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Abstract—We study digital camera identification based on
sensor noise in an adversarial environment with asymmetries.
We focus on fingerprint-copy attacks, where the attacker has
access to JPEG images only, while the defender may leverage
uncompressed images. This leads to the notion of fragile sensor
fingerprints that are only available to the defender but do not
survive lossy compression. Experiments with seven different cam-
eras suggest a highly reliable detection of the attack as long as
no high-quality images are shared with the public.

I. INTRODUCTION

Camera sensor noise is one of the most powerful device
characteristics in digital image forensics, particularly suitable to
uniquely identify digital cameras [1]. This quality is commonly
attributed to photo-response non-uniformity (PRNU), a camera-
specific unique multiplicative noise pattern caused by inevitable
material imperfections and variations in the manufacturing
process of sensor elements. PRNU occurs very similarly for
images captured with the same camera, but differs between
images from different cameras. Hence, it can serve as a “sensor
fingerprint” in forensic applications.

Sensor noise fingerprints can be estimated from a number of
images taken with same camera. This makes forensic schemes
vulnerable to fingerprint leakage from publicly available images
[2], [3]. If Eve wants to pretend that an arbitrary image was
captured by Alice’s camera, she can obtain a suitable camera
fingerprint from some of Alice’s photos and plant it on the
spurious image. This fingerprint-copy attack has been studied
to some extent in the literature, eventually leading to a counter-
technique known as the triangle test [4]. The triangle test
exploits small fractions of residual correlation between the
images used by Eve and the bogus fingerprint. A practical
disadvantage of this procedure is that Alice—when asked to
prove that Eve’s image was not taken by her camera—may have
to test all images ever made public by her. This can easily result
in a substantial computational burden in times of widely-used
photo sharing platforms. At the same time, the triangle test
is known to become less reliable as the number of candidate
images grows. Recent works have also proposed variations
of the fingerprint-copy attack that are more likely to remain
undetected [5]–[7] (but do not relieve Eve of the non-trivial
problem to make the spoofed image plausible otherwise [4]).

In the following, we consider a more narrow, but not unre-
alistic, scenario for which we will demonstrate that Alice will
not need to run the triangle test to verify that an image was
not captured by her camera. Specifically, we will assume that

1) Alice’s camera supports taking pictures in raw or uncom-
pressed file format;

2) Eve’s goal is to make an uncompressed image look like
one of Alice’s uncompressed images;

3) Alice, however, has decided to share JPEG-compressed
images with the public only.1

The first assumption is only a minor restriction as more and
more modern cameras offer raw format support. Open source
firmware modifications exist for a considerable number of cam-
era models that do not support raw images natively. Also the
Android platform supports raw images, for instance. The third
assumption is not unrealistic either. The vast majority of images
shared online is stored in JPEG format. The second assumption
is where our setup differs the most from the more general
scenario in prior work. We have situations in mind where Eve
wants to support her malicious activity with a high-quality
forgery, for instance when interacting with a court of law.

We exploit the asymmetry of assumptions 2 and 3 by fo-
cusing on the very component of the sensor fingerprint that is
fragile to lossy JPEG compression. While Alice will always be
able to provide a “full” fingerprint from uncompressed images
of her own camera, Eve’s fingerprint estimate from public
JPEG images will comprise the component that is robust to
JPEG compression but lack the fragile part. Testing for the
presence of the fragile fingerprint component only, Alice can
establish that Eve’s image was not taken with her camera, even
though the robust component alone will typically be sufficient
to fool the standard detector. Before we discuss the technical
details of fragile sensor fingerprints in more detail in Sect. III,
Sect. II briefly recapitulates the basic concepts of sensor noise
forensics. Section IV reports experimental results. Section V
concludes the paper.

Our notation is as follows: vectors and matrices are set
in boldface font. Operators � and � denote element-wise
multiplication and division; [X] denotes element-wise rounding
and truncation according to the dynamic range of X .

