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Abstract
This paper explores image self-similarity as a means to impede
forensic camera identification based on sensor noise. We follow
the tradition of patch replacement attacks against robust digital
watermarks, putting particular emphasis on the use of PatchMatch,
an efficient algorithm for finding approximate nearest neighbor
patches. Experimental results suggest that sensor noise finger-
prints can be desynchronized reasonably well without the need of
geometric image transformations and without explicit knowledge
of the fingerprint, while maintaining a tolerable visual quality.

Introduction
Scalable tests for digital camera identification based on highly

robust sensor noise fingerprints link digital images to their source
device with remarkable reliability [1, 2]. This quality is commonly
attributed to photo-response non-uniformity (PRNU), a camera-
specific multiplicative noise pattern caused by inevitable material
imperfections and variations in the manufacturing process of sen-
sor elements. PRNU occurs very similarly for images captured
with the same camera, but differs substantially between images
from different cameras. With access to enough images taken by a
certain digital camera, it is possible to estimate the noise pattern
resulting from these imperfections and to establish a fingerprint
unique to the device. The ability to identify the source camera
from an image and to link seemingly unrelated images from the
same camera holds great potential for forensic applications. Yet it
also brings to the surface many concerns for the anonymity of pho-
tographers, who may become identifiable through the analysis and
combination of information derived from one or multiple images.
This is not always desired [3]. Counter-forensic techniques [4] to
suppress traces of origin in digital images thus become a relevant
building block for ensuring unlinkability [5] for anonymous im-
age communication, e. g., in the case of journalism, activism, or
legitimate whistle-blowing.

Since the camera sensor fingerprint is a spatially varying
noise pattern, irreversible desynchronization is one approach to
impede camera identification—a strategy with traditions in digital
watermarking and image forensics [6, 7]. Recent works based on
seam-carving follow this line of thought [8, 9], yet require a sub-
stantial reduction of image resolution to be successful. This paper
explores the potential of patch-replacement attacks [10, 11] as a
tool to desynchronize sensor noise fingerprints instead. Also this
approach has its origin in attacks against watermarking systems,
where it achieved watermark removal with considerably less image
degradation than simple image processing primitives that have
been discussed in the context of sensor fingerprint robustness as
well (strong JPEG compression or denoising, for instance). We
combine the idea of distortion-constrained patch-replacement with

PatchMatch [12], a modern approximate nearest neighbor search
scheme. The result is a heuristic, yet effective algorithm to sup-
press sensor noise fingerprints while maintaining a surprisingly
high visual quality, specifically so in textured image regions.

Before we present our approach in more detail in the remain-
der of this text, the following section reviews the basics of sensor
noise forensics and corresponding countermeasures. We continue
with a discussion of potential patch-replacement strategies and
experimental results, before we conclude the paper.

Notation Without loss of generality, we consider grayscale im-
ages of size U ×V , which we express as vectors x of 8-bit in-
tensity values, x = (xi), 0 ≤ i < UV , xi ∈ [0,255]. Indices i are
organized in column-major order. At times it will be more con-
venient to refer to spatial indices (u,v) explicitly, with row index
u = u(i) = i−Ubi/Uc and column index v = v(i) = bi/Uc. We
will frequently consider patches x(m), defined as small contiguous
P×P image regions, x(m) =

(
x(m)

p
)
, 0≤ p<P2, where patch index

m denotes the m-th patch in the image x. Patches may overlap by
0≤ O < P pixels in horizontal and vertical direction, such that the
upper-left corner of the m-th patch corresponds to pixel i = i(m),

i(m) = (P−O) ·

(
m+

(
U−

⌊
U−O
P−O

⌋)
·

⌊
m

bU−O
P−O c

⌋)
,

0≤ m < bU−O
P−O c · b

V−O
P−O c. Patches are said to be fully overlapping,

if O = P−1. Overlap O = 0 results in non-overlapping patches.
Patch elements are indexed relative to i(m), i. e.,

x(m)
p = xi(m)+p−(U−P)bp/Pc , 0≤ p < P2 .

We define the convenience functions left : m 7→ m−bU−O
P−O c and

up : m 7→ m−1, which return the indices of patches x(left(m)) and
x(up(m)) to the left and above of patch x(m), respectively (assuming
that such neighbors exist). Similar functions can be defined to
obtain patches to the right or below. These functions may also be
applied to pixel indices, which implicitly implies P = 1 and O = 0
in the definitions above. Operators � and � denote element-wise
multiplication and division; [x] denotes element-wise rounding and
truncation according to the dynamic range of x.

