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Abstract—We analyze a class of first significant digit (FSD)
histogram restoration techniques designed to cover up traces of
previous JPEG compressions under a minimum cost constraint.
We argue that such minimal distortion mappings introduce strong
artifacts to the distribution of DCT coefficients, which become
particularly prevalent in the domain of second significant digits
(SSDs). Empirical findings from large image databases give in-
sight into SSD distributions of DCT coefficients of natural images
and demonstrate how images that underwent FSD histogram
restoration deviate from natural images.

I. INTRODUCTION

Over the past decade, image forensics has matured to be-
come a research field where advances are critically assessed
under a security perspective more routinely. Embedded into the
broader trend of adversarial signal processing [1], counter-
forensics [2] subsumes attempts to systematically mislead
forensic techniques. While early works were mostly of heuristic
nature [3], there is now a growing body of theoretical works
that contribute to the necessary rigorous foundations [4], [5].

Driven by the widespread use of JPEG images, the compres-
sion history of digital images is among the most extensively
studied subjects. A standard problem on the forensic side is
the detection of previous JPEG compressions. Also counter-
forensic methods to make JPEG images look like uncompressed
ones or to hide traces of double compression abound [6], [7].
These developments have led to a new generation of forensic
algorithms focusing on traces left by counter-forensics [8], [9].

This paper follows the fruitful path of interaction between
forensics and counter-forensics. Our particular emphasis is on
a recent class of counter-forensic techniques that restore first
significant digit (FSD) histograms of block-DCT coefficients
to cover up artifacts of previous JPEG compression(s) under
a minimum distortion constraint [10], [11]. We demonstrate
how optimal FSD histogram restoration has a strong impact
on the distribution of second significant digits (SSDs), which
may be exploited to detect FSD restoration. Along the way, we
provide insights into SSD distributions of block-DCT modes
of natural images, which appear to follow a Benford-like law
in certain instances.

In the remainder of this paper, Sect. II briefly reviews
the current literature on FSD forensics and counter-forensics,
before Sect. III discusses how SSDs of FSD-restored sequences
differ from natural sequences. Sect. IV introduces some the-
oretical background on SSD distributions. Sect. V describes

our experimental setup to explore empirical aspects of SSD
distributions and histogram restoration in Sects. VI and VII.
Sect. VIII concludes the paper.

II. FSD IMAGE FORENSICS AND COUNTER-FORENSICS

A. First Significant Digits and Benford’s Law

We follow the notation in [11] and write the first significant
digit (FSD) of a non-zero number x ∈ R \ {0} as

d1(x) =

⌊
|x|

10blog10 |x|c

⌋
=
⌊
10c(x)

⌋
, (1)

where c(x) = log10 |x| − blog10 |x|c = log10 |x| mod 1 is
the coset representative of x in Benford’s domain. With bin
boundaries

bi = log10(i+ 1) , (2)

the i-th FSD histogram bin of a sequence x = (x1, . . . , xN ),
xk 6= 0, is given as

h1(x, i) =
∣∣{xk : bi−1 ≤ c(xk) < bi}

∣∣ , 1 ≤ i ≤ 9 . (3)

The FSD histogram of x is h1(x) = (h1(x, 1), . . . , h1(x, 9)).
A sequence x is said to follow Benford’s law [12] if

h1(x, i) ≈ N log10(1 + 1/i) . (4)

A sufficient condition for Benford’s law to be satisfied is a
uniform distribution of c(x) over the interval [0, 1) [13].

It is commonly assumed that block-DCT modes of natural
images obey Benford’s law to some degree (amongst many
other types of “natural” data), yet generalized forms of the law
have also been proposed to be more compliant with empirical
FSD distributions of DCT coefficients from uncompressed
images [14] or quantized JPEG coefficients [15].

B. Image Forensics Based on First Significant Digits

A number of forensic techniques work with assumptions
about the distribution of first significant digits of block-DCT
coefficients. Inference about the JPEG compression history of
digital images is a typical application, for instance to determine
whether a bitmap image had been JPEG compressed before,
or whether a JPEG image underwent multiple compression
cycles. The common working assumption of these methods
is that lossy JPEG compression changes the FSD distribution



of an image’s DCT coefficients. Early approaches explored a
relatively straightforward adoption of Benford’s law, attempting
to verify whether or not quantized JPEG coefficients are well-
behaved in the Benford sense [15], [16]. More recent techniques
put a stronger emphasis on machine learning support [17].
FSD-based approaches are generally among the most powerful
methods for analyzing the compression history of digital
images, in particular when multiple JPEG compressions are
concerned [17].