II. BACKGROUND

A. Camera Identification from Sensor Noise Fingerprints

The sensor noise fingerprint of a camera can be estimated
from a sufficiently large number of images I1, . . . , IN captured
with that camera. For each image, a denoising filter F (·) extracts
a noise residual Wk = Ik −F (Ik), commonly modeled as [1]

Wk = Ik �K + Θk . (1)

Multiplicative factor K represents the camera-specific PRNU
term, i. e., the sensor fingerprint. Θ subsumes a variety of

1We ignore the possibility of (data) theft in our forensics-centered scenario.



other noise terms, modeled as i.i.d. Gaussian. The maximum
likelihood estimator of K under these assumptions is [1]

K̂ =

(
N∑

k=1

Wk � Ik

)
�

(
N∑

k=1

(Ik)
2

)
. (2)

Estimates K̂ typically require post-processing to remove non-
unique artifacts, e. g., due to demosaicing or lens distortion
correction [1], [8], [9]. Camera identification then works by
computing the noise residual from a query image J , WJ =
J −F (J), and evaluating its similarity to a camera fingerprint
estimate,

ρ = sim(WJ ,J � K̂) . (3)

The literature has proposed correlation, normalized cross-
correlation and peak-to-correlation energy (PCE) as suitable
similarity measures.

B. Fingerprint-Copy Attack

For Eve to make an arbitrary image J look like it was taken
by Alice’s camera, (at least) the following steps are necessary.
First, Eve needs to collect a number of images from Alice’s
camera to obtain an estimate of the camera fingerprint, K̂E . We
assume that Eve follows the procedure outlined in the section
above. Then, Eve plants her estimate on the image J ,

J ′ = [J � (1 + α� K̂E)] , (4)

adjusting the scalar fingerprint strength parameter α suitably.
A good choice of α is crucial. If α is too low, the forged image
will not be identified as one of Alice’s images. If α is set too
high, Alice’s chances of running a successful triangle test may
increase substantially [4], [7]. Before and after superimposing
the fingerprint, Eve may apply further processing steps to
make her forgery more compelling, e. g., removing the genuine
camera fingerprint [10], synthesizing demosaicing artifacts [11],
and removing or adding traces of JPEG compression [12].

III. FRAGILE SENSOR NOISE FINGERPRINT

In the remainder of the manuscript, we assume Alice and
Eve to operate in the scenario described in Sect. I. Specifically,
Alice computes her fingerprint estimate K̂ from uncompressed
images. Eve’s estimate K̂E originates from JPEG-compressed
images of the same camera.

The main building block of JPEG compression is the dis-
crete cosine transform (DCT) of non-overlapping 8× 8 pixel
blocks. Denote D the orthogonal DCT transformation matrix
for one dimension, and X a block of 8 × 8 pixels. The
corresponding DCT coefficients Y are given as

Y = D X D> . (5)

JPEG compression encodes quantized DCT coefficients

Ỹ = [Y �Q] (6)

based on an 8 × 8 quantization table Q, which holds a
quantization factor for each of the 64 coefficients. Quantization
factors generally become larger towards higher DCT modes
that correspond to high-frequency details of the image, but also
with lower JPEG quality. The larger the quantization factors,
the more coefficients are quantized to zero.

When Eve computes a sensor noise fingerprint estimate from
JPEG-compressed images, she thus faces particularly strong
quantization errors in the high-frequency DCT modes. These
quantization errors will distort her estimate. In the extreme
case, when quantization is too strong, Eve’s images are lacking
high-frequency information altogether and so will the sensor
noise fingerprint estimate. At the same time, Alice’s fingerprint
can be expected to distribute almost evenly over all DCT
modes, as illustrated in Fig. 1. The two panels compare the
distributions of the 8 × 8 block-DCT coefficients of K̂ and
K̂E . Both fingerprints were estimated from the same 25 flat
field frames, taken by a Nikon D200 camera, but Eve’s images
were JPEG-compressed with quality factor 90.2

Following this line of thought, Alice can test for the presence
of a fragile sensor noise fingerprint that represents information
from the high-frequency DCT modes only. Specifically, define
a mode-selective highpass filter Hc(·) that retains a defined set
of block-DCT coefficients only, setting all other coefficients to
zero. While Alice may use this filter at various stages of the
identification algorithm, we found empirically that computing
a similarity measure of the form

sim(Hc(WJ ), Hc(J � K̂)) (7)

works particularly well. The choice of sub-bands depends on the
maximum JPEG quality of the public images. For a sufficiently
conservative choice, Alice can assume that the retained portion
of the fingerprint is available exclusively to her. We will
consider a cut-off along (minor) anti-diagonals of the DCT
coefficient matrix. For auxilliary matrix C defined below,

C =



0
0 1

0 0 1 2
0 1 2 3

0 1 2 3 4
0 1 2 3 4 5

0 1 2 3 4 5 6
0 1 2 3 4 5 6 7


, (8)

filter Hc retains all coefficients for which Cij ≥ c, i. e., c = 1
refers to all DCT modes in the lower right triangle.