Background
Sensor noise is among the best-studied device characteristics

in digital image forensics. This section briefly summarizes the
estimation of sensor noise fingerprints, their application to digi-
tal camera identification, as well as countermeasures to impede
successful identification.



Camera Identification
Estimating the sensor noise fingerprint of a digital camera c

requires access to a sufficiently large number of images x1, . . . ,xL
from that camera. Each of the L images is denoised to obtain noise
residuals rl = xl −denoise(xl), commonly modeled as [1]

rl = xl �kc +ΘΘΘl . (1)

Multiplicative factor kc is the camera-specific PRNU term, i. e.,
the sensor noise fingerprint. The noise term ΘΘΘ subsumes a va-
riety of other noise sources. It is assumed to be i.i.d. Gaussian.
We use the maximum likelihood estimator in [1] to obtain an es-
timate k̂c of a camera’s sensor noise fingerprint. The estimates
require post-processing to remove non-unique artifacts, e. g., due
to demosaicing or lens distortion correction [1, 13, 14]. For a
given query image xq and its noise residual rq = xq−denoise(xq),
digital camera identification can be established by evaluating the
peak-to-correlation energy (PCE) [1],

sc = PCE(rq,xq� k̂c) . (2)

A similarity score sc > 60 has been suggested to be a robust indi-
cator that image xq was captured by camera c [1].

Countermeasures
The reliability and the robustness of camera identification

based on sensor noise have been under scrutiny ever since semi-
nal works on sensor noise forensics surfaced about a decade ago.
Two major goals of countermeasures can be distinguished [15, 16].
Fingerprint removal concerns the suppression of a camera’s fin-
gerprint to render source identification impossible. Fingerprint
copying attempts to make an image plausibly appear as if it was
captured by a different camera. The latter strictly implies the sup-
pression of the original fingerprint and is generally a much harder
problem [17, 18]. The success of such counter-forensic techniques
is to a large degree bound by the admissible visual quality of the
resulting image. If anonymity is of utmost priority, strong mea-
sures that go along with a severe loss of image resolution are more
likely acceptable.

Existing fingerprint removal methods can be categorized un-
der two general approaches [15]. Methods of the first category
are side-informed in the sense that they use an estimate of the
sensor noise fingerprint to ensure a detector output below the
identification threshold. Flatfielding is known to remove the multi-
plicative noise term kc, yet ideally requires access to the raw image
data [15, 16]. Adaptive fingerprint removal techniques explicitly
attempt to minimize Equation (2) by finding a noise sequence that
cancels out the multiplicative fingerprint term in Equation (1) [19],
ideally by having exact knowledge of the detector (and thus the
images used to estimate k̂c). Uninformed techniques make less
assumptions and directly address the robustness of the sensor noise
fingerprint. Methods of this category apply post-processing to the
image until the noise pattern is too corrupted to correlate with
the fingerprint. No specific knowledge of the camera c, the cam-
era’s fingerprint kc, or the detector is necessary. However, due
to the high robustness of the sensor fingerprint, this is generally
a non-trivial problem. The drawback of existing approaches is a
more immediate loss of image quality compared to side-informed
methods. It has been reported repeatedly that even strong JPEG
compression or repeated denoising are generally not sufficient to

remove sensor noise fingerprints [20]. Irreversible desynchroniza-
tion is a more promising approach. A recent work proposes the
use of seam-carving, a form of content-adaptive resizing [21], to
impede camera identification [8]. A major limitation of the seam
carving method is that a considerable amount of seams must be
removed to successfully desynchronize the sensor fingerprint [9],
with a high potential for the removal of “important” seams, thus
degrading image quality and resolution.

Patch Replacement Strategies
One of the most characteristic properties of natural digital im-

ages is their redundancy. Small image patches recur in very similar
form numerous times across an image [22], and also across differ-
ent scales [23]. This self-similarity has been exploited in various
forms, for instance for image coding [24], texture synthesis [25],
denoising [26], or super-resolution [23]. Patch recurrence has also
driven the design of patch replacement attacks against robust wa-
termarking schemes for still images [11]. The key idea of this type
of attacks is to find for each image patch x(m) a replacement patch
x̃(m) that is as similar as possible to the original patch yet does
not contain the watermark. Such attacks have been demonstrated
to be highly effective against spread-spectrum watermarking and
eventually led to the call for signal-coherent watermarking [27].