C. First Significant Digit Histogram Restoration

Promising results of FSD forensics have recently sparked
interest in counter-forensic approaches that attempt to restore
FSD statistics of processed images [10], [11], [18], [19]. In this
work, we are particularly interested in the class of algorithms
that operate under a distortion constraint, i. e., given a (possibly
processed) source sequence x, the goal is to find a sequence
x∗ of the same length as x that adheres to a desired target FSD
distribution h∗ while being as similar as possible to the source.
Distortion is measured in terms of a suitable cost function
g : RN × RN → R. More formally,

x∗ = arg min
x̃:h1(x̃)=h∗

g(x, x̃) . (5)

The literature has pointed out that solving Eq. (5) for individual
block-DCT modes under a mean squared error (MSE) distortion
regime is equivalent to minimizing the spatial domain MSE
distortion incurred by DCT-domain FSD histogram restoration
[10], [11]. We further note that more general optimization
scenarios may also involve an additional minimization over a
set of admissible target histograms [4], [11].

Solutions to Eq. (5) have been found by reformulating
the problem in terms of transportation theory [10] or linear
optimization [11]. Both approaches exploit that MSE distortion
is component-wise additive and consider a cost matrix M
of dimension 9 × N . The (i, k)-th entry of M holds the
minimum element-wise cost of mapping xk to a value m(xk, i)
with d1(m(xk, i)) = i. The costs depend on the set of candidate
values that xk can be mapped to. In the following, we will
assume m : R→ Z · 10−p for some numeric precision p ≥ 0,

m(xk, i) = argmin
x̃∈Z·10−p

d1(x̃)=i

(xk − x̃)2 (6)

Mi,k = (xk −m(xk, i))
2
. (7)

Defining a permutation σ with |xσ(k)| ≥ |xσ(k)−1|, Pasquini
et al. [10] iterate over column indices σ(k) and obtain x∗σ(k)
with FSD i∗ as

i∗ = argmin
i :h∗

i>0

Mi,σ(k) , (8)

x∗σ(k) = m(xσ(k), i
∗) , (9)

decreasing the i∗-th element of the target histogram h∗ by one
after each iteration. While this heuristic procedure solves the
transportation-theoretic formulation of Eq. (5) only suboptimally
[10], it does ensure that elements with large magnitudes remain
largely undistorted, yielding a relatively low overall distortion.

log10 x
0 1 2x1 = 6

x2 = 15

Fig. 1. FSD mapping candidate intervals for two values x1 = 6 and x2 = 15,
depicted on a logarithmic scale, when mapping to a first significant digit of 2.
The highlighted intervals correspond to coset representatives b1 ≤ c(x̃) < b2,
i. .e, d1(x̃) = 2.

Comesaña and Pérez-González [11] find the global mini-
mum distortion mapping by solving

min
Ai,k∈{0,1}

9∑
i=1

N∑
k=1

Ai,k ·Mi,k , (10)

subject to the constraints
∑9
i=1Ai,k = 1 and

∑N
k=1Ai,k = h∗i .

The simplex algorithm yields a solution to this standard linear
optimization problem. Comesaña and Pérez-González also point
out that the nature of the optimization problem guarantees a
solution with binary coefficients Ai,k, i. e., a sequence with
elements

x∗k = m(xk, argmax
i
Ai,k) (11)

will have an FSD histogram equal to the target histogram h∗.
Experimental results in [11] indicate that the simplex solution
is indeed superior to prior heuristic approaches.

III. HISTOGRAM RESTORATION ARTIFACTS

A closer examination of Eq. (6) highlights that finding the
optimal x∗ with a desired first significant digit d1(x

∗) = i
entails evaluating at most two values [11]. Candidate mappings
of source values x with d1(x) 6= i may be found in the coset
intervals bi−1 ≤ c(x̃) < bi left or right of x, cf. Fig. 1. To the
right, the number closest to log10 |x| is

r(x, i) = bi−1 + dlog10 |x| − bi−1e

= bi−1 +

{
blog10 |x|c+ 1 if d1(x) > i

blog10 |x|c if d1(x) < i .
(12)

The supremum of the left interval is

l(x, i) = bi + blog10 |x| − bic

= bi +

{
blog10 |x|c if d1(x) > i

blog10 |x|c − 1 if d1(x) < i .
(13)

The corresponding candidate values are

r∗(x, i) = sgn(x) · 10r(x,i) (14)

l∗(x, i) =

{
sgn(x)

(
10l(x,i) − 10−p

)
if l(x, i) ≥ −p

−∞ else,
(15)

and the mapping returns

m(x, i) =


x if d1(x) = i

arg min

n∈
{
r∗(x,i)
l∗(x,i)

}(x− n)2 else. (16)
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Fig. 2. SSD histogram of the (5, 0)-th DCT coefficient before and after
transportation-theoretic and simplex FSD histogram restoration. Target his-
togram: Benford’s law; p = 6; source image: ucid00505, JPEG QF 80.

