s law of first significant
digits [17,18], while lossy JPEG compression changes the FSD dis-
tribution of DCT coefficients. The analysis of empirical FSD his-
tograms is effectively equivalent to aggregating statistics over DCT
coefficient histograms. Hence, FSD-based approaches promise
more compact feature representations, yet they cannot be expected
to fundamentally outperform forensic techniques that work with
first-order DCT coefficient statistics directly [19]. Indeed, the
literature has demonstrated that FSD-based classifiers are highly
capable of identifying the number of compression cycles an image
underwent in a relatively low-dimensional feature space [10].

It has been noted only recently that also the second significant
digits (SSDs) of block-DCT coefficients exhibit a highly regular
behavior across different image databases [20], partially in cor-
respondence with Benford’s law. Here, we follow this path and

explore to what degree peculiarities in the distribution of block-
DCT SSDs can be exploited for compression forensics. While it
cannot be expected that switching from first significant digits to
higher-order digits will result in tremendous performance gains, it
is our hope to deepen the understanding of how significant digits
of DCT coefficients behave in various forensically relevant set-
tings, and whether there exist scenarios for which it is beneficial to
consider also significant digits beyond the first. Before we delve
into our exploratory analysis, the following two sections briefly
summarize how Benford’s law characterizes the empirical distribu-
tion of significant digits and how FSD features have been utilized
in prior work on compression forensics.

Significant Digits and Benford’s Law
Denoting s(x) as the decimal1 significand of a non-zero real

number x ∈ R \ {0}, s(x) = 10log |x|−blog |x|c, the s-th significant
digit of x, ds(x), s ∈ N, is given as

ds(x) =
⌊

10s−1s(x)
⌋
−10

⌊
10s−2s(x)

⌋
. (1)

By definition, the first significant digit (FSD) of x 6= 0 is never
zero, d1(x) ∈ [1 ..9]. Significant digits ds(x) with s > 1 can also
take on value zero. Benford’s law [21, 22] concerns the statistical
distribution of significant digits. It has been found to apply to vari-
ous types of synthetic and empirical data. Denoting Pr(Ds = ds)
as the probability that the s-th significant digit equals ds, Benford’s
law states that [22]

Pr
(
(D1,D2, . . . ,Dr) = (d1,d2, . . . ,dr)

)
=

log
(

1+
(

∑
r
s=1 10r−sds

)−1
)
. (2)

Specifically, this implies for first and second significant digits that

Pr
(
D1 = d1

)
= log(1+1/d1) and (3)

Pr
(
D2 = d2

)
=

9

∑
d1=1

log(1+1/(10d1 +d2)) , (4)

respectively. Figure 1 gives a graphical representation of the two
probability mass functions. Observe that the SSD distribution is
much more uniform than the FSD distribution. Generally speaking,
it follows from Benford’s law that the marginal distribution of
the s-th significant digit approaches the uniform distribution as
s→∞ [23]. A sufficient condition for Benford’s law to be satisfied
is a uniform distribution of logs(x) over the interval [0,1) [22].

FSD-Based JPEG Compression Forensics
First significant digits of block-DCT modes of natural images

are commonly assumed to obey (a generalized variant of) Ben-
ford’s law [17, 18]. A common working assumption of forensic

1We work with logarithms to base 10 in this paper.
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Figure 1. Benford’s law for first (FSD) and second (SSD) significant digits.

techniques is that FSD distributions after lossy JPEG compression
exhibit a fundamentally different behavior. By analyzing empirical
FSD histograms, this can be exploited to detect traces of prior
JPEG compressions in decompressed images or to determine the
number and parameters of previous JPEG compression cycles.
Early methods leaned towards explicit tests for Benford’s law to
be satisfied [18,24]. More recent techniques draw more heavily on
machine learning support. Most recently, Milani et al. [10] deter-
mined empirically a set of FSD features for multiple compression
forensics by assessing a large number of possible digit combi-
nations from a predetermined set of nine low-frequency JPEG
coefficients proposed in [25]. Specifically, the authors focussed
on fixed n-tuples of digits and considered the corresponding n×9
FSD histogram bins as feature space. Digits 2, 5 and 6 were found
to work particularly well. The classification algorithm combines a
set of binary classifiers, individually trained to distinguish between
various compression settings one at a time. The final classification
result is then aggregated from the combined binary decisions.