Given the conceptual similarity of robust watermarks and
sensor noise camera fingerprints, we expect that a suitable patch
replacement strategy may also serve as counter-forensic technique
to impede camera identification. In the following we first review a
projection-based strategy proposed in [11], before we discuss our
approach based on the PatchMatch algorithm [12].

PCA-Based Patch Replacement
Doërr et al. [11] discuss a number of variants of patch replace-

ment strategies for attacks against robust watermarks. The authors
conclude that an approach based on the principal component anal-
ysis (PCA) offers the best trade-off between removal effectiveness
and visual quality in their setup.

Specifically, the algorithm constructs for every P×P patch
x(m) a code book Qm = {x(q)}, |Qm| = Q, q 6= m, by collect-
ing Q patches of size P×P from the neighborhood around x(m).
Computing the PCA of the code book1 results in Q unit-length
eigenpatches eq, which are sorted in descending order such that
e0 is associated with the largest eigenvalue and eQ−1 corresponds
to the smallest eigenvalue. Denoting c as the centroid of the code
book, the replacement patch is obtained by projecting x(m)− c
onto the subspace spanned by the first K ≤ Q eigenpatches,

x̃(m) = c+
K−1

∑
k=0

(
(x(m)− c) · ek

)
ek , (3)

such that the mean squared error (MSE) satisfies

MSE
(

x(m), x̃(m)
)
=

1
P2

P2−1

∑
p=0

(
x(m)

p − x̃(m)
p

)2
≥ τ (4)

for some threshold τ ≥ 0. We refer to [11] for a more detailed
description of the algorithm. In general, the MSE between the orig-
inal patch and the replacement patch decreases as the number K of

1It is advised to employ a photometric correction of the code book
before the PCA, see [11] for details.



original, sc = 5617 sc = 28, PSNR = 37.7 dB zoomed in (500×500)

Figure 1. Results of PCA-based patch replacement (center) and close-up of a 500× 500 region (right). The original image (shown on the left) is of size

2000×2000. Half-overlapped 8×8 patches, τ = 20. PCE and PSNR values are reported above the images.

eigenpatches increases. In contrast to [11], we opt for a conserva-
tive strategy and allow K = 0, if even a single eigenpatch brings
the replacement patch too close to the original (thus increasing the
likelihood of successful camera identification). In this case, we
replace x(m) with the centroid c.

Since the replacement strategy computes the optimal projec-
tion for each patch independently, it is computationally expensive
to run the algorithm on fully overlapping patches for large images.
Following [11], we work with half-overlapped patches (O = P/2)
and average spatially corresponding portions of overlapping re-
placement patches to obtain the final image. Figure 1 gives an
example of a typical outcome for patch size P = 8 and distortion
threshold τ = 20, with code books obtained from the 64×64 re-
gions around the patches. The original image (size 2000×2000)
is from the Dresden Image Database [28]. The PSNR of the final
image is 37.7 dB, the PCE value drops from 5617 to 28.

PatchMatch-Based Replacement
PatchMatch [12] is an efficient correspondence algorithm for

approximate nearest neighbor search, specifically suited for image
analysis and processing. Given two images x and y, the algorithm
determines a dense approximate nearest neighbor field z = (zm),
which specifies for each patch x(m), 0≤ m < M, the index n of a
similar patch y(n), 0≤ zm,n < N. Patch similarity can be measured
in the pixel domain or in a suitable feature space. PatchMatch
inherently relies on the fact that sufficiently small patches recur
in similar form numerous times across an image, and that patches
in close proximity tend to share common characteristics. After
a randomized initialization of the nearest neighbor field z, the
algorithm operates in an iterative manner. Each iteration consists
of a propagation step followed by a random search step. In the
propagation step, PatchMatch scans image x from left to right, top
to bottom, and inspects for each patch index m whether patches
y(right(zleft(m))) or y(down(zup(m))) are more similar to x(m) than y(zm).
If so, zm gets updated correspondingly. After a full scan of the
image, the random search step mitigates effects of local minima by
extending the search for better matches to a randomized sequence
of candidate patches. The next iteration repeats those steps with a
reversed scan order. The propagation step is the key to the success

of PatchMatch. It will quickly collect larger contiguous regions
of good matches. A relatively small number of iterations is thus
typically sufficient to obtain reasonable mappings.

More general formulations of the algorithm consider match-
ing across rotations and scale [29] or explicit smoothness con-
straints [30], amongst others. We refer to [12, 29] for an overview
of applications, yet it is worth pointing out that a PatchMatch-based
algorithm has recently also been applied in the field of copy-move
forgery detection [31].