We note that Comesaña and Pérez-González [11] were only
interested in determining the optimal costs and thus worked with
the supremum l(x, i) instead of l∗(x, i). Practical histogram
restoration has to take finite precision effects into account. This
implies that, if an element xk needs to be modified to adjust
the FSD histogram of sequence x, the mapping m(xk, i) will
have a second significant digit equal to zero (Eq. (14)) or nine
(Eq. (15)). Setting p = 3 in the example in Fig. 1 for instance,
x1 = 6 would be mapped to 2.999, x2 = 15 would be mapped
to 20. This effect will be observable unless m(xk, i) = i10−p

(e. g., m(6, 2) = 2 for p = 0).

Figure 2 gives an illustrative example for a randomly chosen
image from the UCID image database, stored as JPEG with
quality factor 80.1 The graphs depict the relative frequencies
of second significant digits of the (5, 0)-th DCT coefficient,
before and after FSD histogram restoration based on Eqs. (9)
and (11). The FSD target histogram was set to comply with
Benford’s law, cf. Eq. (4). Histogram restoration artifacts are
clearly visible from the graphs, which indicate a strong increase
of second significant digits zero and nine.

IV. SECOND SIGNIFICANT DIGIT STATISTICS

The second significant digit (SSD) of a non-zero number
x ∈ R \ {0} is commonly defined in accordance to the notion
of first significant digits,

d2(x) = b10c(x)+1c − 10b10c(x)c . (17)

Different from FSDs, d2(x) ∈ {0, . . . , 9} may also equal zero
(see also Fig. 2). The SSD histogram of a sequence x, h2(x) =
(h2(x, 0), . . . , h2(x, 9)), follows the logic of Eq. (3), so we omit
an explicit definition. Note that Eq. (17) does not differentiate
between significant digits and trailing zeros of finite precision
numbers, i. e., d2(9) = 0. For the sake of simplicity, we still
use the above notation to refer to SSDs, but ignore the set
{x : x = d1(x)} when compiling SSD histograms. This implies
that the number of elements of a non-zero sequence x that
contribute to aggregate statistics may vary. We use symbol Nx

to count the number of elements with a well-defined SSD.

Although Benford’s law is often associated with properties
of FSD distributions only, a uniform distribution of c(x) over
[0, 1) clearly has implications on the joint distribution of all

1We refer to Sect. V for a description of our databases and processing steps.
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Fig. 3. Distribution of second significant digits according to Benford’s law.

decimal digits. Denoting Pr(Ds = ds) as the probability that
the s-th significant digit equals ds, an extended variant of
Benford law states that [13]

Pr
(
(D1, D2, . . . , Dr) = (d1, d2, . . . , dr)

)
=

log10

(
1 +

(∑r
s=1 10

s−rds
)−1)

. (18)

It follows directly from Eq. (18) that a sequence x compliant
with Benford’s law should satisfy

h2(x, j) ≈ Nx

9∑
i=1

log10

(
1 +

1

10i+ j

)
. (19)

Figure 3 presents a graphical representation of Eq. (19) and
depicts the ideal SSD distribution according to Benford’s law.
Observe that the distribution is much more uniform than the
FSD distribution. Generally speaking, Benford’s law implies
that the distribution of the s-th digit approaches the uniform
distribution as s→∞ [20].

V. EXPERIMENTAL SETUP

Before we continue with a more detailed empirical exposi-
tion of SSD distribution characteristics of DCT coefficients, we
give a brief overview of our experimental setup. Experimental
results are based on the UCID [21] and the RAISE-2k [22]
image databases. The UCID dataset comprises 1338 uncom-
pressed images of size 384×512, very likely downscaled from
larger digital camera images. The RAISE-2k dataset is a subset
of the RAISE database. It contains 2000 uncompressed full-
resolution images from three different digital cameras, with
resolutions ranging from 6 to 15 megapixels. All images were
converted to grayscale before any processing.2 We used the
Independent JPEG Group reference library with floating-point
DCT implementation and standard quantization tables to obtain
JPEG versions of the databases. DCT coefficients, rounded to
6 digits before analysis, were computed from non-overlapping
8× 8 pixel blocks with integer intensities in the range [0, 255]
after subtracting a constant offset of 128. The blocks were
aligned with the JPEG grid, if the image was previously stored
as JPEG. Simplex problems were solved with the lpSolve
package for R3, with the scale parameter set to 1000.