We emphasize that Eve, under common modelling assump-
tions, cannot gain knowledge about the fragile fingerprint from
the low-frequency information she has access to. Without loss
of generality, consider the one-dimensional DCT and its inverse,

y = Dx (9)
x = D>y = D>Dx . (10)

By the linearity of the DCT, Eq. (9) can be decomposed into

y = (Hc�D)x+ (Lc�D)x (11)

where Hc is a binary multiplicative mask that encodes the fre-
quency selection of highpass filter Hc(·) and Lc = Hc XOR 1
is the corresponding low-frequency mask. A similar decompo-
sition for x is

x = (Hc�D)>(Hc�D)x+ (Lc�D)>(Lc�D)x (12)
= DH x+DLx . (13)

2We refer to Sect. IV for a description of our experimental setup.
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Figure 1. DCT coefficient distribution of K̂ (left) and K̂E (right), estimated from each 25 uncompressed and JPEG90-compressed flat field images (Nikon
D200). Histograms are arranged in correspondence with DCT mode indices. All histograms are plotted on the same horizontal scale.

The first component corresponds to the fragile part of the signal.
The second component represents the remaining low-frequency
information. The correlation between the two components is
zero. By the orthogonality of the DCT, the rows of matrices
DH and DL are pairwise orthogonal, D>

HDL = 0, and thus

(DHx)>(DLx) = x>D>
HDLx = 0 . (14)

The following section explores empirically how well Eve
can estimate the fragile fingerprint component from JPEG-
compressed images.

IV. EXPERIMENTAL RESULTS

We examine the reliability of fragile sensor fingerprints in
three different scenarios. First, we demonstrate in Sect. IV-B
that fragile fingerprints are discriminative enough to distinguish
between uncompressed images from Alice’s camera and images
from other cameras. We then switch to Eve’s perspective
in Sect. IV-C, quantifying the quality of fragile fingerprint
estimates obtained from JPEG images. Finally, we let Eve plant
spoofed JPEG fingerprints on uncompressed images from other
cameras and test whether Alice can detect such fingerprint-copy
attacks in Sect. IV-D.

A. Dataset and Experimental Setup

We work with the Dresden Image Database [13] and the
RAISE Image Database [14], excluding images with extremely
dark or saturated content. From the first dataset, we use 1442
uncompressed Adobe Lightroom images from three different
camera models (two devices each, cf. Table I). Our subset
of the RAISE database includes 4948 uncompressed natural
images from a single Nikon D7000 camera. All images were
synchronized to landscape orientation, cropped to a common
size of 2000× 2000 pixels, and converted to grayscale before
any further processing. JPEG versions of both databases were

Table I. NATURAL IMAGES PER CAMERA

Database Camera model Camera 0 Camera 1

Dresden [13]
Nikon D70 175 188
Nikon D70s 175 174
Nikon D200 360 370

RAISE [14] Nikon D7000 4948 —

created with the Independent JPEG Group reference library
and standard quantization tables.

Noise residuals, from both uncompressed images and JPEGs,
were computed with the “classic” Wavelet denoising filter [15].
Clean sensor fingerprint estimates K̂ were obtained from
uncompressed images for each camera according to Eq. (2),
also applying the post-processing suggested in [1]. The Dresden
Image Database provides 25 homogeneously lit flat field images
per camera for this purpose. The fingerprint estimate of the
RAISE camera was computed from 300 randomly chosen
natural images. The natural images from the Dresden Image
Database serve as standard benchmark set in all our tests. As
all six cameras by and large gave similar results in all tested
scenarios, we aggregate our outcomes over these devices. The
remaining 4648 RAISE images allow us to study the effect of a
large number of public images on Eve’s fingerprint estimation.

B. Camera Identification

A first series of benchmark experiments focuses on the ques-
tion how fragile fingerprints compare to traditional “full” sensor
noise fingerprints in a typical camera identification scenario.
It can be expected that fragile fingerprints will be less dis-
criminative, as they represent only a fraction of the full sensor
noise fingerprint characteristic. The PCE serves as similarity
criterion, computed as in Eq. (7) for all images of each Dresden
Image Database camera (true positives), and also for all
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Figure 2. Camera identification with fragile sensor noise fingerprints. Results aggregated over 1442 uncompressed Dresden Image Database images from six
different cameras. (a) ROC curves for different cut-off frequencies c. The “full” frequency range of standard camera identification corresponds to c = 0. (b) PCE
distribution when considering the full frequency range. (c) PCE distribution for cut-off parameter c = 3.

remaining natural images from that database (true negatives).
By the very nature of the fragile fingerprints, we only consider
uncompressed images here.