Adjustments
We utilize PatchMatch to desynchronize camera sensor noise

fingerprints by replacing patches with suitable content from else-
where. Our focus is on information available in the image x that
should be anonymized, i. e., we attempt to find for each patch x(m)

a replacement patch x̃(m) = x(zm) (and thus y = x). PatchMatch
is efficient enough to handle fully overlapping patches. Running
PatchMatch “off the shelf” would result in too good replacement
patches. In fact, with y = x, PatchMatch will most likely converge
to the identity mapping, zm = m. With MSE as patch similar-
ity measure, a straightforward adjustment of the basic matching
procedure imposes an additional constraint

MSE
(

x(m),x(zm)
)
=

1
P2

P2−1

∑
p=0

(
x(m)

p − x(zm)
p

)2
≥ τ , (5)

such that zm is only updated, if a candidate patch gives a lower
MSE than the candidate from the previous iteration and if the new
MSE remains above a threshold τ at the same time.

Once the approximate nearest neighbor field (zm) is available,
we obtain the final image by averaging spatially corresponding
portions of the replacement patches. We parametrize the averaging
process by weighting each patch pixel-wise with a symmetric P×P
Gaussian mask h = (hp) = (hu,v) centered at the patch center,

hu,v ∝
1

2πσ2 exp

(
−
(
u− P−1

2
)2

+
(
v− P−1

2
)2

2σ2

)
. (6)

Larger values of σ result in an overall higher visual quality.



τ = 2 τ = 10 τ = 20

Figure 2. PatchMatch displacements d = (m− zm) for thresholds τ ∈ {2,10,20}. Coordinate displacements in the horizontal direction are encoded in the red

color channel, vertical displacements in the green channel. The original image (on the left) is of size 2000×2000. Fully overlapping 8×8 patches, eight iterations.

Note that setting τ = 0 in Equation (5) results in the origi-
nal formulation of PatchMatch, whereas a threshold τ > 0 will
affect the propagation properties of the algorithm. Although it
can still be expected that a pair of patches x(m) and x(zm) with
MSE

(
x(m),x(zm)

)
≈ τ will also have neighbors with similar prop-

erties, there exist many more valid candidate patches that fulfill
the MSE constraint. Due to the randomized nature of the algo-
rithm, this leads to a less smooth approximate nearest neighbor
field as τ increases. This effect can be observed in Figure 2, which
presents the outcome of MSE-constrained PatchMatch for one
example image from the Dresden Image Database [28] in the form
of approximate nearest neighbor displacement fields d = (m− zm),
obtained from fully overlapping patches of size 8×8 after eight
iterations for three different thresholds τ ∈ {2,10,20}.

While a less smooth approximate nearest neighbor field is
generally advantageous for sensor noise desynchronization, it will
also affect the visual quality of the resulting image. We found
that artifacts are particularly visible in dark image regions, yet
annoying streaking is generally present in predominantly smooth
areas where adjacent patches may be replaced with content from
different positions. This is illustrated in the center panel of Fig-
ure 3, which compares the results of MSE-constrained PatchMatch
(fully overlapping 8×8 patches, τ = 20, σ = 1) for a scene from
the Dresden Image Database [28], shot once with camera flash off
and once with flash on. We mitigate these effects by adopting a
replacement strategy that replaces too smooth patches with an i.i.d.
Gaussian noise vector:

x̃(m)
p =

{
x(zm)

p if Var(x(m))≥ ν
rp ∼N (x̄(m),σr) else

, (7)

where z = (zm) is the approximate nearest neighbor field ob-
tained from the MSE-constrained PatchMatch algorithm, x̄(m)

and Var(x(m)) are the empirical mean and variance of the the m-th
patch, ν is a suitable threshold, and σr is the standard deviation of
the noise source. We found σr = 1 to work sufficiently well in our
experiments. The right panel of Figure 3 depicts the results with
ν = 5 for the two images from above. The higher visual quality
is also reflected in the PSNR values, which increase from 37.3
(36.2) dB to 41.9 (38.2) dB. The PCE values are well below 60
for both images. Figure 4 gives another example, applying the
same settings as above to the image in Figure 1. Both PCA and
PatchMatch give acceptable results, yet we observed that the latter

tends to yield less ringing artifacts in textured regions. This can
be attributed both to a higher resolution due to fully-overlapping
blocks and to a less constrained patch-replacement strategy that
does not depend on the quality of a relatively small code book.