2ImageMagick convert with option -grayscale Rec601Luma.
3http://cran.r-project.org/web/packages/lpSolve
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Fig. 4. Empirical SSD distributions of 8× 8 block-DCT coefficients from the UCID (left) and the RAISE-2k (right) image database. Subfigures are arranged in
correspondence with DCT mode indices and depict the medians, the 25 % quartiles and the 75 % quartiles of relative frequencies for digits {0, . . . , 9} (from left
to right within each subfigure). Red circles denote the distribution predicted by Benford’s law (equal for all coefficients). All subfigures are plotted on the same
vertical scale, except for coefficients (4, 0), (0, 4) and (4, 4).

VI. SECOND SIGNIFICANT DIGITS IN THE DCT DOMAIN

Several works in the literature have reported that first
significant digits of block-DCT coefficients obey Benford’s law
(or a generalized variant) strikingly well [14], [15]. Distributions
of other digits were not in the focus of these works. Figure 4
sheds some light on this aspect and will help to understand
the impact of FSD restoration in the DCT domain. For each
of the 8 × 8 DCT coefficient indices, the figure depicts the
medians, the 25 % quartiles and the 75 % quartiles of relative
SSD frequencies obtained from the UCID (left panel) and the
RAISE-2k (right panel) database. Each subfigure contains a
reference graph of the SSD distribution according to Benford’s
law (see also Fig. 3).

Our measurements suggest that most of the DCT modes are
in good alignment with Eq. (19). Particularly notable deviations
exist for the DC mode (0, 0), and for coefficients (0, 4), (4, 0)
and (4, 4). An analytical justification is beyond the scope of
this manuscript, but we suspect that this can be explained from
the particular form of the DCT transformation matrix, which
is constant (up to sign alternations) in the 0-th and in the 4-th
row.4 Indications of further deviations for DCT coefficients
with even row or column indices in the UCID database are
more pronounced in the much larger RAISE-2k image set. Also
here, an inspection of the DCT transformation matrix reveals
that rows with even indices are composed of two different
transform coefficients only (again, up to sign alternations) and
thus differ fundamentally from odd matrix rows.

4Denoting D the DCT transformation matrix, the DCT of a 2D signal Y
can be written as X = DY D>.

VII. EXPOSING FSD HISTOGRAM RESTORATION

Our findings in the previous section clearly indicate that
SSD distributions of 8×8 block-DCT coefficients from natural
images follow certain regularities. Similar to FSD distributions,
Benford’s law seems to be a suitable model, at least for DCT
coefficients with odd row and column indices. Other coefficients
show a more complex, yet still relatively consistent behavior,
even across substantially different image sets. Considering that
FSD histogram restoration may leave strong artifacts in the SSD
histogram of a restored DCT coefficient sequence (cf. Sect. III),
we now ask how well images that underwent histogram
restoration are distinguishable from unprocessed ones.

For an experimental examination, we JPEG-compressed
all UCID images with quality factors in {30, 35, 40, . . . , 100}.
Non-zero DCT coefficients of the JPEG compressed images,
obtained from the images’ spatial domain representations,
were then modified using the restoration techniques based on
Eqs. (9) and (11). The target histograms were set to achieve
FSD distributions compliant with Benford’s law. We restored
each individual coefficient index individually with precision
p = 6. The DC coefficient always remained unmodified, in
accordance with the literature.

Figure 5 exemplarily illustrates the SSD distributions result-
ing from simplex restoration [11] of JPEG source images with
quality factors 50 and 90. For each of the 63 restored DCT
coefficient indices, the figure depicts the median relative SSD
frequencies, aggregated over all images in the UCID database.
Each subfigure contains a reference graph of the theoretical
Benford distribution (see also Fig. 3). The left panel of Fig. 5
corresponds to the “ideal” scenario, where DCT coefficients
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Fig. 5. Empirical SSD distributions of 8× 8 block-DCT coefficients from the UCID image database (JPEG compressed with quality factors 50 and 90) after
simplex FSD histogram restoration (p = 6, target histograms: Benford’s law, DC coefficient unmodified). Left: ideal restoration; right: after inverse DCT and
spatial domain rounding/truncation (R/T) to integer intensities. Subfigures are arranged in correspondence with DCT mode indices and depict the medians of
relative frequencies for digits {0, . . . , 9} (from left to right within each subfigure). Red circles denote the SSD distribution predicted by Benford’s law (equal for
all coefficients). All subfigures are plotted on the same vertical scale.