Experiments With Block-DCT SSDs
Positive reports about FSD-based compression forensics in

the literature have also led to a number of counter-forensic tech-
niques [27] that attempt to restore block-DCT coefficient FSD
histograms after JPEG compression [28, 29]. Yet we demonstrated
in a recent work [20] that restoration algorithms under a minimum
cost constraint can lead to detectable artifacts in the histograms
of second significant digits. One of the major findings along the
way was that block-DCT SSD histograms from never-compressed
images exhibit a highly regular behavior. A question that naturally
arises is thus whether SSD histogram features are similarly suitable
for compression forensics as FSD features.

Experimental Setup
We work with the 1338 UCID images [26] in our experiments.

All images are of size 384×512. The images were converted to
grayscale before further processing.2 We use the Independent
JPEG Group reference library with floating-point DCT implemen-
tation and standard quantization tables to obtain JPEG versions
of the database, considering single compression with quality fac-
tors from the set Q = {35,40, . . . ,100} and double compression
with quality factor combinations in Q×Q. For a given tuple
q = (q1,q2) ∈Q×Q, we use notation q1 → q2 to refer to com-
pression with quality factor q1 followed by a second compression

2ImageMagick convert with option -grayscale Rec601Luma.

with quality factor q2. Similar to Milani et al. [10], we work with
a simplified setup that limits the set of primary quality factors to

Q∆
q2

= {q1 ∈Q : 0 < |q2−q1| ≤ ∆} , (5)

i. e., for a specific choice of q2, we consider only quality factor
combinations (q1,q2) ∈Q∆

q2
×{q2}.

We analyze DCT coefficients, rounded to six digits, which
are computed from non-overlapping 8× 8 pixel blocks (ym,n),
0≤ m,n≤ 7, with integer intensities ym,n ∈ [0 ..255] as

xi, j =
7

∑
m=0

7

∑
n=0

(ym,n−128) ·b(i, j)m,n . (6)

The elements of the (i, j)-th basis vector b(i, j) are given as

b(i, j)m,n =
cic j

4
· cos

(
πi(2m+1)

16

)
· cos

(
π j(2n+1)

16

)
, (7)

where 0≤ i, j ≤ 7, c0 = 1/
√

2 and ci = 1 for i > 0. Pixel blocks
are aligned with the JPEG grid, if the image was previously stored
as JPEG. Normalized FSD and SSD histograms are computed per
DCT mode (i, j). Omitting index (i, j) for the sake of brevity, and
denoting x = (xk), 0≤ k < N, as the vector of coefficients satisfy-
ing {x : x 6= 0∧ x 6= d1(x)}, the s-th digit normalized histogram is

hs(d,x) =
1
N

N−1

∑
k=0

δ (d−ds(xk)) , (8)

where δ (·) denotes the Kronecker delta function.

Never-compressed Images
Figure 2 illustrates the distribution of second significant digits

obtained from block-DCT modes of never-compressed images [20].
Each of the 8×8 sub-graphs depicts the median SSD histogram
(aggregated over all images in the UCID database) in correspon-
dence to the DCT coefficient index. Plots of the “ideal” distri-
bution according to Benford’s law in Equation (4) are given as
reference with each empirical histogram. The figure indicates
that the majority of DCT modes adhere to Benford’s law strik-
ingly well. There are three strong outliers at DCT coefficient
indices (i, j) ∈ {(4,0),(0,4),(4,4)}. This can be explained by the
special form of the DCT for those frequencies. As pointed out
in [30] in the context of steganography, it is straightforward to
verify that Equation (7) evaluates to b(i, j)m,n =± 1

8 for all m,n when
(i, j) ∈ {(4,0),(0,4),(4,4)}. This implies that DCT coefficients
computed from integer pixel intensities will be exclusively integer
multiples of 1

8 at those frequencies, i. e., second significant digits
{0,4,9} can only occur for coefficients {x : |x|> 10}. Consider-
ing the Laplacian-like distribution of DCT coefficients, these SSD
histogram bins will be populated only minimally. Similar but by
far less strong artifacts can also be observed for other coefficient
indices with even row and column indices [20].