Figure 2a depicts the aggregated ROC curves for different
cut-off frequencies c, cf. Eq. (8). A curve obtained from the
full frequency range (corresponding to c = 0) is included for
reference. The results indicate that even a cut-off parameter
c = 4 yields still relatively good separation. This corresponds
to a setting where only 10 high-frequency DCT coefficients are
considered. Larger numbers of coefficients guarantee almost
perfect detection in our test set. Figures 2b and 2c give ad-
ditional insight by comparing the underlying distributions of
PCE values from standard camera identification (c = 0) and
fragile fingerprint identification with c = 3. While PCE values
generally decrease with each increase of the cut-off parameter,
our results suggest that the separation between matching and
non-matching camera images is highly reliable overall.

C. Fragile Fingerprint Estimation

A second relevant question concerns the quality of Eve’s
fragile fingerprint estimate from public JPEG images. We can
expect that stronger JPEG compression will remove more high-
frequency components of the camera sensor noise, making it
less likely to obtain a good estimate of the fragile fingerprint
from JPEG noise residuals.

We start by examining differences between noise residuals
from uncompressed images (true positives) and JPEG images
(true negatives) from all six Dresden Image Database cameras.
We calculate the PCE as in Eq. (7) for both groups. The camera
fingerprint estimates are always computed from uncompressed
images. Figure 3 depicts aggregated ROC curves at JPEG
qualities 100, 90 and 80 for different cut-off frequencies c,
cf. Eq. (8). Compression with JPEG quality 100 in Fig. 3a
is equivalent to simple rounding of DCT coefficients, which
is why noise residuals extracted from JPEGs images are not
distinguishable from those of uncompressed images. Results
for JPEG qualities 90 (Fig. 3b) and 80 (Fig. 3c) indicate that
stronger compression of public images is clearly to Alice’s
advantage because noise residuals from individual images
contain less and less relevant information. These results also

underline that the high robustness against JPEG compression
that “classical” sensor noise camera identification is known for
[1] is to a large degree due to low-frequency noise components.

Putting more emphasis on Eve’s perspective, we also report
the quality of fingerprint estimation [4] in terms of the corre-
lation between Alice’s fingerprint from uncompressed images,
K̂, and Eve’s fingerprint from compressed images, K̂E :

corr(Hc(K̂), Hc(K̂E)) . (15)

In this scenario, we assume Eve to have access to NE public
JPEG images from Alice’s camera. Varying the parameter NE ,
we report results averaged over five randomly compiled JPEG
image sets of size NE per camera. Alice’s camera-specific
fingerprint was kept constant throughout all repetitions. Table II
summarizes the aggregated correlations between the fingerprint
estimate from uncompressed flat field images and NE = 150
images from the Dresden Image Database. Table III resembles
this setup for the RAISE Image Database, granting Eve access
to a much larger number of 2000 and 4648 JPEG images
however.3 A closer inspection of the results suggests that
Eve’s fingerprint quality increases only very slowly with the
number of available public JPEG images. Most importantly, we
observe that the correlation values remain extremely low for
suitable combinations of JPEG quality and cut-off parameter c,
preventing Eve from obtaining a good estimate of Alice’s fragile
fingerprint even from a substantial amount of public data.

D. Fingerprint-Copy Attack

We finally consider the more realistic scenario where Eve
embeds her fingerprint estimate K̂E into 100 randomly cho-
sen uncompressed images taken by a different camera, as
described in Sect. II-B. Note that we do not attempt to de-
termine the optimal embedding strength α for each image
[4], [7], but rather test over a variety of settings in the range
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1, 2, 5, 10}. For all parameter
combinations, this process was repeated over the same image
set partitions as in Sect. IV-C.

3Note that NE = 4648 is the maximum number of available images in
our setup, so that the correlation values are from a single instance of the
experiment only in this case.
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Figure 3. PCE-based distinction between noise residuals from uncompressed images and JPEG images with different JPEG qualities. ROC curves aggregated
over 1442 Dresden Image Database images from six different cameras.

Figure 4 summarizes this experiment by plotting the average
PCE values after the fingerprint-copy attack as a function of
embedding strength for JPEG quality factors 100, 90 and 80.
The upper row corresponds to fingerprints estimated from NE =
150 images from the Dresden Image Database, the lower three
panels depict the results for the RAISE Image Database with
NE = 4648. Not surprisingly, fingerprint similarity increases
rapidly when Eve has high-quality JPEG images available
(Figs. 4a and 4d). The situation is substantially different with
stronger compression. For a JPEG quality factor of 90, only
the full fingerprint yields high PCE values for small embedding
strengths α, yet larger cut-offs c would prevent Eve from
mounting a successful attack (Figs. 4b and 4e). For even lower
JPEG qualities, no reasonable choice of α will produce Eve’s
desired result when c > 0 (Figs. 4c and 4f). The influence of
parameter NE is generally weak. A comparison of Figs. 4b and
4e suggests that a substantially larger number of public images
is only to Eve’s advantage for extremely strong embedding.