Experiments
We work with a random subset of 500 never-compressed

Adobe Lightroom images from the Dresden Image Database [28]
(Nikon D70, Nikon D70s, Nikon D200, two devices each). All
images were synchronized to landscape orientation, cropped to a
common size of 2000×2000 pixels, and converted to grayscale
before any further processing. Noise residuals were computed with
the standard Wavelet denoising filter [32]. Clean sensor fingerprint
estimates k̂ were obtained from 25 homogeneously lit flat field
images per camera, applying the post-processing suggested in [1].
All six cameras by and large gave similar results, so we aggregate
our outcomes over these devices.

The patch size is P = 8 in all our experiments. If not stated
otherwise, the PCA-based approach works with overlap O = 4 and
code books Qm constructed from the 64×64 neighborhood around
x(m); PatchMatch2 runs with fully overlapping patches (O = 7)
and eight iterations, with a smoothness threshold of ν = 5.

Evaluation Criteria
We report ROC curves to measure the performance of digital

camera identification. PCE values sc obtained from images taken
with camera c define the set of true positives. The set of true neg-
atives comprises PCE values sc from all unprocessed images not
taken with camera c. The area under the ROC curve (AUC), ex-
pressed as “detection reliability” ρ = 2 ·AUC−1 [33], and the true
positive rate at a false positive rate of 1 %, TPR0.01, serve as scalar
performance measures. Larger values imply higher identification
rates. Image quality is reported in terms of peak-signal-to-noise
ratio (PSNR). Larger values suggest better visual quality.

Baseline
Our baseline experiment confirms the high reliability of cam-

era identification based on sensor noise, so we refrain from plotting
any curves. We found that true positive PCE values fall in the range
119 < sc < 20955, all true negatives lie in 22 < sc < 60. The true
negative 95 % quantile is 43, the median is 28.9.

2http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR



original, sc = 3512 ν = 0, sc = 30, PSNR = 37.3 dB ν = 5, sc = 44, PSNR = 41.9 dB

original, sc = 5578 ν = 0, sc = 28, PSNR = 36.2 dB ν = 5, sc = 30, PSNR = 38.2 dB

Figure 3. Results of MSE-constraint patch replacement with PatchMatch for smoothness thresholds ν = 0 (center) and ν = 5 (right). The original images

(shown on the left) are of size 2000×2000. Fully overlapping 8×8 patches, eight iterations, τ = 20, σ = 1. PCE values sc and PSNR values are reported above

the images.

original, sc = 5617 sc = 32, PSNR = 38.3 dB zoomed in (500×500)

Figure 4. Results of MSE-constraint patch replacement with PatchMatch (center) and close-up of a 500×500 region (right). The original image (shown on the

left) is of size 2000×2000. Fully overlapping 8×8 patches, eight iterations, τ = 20, σ = 1, ν = 5. PCE and PSNR values are reported above the images.
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Figure 5. Camera identification ROC curves after PCA-based patch re-

placement for different distortion settings τ.

PCA-Based Patch Replacement
Figure 5 reports ROC curves for patch replacement follow-

ing the PCA-based projection strategy with overlapping patches.
We tested distortion constraints τ ∈ {10,15,20,30,40,50}. The
curves clearly indicate that patch replacement has the desired ef-
fect. Stronger distortion will have a stronger impact on camera
identification. Yet it also becomes apparent that the impact sat-
urates as τ increases. This is inherently due to the nature of the
replacement strategy, which will resort to the code book centroid
for large τ more and more frequently. Our results thus suggest that
the projection-based approach has limits and may not be sufficient
to impede camera identification in all cases. Figure 6 sheds more
light on the visual quality of the resulting images by plotting ρ
and TPR0.01 for different values of τ as functions of median PSNR
values. Observe that the color of the symbols corresponds to the
color of the respective ROC curves in Figure 5. As to be expected,
the graphs indicate that lower values of τ give higher visual quality,
yet against the backdrop of higher identification reliability. For
comparison, we also plot the corresponding results for patch re-
placement with non-overlapping blocks, which reduces the ρ and
TPR0.01 measures but tends to yield median PSNR values that are
at least 1 dB lower across all settings of τ .