Decompressed JPEG Images
Figure 3 continues with a closer look at block-DCT SSD

distributions after JPEG compression and decompression. Specifi-
cally, we plot the empirical histograms aggregated over all UCID
images after compression with quality factor 100. The histograms
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Figure 2. Empirical SSD distributions of 8×8 block-DCT coefficients from

the UCID image database. Subfigures are arranged in correspondence with

DCT mode indices and depict the medians, the 25 % quartiles and the 75 %

quartiles of relative frequencies for digits {0, . . . ,9} (from left to right within

each subfigure). Blue dots denote the distribution according to Benford’s law

(equal for all coefficients, see Figure 1). All subfigures are plotted on the

same vertical scale.

are clearly less uniform than those from never-compressed images
in Figure 2, and it is worth pointing out the consistent bias towards
SSDs 0 and 9. This is to be expected, considering that JPEG
compression with quality factor 100 corresponds to plain rounding
of all DCT coefficients. Spatial domain rounding and truncation
errors in the decompression step will yield non-integer DCT co-
efficients in Equation (6). The resulting coefficients are generally
distributed closely around the corresponding dequantized (integer-
valued) JPEG coefficients [4], with a strong bias towards the “ends”
of the SSD histogram. Overall, already a visual comparison of
Figures 2 and 3 thus suggests that block-DCT SSD histograms may
be a valuable source of information for compression forensics.

For a quantitative analysis, we compute χ2-differences be-
tween empirical histograms and the SSD distribution according to
Benford’s law,

χ2 =
9

∑
d2=0

(
h2(d2,x)−∑

9
d1=1 log(1+1/(10d1 +d2))

)2

∑
9
d1=1 log(1+1/(10d1 +d2))

. (9)

We evaluate Equation (9) for each of the 16 DCT coefficients with
odd row and column indices, (i, j) = (2w+1,2v+1), 0≤ v,w≤ 3,
and take the average χ2 as aggregated measure per image. Figure 4
illustrates the results of this procedure by reporting the minimum
and median average χ2 over all images in the database after JPEG
compression with quality factors q1 ∈ Q. The horizontal line
corresponds to the maximum average χ2 over all never-compressed
images in the database, indicating that it is possible to perfectly
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Figure 3. Empirical SSD distributions of 8×8 block-DCT coefficients from

the UCID image database after JPEG compression with quality factor 100.

Subfigures are arranged in correspondence with DCT mode indices and de-

pict the medians, the 25 % quartiles and the 75 % quartiles of relative fre-

quencies for digits {0, . . . ,9} (from left to right within each subfigure). Blue

dots denote the distribution according to Benford’s law (equal for all coeffi-

cients, see Figure 1). All subfigures are plotted on the same vertical scale.

separate between never-compressed images and previously JPEG-
compressed images across all tested JPEG quality factors. We
emphasize that FSD histograms are generally not as discriminative
for images compressed with extremely high quality factors. An
FSD-based JPEG compression detector adopting above strategy
with zero false negatives would result in a 75 % missed detection
rate for q1 = 100, for instance.

Double Compression
Differences between never-compressed and compressed im-

ages become generally more evident after stronger compression.
A more interesting question is to what degree SSD histograms
from single-compressed and double-compressed JPEG images dif-
fer. Figure 5 sheds some light on this aspect by comparing SSD
histograms from images compressed once with JPEG quality fac-
tor 70, and images compressed twice with a sequence of quality
factors 80 → 70. Overall, observe that the strong quantization of
lower JPEG quality factors will tend to produce relatively uniform
SSD histograms, especially so for higher frequencies. Differences
between the two exemplary settings are still clearly noticeable in
certain DCT modes, yet it can be expected that a clear distinction
may not always be possible.

Classifiers and Feature Selection We train binary soft-margin
SVM classifiers with RBF kernel to distinguish between single-
compressed images (compressed once with quality factor q2) and
double-compressed images (compressed twice with q1 → q2, q1 ∈
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Figure 4. χ2-differences between empirical SSD distributions and Ben-
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Q∆
q2

). One classifier is trained per secondary JPEG quality factor
q2 (which is available from the query image). Training data for
both classes are compiled from the same images with a 50 / 50
training / validation split of the database. Both training sets are
of equal size; the double-compressed set comprises a randomized
mixture of quality factors Q∆

q2
×{q2}. The trained classifier is then

fed the remaining half of images in the validation step, each image
compressed once with q2, and double-compressed in total |Q∆

q2
|

times with all combinations in Q∆
q2
×{q2}. We report average

classification accuracies as performance measure, aggregated over
ten randomized hold-out training / validation splits of the database.

Feature vectors are constructed from empirical normalized
histogram bins (d, i, j), corresponding to significant digit d from
the (i, j)-th DCT mode. It will be evident from the context whether
we refer to FSD or SSD features. We generally do not consider
digit d = 9, since normalized histogram bins always add up to unity,
implying that one of the bins is implicitly given by all others. Our
selection of features is guided by the Fisher score [31], computed
individually for each feature index (d, i, j) from all images in the
database. Specifically, we consider for each combination of quality
factors q1→ q2, q1 ∈Q∆

q2
, two sets of images, Xq2 and Xq1→q2 .