Overall, these results indicate that fragile fingerprints are a
viable means to counter fingerprint-copy attacks in a scenario
where Eve has only JPEG images available. For a JPEG quality
of 90 for instance, Alice may choose c = 3 to ensure reliable
camera identification in an adversarial environment.

V. CONCLUDING REMARKS

This paper has explored sensor fingerprints that are fragile
to JPEG compression. In the broad context of counter-forensics
[16] and adversary-aware signal processing [17], our work has
considered a scenario where an attacker attempts to frame a
victim by planting a fake fingerprint, estimated from JPEG
images only, on an uncompressed image. We demonstrated how
fragile fingerprints from uncompressed images provide valuable
side information to the defender. In a general hypothesis testing
framework, this asymmetry may resemble a situation where
attacker and defender have access to training data of different
quality [18]. Experimental results indicate that an attacker faces
substantial problems when attempting to recover the fragile
fingerprint component from JPEG images alone.

We emphasize that fragile fingerprints are not a replacement
of the triangle test [4]. In fact, both approaches should rather

Table II. QUALITY OF FINGERPRINT ESTIMATION (DRESDEN)

NE JPEG c

full 1 2 3 4 5

150

100 0.3720 0.3484 0.3245 0.2850 0.2302 0.1607
95 0.2522 0.0870 0.0561 0.0337 0.0160 0.0100
90 0.1865 0.0294 0.0157 0.0058 0.0009 0.0029
85 0.1449 0.0109 0.0029 -0.0007 -0.0022 0.0012
80 0.1174 0.0027 -0.0014 -0.0031 -0.0027 -0.0000
75 0.0977 -0.0012 -0.0029 -0.0030 -0.0026 -0.0005
70 0.0851 -0.0029 -0.0037 -0.0036 -0.0030 -0.0011

Table III. QUALITY OF FINGERPRINT ESTIMATION (RAISE)

NE JPEG c

full 1 2 3 4 5

2000

100 0.6128 0.6002 0.5565 0.4838 0.3828 0.2627
95 0.5291 0.3752 0.2645 0.1600 0.0800 0.0524
90 0.4381 0.1513 0.0762 0.0357 0.0169 0.0177
85 0.3758 0.0506 0.0154 0.0055 0.0023 0.0046
80 0.3347 0.0172 0.0009 -0.0014 -0.0008 0.0028
75 0.3035 0.0055 -0.0041 -0.0034 -0.0007 0.0016
70 0.2837 0.0015 -0.0053 -0.0042 -0.0015 0.0007

4648

100 0.6414 0.6322 0.5924 0.5250 0.4302 0.3123
95 0.5704 0.4536 0.3464 0.2235 0.1173 0.0773
90 0.4798 0.2047 0.1087 0.0520 0.0243 0.0253
85 0.4167 0.0705 0.0231 0.0084 0.0028 0.0078
80 0.3756 0.0249 0.0024 -0.0019 -0.0013 0.0037
75 0.3445 0.0085 -0.0049 -0.0042 -0.0000 0.0027
70 0.3254 0.0036 -0.0063 -0.0059 -0.0008 0.0017

be seen as a powerful combination, as Eve faces the following
dilemma: choosing a too strong fingerprint strength, she risks
being uncovered by the triangle test; too weak embedding may
be an easy catch for a detector based on fragile fingerprints.

Possible extensions and research questions abound. It will
be interesting to see how the proposed approach generalizes
to other forms of side information, for instance also involving
raw images or JPEG images of different qualities. Future work
may explore strategies for Alice to make even more informed
selections of DCT sub-bands, e. g., based on a set of candidate
images. Finally, we expect that the incorporation of DCT
coefficient distribution assumptions will contribute to a more
thorough understanding of the limits of fragile fingerprints and
serve as stepping stone for further applications.
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Figure 4. Fingerprint-copy attack with fragile fingerprints. Average PCE values as a function of the embedding strength α for different JPEG qualities. Results
aggregated over embedding into 100 images with (a)–(c) NE = 150 (Dresden Image Database) and (d)–(f) NE = 4648 (RAISE Image Database).
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