PatchMatch-Based Patch Replacement
Figure 7 summarizes the camera identification results af-

ter patch replacement with PatchMatch for distortion constraints
τ ∈ {10,15,20,30}. Each panel depicts ROC curves for various
Gaussian blur settings, σ ∈ {0.1,0.75,1,2,4}. Symbol ‘*’ indi-
cates non-overlapping patches, which we consider for comparison.
We find that larger values of τ and smaller values σ have stronger
impact on camera identification reliability. Corresponding PSNR
values, along with ρ and TPR0.01 measures are reported in Figure 8,
which adopts the color coding of the ROC curves. Overall, we find
that there is no single best parameter setting. The PatchMatch
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Figure 6. Camera identification ρ and TPR0.01 measures vs. median PSNR

values after PCA-based patch replacement for different distortion settings τ
with overlapping and non-overlapping patches. Symbol colors encode distor-

tion settings (from τ = 50 in orange to τ = 10 in black) and match the colors

of the ROC curves in Figure 5.

approach yields satisfactory results for instance for combination
τ = 20, σ = 0.75. At a median PSNR of 37.8 dB (inter-quartile
range 5 dB), ρ drops to 0.26, and we get TPR0.01 = 0.07. Only 3 %
of the tested true positives have PCE values sc > 60 (median 30.8).

Observe that in terms of image quality, the PatchMatch-based
approach performs worse than the PCA-based approach. Com-
paring results for non-overlapping patches with τ = 30, we find
for instance that the former gives a median PSNR of 34 dB (inter-
quartile range 3.8 dB), while the latter yields 36.1 dB (inter-quartile
range 3 dB). The strength of the PatchMatch-based approach is the
weighted averaging of overlapping patches, which boosts image
quality to a median of 37.1 dB (inter-quartile range 4.2 dB) for
σ = 1 while keeping the camera identification reliability reason-
ably low (ρ = 0.24 and TPR0.01 = 0.06). A view back at Figure 6
indicates that a comparable performance was not achievable with
the PCA-based approach in our setup.
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Figure 7. Camera identification ROC curves after PatchMatch-based patch replacement (ν = 5) for different distortion settings τ and Gaussian blurs σ . Black

curves correspond to non-overlapping patches.

Concluding Remarks
We have studied the application of patch replacement strate-

gies to impede digital camera identification based on sensor noise.
Inspired by similar attacks against robust watermarks, we have
exploited the inherent self-similarity of digital images to replace
small image patches with content from elsewhere in the image.
The key to successful image anonymization is a careful tradeoff
between image quality and distortion strength. Our results indicate
that a PatchMatch-based heuristic is particularly promising. To the
best of our knowledge, the attack discussed here is the first with
sufficient potential to remove sensor fingerprints while maintaining
a reasonably high image quality through simple image processing
(i. e., without taking knowledge about the fingerprint into account)

that does not rely on geometrical transformations of the image.
Future research will have to show to what degree an exhaus-

tive local computation of fingerprint similarity can still establish
camera identification (possibly driven by a content-based pre-
segmentation of the image). The displacement field in Figure 2
suggests that PatchMatch’s propagation property yields (relatively
small) contiguous regions in highly textured areas also for stronger
distortion constraints. A potential countermeasure is to random-
ize replacement patches through a k-nearest neighbors variant of
PatchMatch [29]. In this context, it will also be interesting to see
whether broadening the search space to different scales or affine
transformations contributes to a better overall performance. Patch
merging beyond simple weighted averaging is another direction



34 35 36 37 38 39 40 41

0

0.2

0.4

0.6

0.8

median PSNR [dB]

ρ

τ

10
15
20
30

34 35 36 37 38 39 40 41

0

0.2

0.4

0.6

median PSNR [dB]

T
PR

0.
01

τ

10
15
20
30

Figure 8. Camera identification ρ and TPR0.01 measures vs. median PSNR values after PatchMatch-based patch replacement (ν = 5) for different distortion

settings τ and Gaussian blurs σ . Symbols refer to distortion settings, symbol colors encode Gaussian blur strength (from non-overlapping blocks in black to

σ = 4 in orange). Colors match the colors of ROC curves in Figure 7.

worth looking into. Finally, we mention that the proposed approach
naturally benefits from the abundance of candidate patches in large
images. Future work will thus also have to investigate the influence
of image size and content.

We close by emphasizing that the objective of this paper was
not to make an image appear unsuspiciously authentic. Covering
up the complete processing history of an image is generally a
significantly more involved procedure. It is very likely that the
proposed processing can be detected rather trivially. We believe
that this is not a major concern when anonymization is the primary
goal, for instance in the case of legitimate whistle-blowing. Along
these lines, techniques that allow the photographer to prove to a
third party that the image is authentic without revealing its source
may be a welcome addition.
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