The indices of those sets are indicative of the images’ compression
history. Denote µ(d,i, j)

k and and σ (d,i, j)
k the empirical mean and

standard deviation over all histogram bins (d, i, j) in image set Xk,
k ∈ {q2,q1→ q2}, the Fisher score for a specific feature index is

Fq1,q2(d, i, j) =
∑k
(
µ(d,i, j)

k −µ(d,i, j))2

∑k
(
σ (d,i, j)

k

)2 , (10)

with µ(d,i, j) denoting the empirical mean over both classes. Higher
scores indicate better separability between single-compressed
and double-compressed images based on feature (d, i, j). An N-
dimensional feature set is obtained per quality factor q2 by se-
lecting the N features that appear most frequently in the top-100
Fisher score ranking of all quality factor combinations (q1,q2) ∈
Q∆

q2
×{q2}.

Classification Results Figure 6 reports average classification
accuracies per JPEG compression quality factor q2 for the dis-
tinction between single compression with quality factor q2 and
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Figure 5. Empirical SSD distributions of 8×8 block-DCT coefficients from

the UCID image database after JPEG compression with quality factor 70 and

double compression with quality factors 80 → 70. Subfigures are arranged in

correspondence with DCT mode indices and depict the medians of relative

frequencies for digits {0, . . . ,9} (from left to right within each subfigure). Blue

dots denote the distribution according to Benford’s law (equal for all coeffi-

cients, see Figure 1). All subfigures are plotted on the same vertical scale.

double compression with quality factors q1→ q2, q1 ∈Q∆
q2

, when
∆ = 10. We consider three different feature sets comprising SSD
histogram bins, FSD histogram bins, or a combination of both,
respectively. All feature sets are of dimension 60 and were found
using the procedure described above. The results indicate that
the classification accuracy is generally very high in this scenario,
except for quality factor combinations where {100}∩Q∆

q2
6= /0.

A comparison with Figure 7, which parallels the setting above,
but excludes double compressions with q1 = 100, confirms that
q1 = 100 is indeed a weak spot of all feature sets. This can be ex-
pected, since the difference between never-compressed images and
images compressed with highest quality is marginal. It is advised
to use more specialized techniques for such scenarios, especially
also when multiple compressions with the same quality factor are
concerned [11]. More interestingly in our context, observe that
SSD features are inferior to FSD features for lower quality factors.
This can be explained from the combination of a Laplacian-like
distribution of DCT coefficients and increasingly stronger quanti-
zation factors, which implies that SSDs of DCT coefficients from
decompressed images in Equation (6) will be dominated more
strongly by spatial domain rounding and truncation noise as the
compression quality decreases.

A closer look at the selected features indicates that the analy-
sis of double compression with a relatively high secondary quality
factor q2 can leverage digits from a wider range of DCT coef-
ficients than it is the case with lower quality factors. Figures 8
and 9 illustrate this effect by visualizing the selected SSD and
FSD histogram bins for q2 = 90 and q2 = 70 in the DCT coef-
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Figure 7. Average classification accuracies for single (q2 ∈Q) vs. double

compression (q1 → q2,q1 ∈ Q∆
q2
\ {100}) detection, ∆ = 10. Feature space

dimension 60.

ficient plane. It is worth pointing out that the SSD features for
q2 = 70 are in good alignment with the differences that can be
observed in the distribution plots in Figure 5. We also note that
that SSD features for higher quality factors tend to include more
low-frequency DCT coefficients than we see with FSD features.
For a better understanding of the different classification accuracies
for lower quality factors, Figure 10 compares the FSD, SSD and
combined FSD/SSD feature selections for quality factor q2 = 60
in a single visualization. The graph indicates that both FSD and
SSD features draw exclusively from low-frequency coefficients.
The combined feature set, which yields an accuracy comparable to
features compiled from FSDs alone, is even more “strict” in this
regard, at the same time it favors mostly FSD features (red circles)
over SSD features (blue squares).

As far as the dimension of the feature space is concerned, we
observed only a relatively small influence on the average classifica-
tion accuracy in the setup described above. Figure 11 exemplarily
reports average accuracies obtained with different numbers of fea-
tures for q2 = 70. More importantly, it is has to be pointed out that
the classification accuracy drops considerably under more realistic
scenarios when larger differences between primary and secondary
compression qualities have to be considered. Figure 12 gives an
example for ∆ = 20. The training set in such more diverse settings
contains less instances of specific quality factor combinations,
which makes binary classification generally harder. A similar ef-
fect can be expected for a higher (and more practically relevant)
granularity of quality factors under consideration. Training sets of

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0
1
2

3
4
5

6
7
8

JPEG70 JPEG90

Figure 8. SSD features for double compression detection with q2 = 70

and q2 = 90, ∆ = 10. Each DCT mode is represented by a 3× 3 sub-block,

index (0,0) in the upper left corner is the DC mode; sub-blocks encode digits

d ∈ [0 ..8] (arranged in column major order). Highlighted digits contribute to

the feature space.

significantly increased size and / or multi-class classifiers are more
advisable in such settings [10, 25].

Concluding Remarks
We have explored characteristics of the second significant dig-

its (SSDs) of block-DCT coefficients in the context of JPEG com-
pression forensics. While distributions of first significant digits are
understood relatively well [17,18], little had been known about sig-
nificant digits beyond the first. We have focused here on relatively
simple scenarios to put most emphasis on a better understanding
of the differences between first and second significant digits. Our
empirical findings indicate that never-compressed images adhere to
Benford’s law extremely well as far as SSDs of odd-indexed DCT
coefficients are concerned. SSDs computed from decompressed
images are highly sensitive to prior compression, which allowed
us to perfectly distinguish even between never-compressed images
and images that underwent JPEG compression with highest quality
(quality factor 100). This is not possible based on first significant
digit (FSD) characteristics. As for the distinction between single
and double compression, we observed that SSD-based features
are by and large comparable to features obtained from FSD his-
tograms. Both can yield very high classification accuracies in
simple test scenarios, yet FSD features tend to be more robust
against lower compression qualities. Overall, we find that our
results are in good alignment with the results reported by Milani et
al. [10] based on quantized JPEG coefficients. Along these lines,
we mention that the analysis of SSDs from quantized DCT coeffi-
cients is largely unfeasible due to the limited support of coefficient
histograms even already after moderate compression. In summary,
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Figure 9. FSD features for double compression detection with q2 = 70

and q2 = 90, ∆ = 10. Each DCT mode is represented by a 3× 3 sub-block,
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it thus seems questionable that there are profound reasons to step
beyond the first significant digit for basic compression forensics
purposes. Nevertheless, it should be understood that higher-order
significant digits are highly informative, especially also in the pres-
ence of counter-forensics [20]. In a broader context, we surmise
that the observation and characterization of “non-Benford” SSD
distribution peculiarities due to the discreteness of digital images
is an excellent stepping stone towards more accurate models of
certain DCT modes. We leave this to future work, along with an
exploration of possible applications to image forensics.
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[17] F. Pérez-González, G. L. Heileman, and C. T. Abdallah, “Benford’s
law in image processing,” in IEEE International Conference on Image
Processing, vol. 1, 2007, pp. 405–408.

[18] D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG
coefficients and its applications in image forensics,” in Security and
Watermarking of Multimedia Content IX, ser. Proceedings of SPIE,
E. J. Delp and P. W. Wong, Eds., vol. 6505, 2007, 65051L.

[19] X. Chu, Y. Chen, M. Stamm, and K. J. R. Liu, “Information theoreti-
cal limit of media forensics: The forensicability,” IEEE Transactions
on Information Forensics and Security, in press.

[20] M. Kirchner and S. Chakraborty, “A second look at first significant
digit histogram restoration,” in IEEE International Workshop on
Information Forensics and Security (WIFS), 2015.

[21] F. Benford, “The law of anomalous numbers,” Proceedings of the
American Philosophical Society, vol. 78, no. 4, pp. 551–572, 1938.

[22] A. Berger, “A basic theory of Benford’s law,” Probability Surveys,
vol. 8, pp. 1–126, 2011.

[23] P. Diaconis, “The distribution of leading digits and uniform distri-
bution mod 1,” The Annals of Probability, vol. 5, no. 1, pp. 72–81,
1977.

[24] B. Li, Y. Q. Shi, and J. Huang, “Detecting doubly compressed JPEG
images by using mode based first digit features,” in IEEE Workshop
on Multimedia Signal Processing, 2008, pp. 730–735.

40 50 60 70 80 90 100

80

90

100

JPEG quality factor q2

ac
cu

ra
cy

[%
]

FSD SSD Combined

Figure 12. Average classification accuracies for single (q2 ∈Q) vs. double

compression (q1 → q2,q1 ∈ Q∆
q2
\ {100}) detection, ∆ = 20. Feature space

dimension 60.
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