are analyzed immediately after FSD histogram restoration. The
right panel includes an additional rounding/truncation (R/T)
step in the spatial domain, mimicking the effect of saving
the restored image in an uncompressed image format before
analysis. It can be expected that FSD restoration effects (both
in terms of the FSD and the SSD histograms) will be attenuated
in this more realistic scenario.

A direct comparison of Figs. 4 and 5 clearly reveals how
substantially FSD-restored images differ from uncompressed
natural images. None of the DCT coefficients in the left panel
is even close to Benford’s distribution of second significant
digits. After restoration, most coefficients have a strong bias
towards digits zero and/or nine. This effect is less pronounced
after the R/T step, especially in the high-frequency modes.
Nevertheless, strong irregularities prevail throughout the mid
and low-frequency bands, depending on the quality factor of
the source image.

Quantitatively, these apparent differences can be measured,
for instance, in terms of the χ2 divergence between the empir-
ical relative frequencies and Benford’s distribution,

χ2 =

9∑
j=0

(
h2(x, j)/Nx −

∑9
i=1 log10

(
1 + 1

10i+j

))2
∑9
i=1 log10

(
1 + 1

10i+j

) (20)

which we evaluate individually for each DCT coefficient index
(2m+1, 2n+1), 0 ≤ m,n ≤ 3. This selection of coefficients is
inspired by our observations in Sect. VI. Figure 6 summarizes
our results for a scenario where the average χ2 over the selected
indices would be used as a decision criterion to detect FSD-

restored images. The graphs depict the minimum and maximum
averaged χ2 after restoration with R/T as a function of the
source image’s JPEG quality factor. The maximum averaged
χ2 from the set of all original uncompressed images is shown
as a horizontal detection threshold. Observe that we achieve a
perfect separation for both restoration techniques throughout
all 15 tested JPEG quality factors. Note that we only display
graphs for the more realistic R/T scenario. We observed an even
stronger separation when FSD-restored images are analyzed
directly. We also point out that more sophisticated detectors
may exploit higher-dimensional SSD-based features to strive
for a stronger separation when the restoration of high-quality
JPEGs is concerned.

VIII. CONCLUDING REMARKS

We have studied artifacts of state-of-the-art first significant
digit (FSD) histogram restoration techniques [10], [11]. These
algorithms map source histograms to desired target histograms
while attempting to minimize the distortion with respect to
the source sequence. A typical application is the restoration of
block-DCT coefficient FSD histograms of JPEG compressed
images to a Benford-like distribution, such that the modified
image appears like an uncompressed image to forensic detectors.
We have argued that such mappings under a minimal distortion
constraint have a strong impact on the distribution of second
significant digits (SSD). Backed with empirical evidence from
large image databases, our results indicate that FSD-restored
images exhibit SSD distributions that differ substantially from
those of uncompressed natural images. An extension of this
analysis to the restoration of (quantized) JPEG coefficients is
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Fig. 6. Averaged χ2 divergence between empirical SSD distributions and
Benford’s law after FSD histogram restoration and spatial domain R/T; average
computed over odd-indexed DCT coefficients. The graphs show the minimum
and maximum divergences of all JPEG-compressed UCID images after FSD
histogram restoration. The horizontal line corresponds to the maximum averaged
χ2 in the set of all original uncompressed images.

subject to future work. Future work will also have to show
whether existing FSD histogram restoration techniques can
be augmented to cover up SSD artifacts—thus entering the
next iteration in the the cat-and-mouse game between forensics
and counter-forensics [2]. Potential approaches may include
a randomized (but sub-optimal, in the FSD-sense) mapping
function, or a largely extended set of constraints to the linear
optimization formulation of the FSD histogram restoration
problem. In view of the ever-increasing toolbox of JPEG
forensics [23], we remain reserved on whether restoring a
single statistical characteristic will ever suffice to fool forensic
investigators, however.

On a more general level, this manuscript is—to the best
of our knowledge—the first work that studies significant
digit distributions of block-DCT coefficients beyond the FSD.
Our results from the UCID and the RAISE-2k image sets
indicate that second significant digits of certain DCT modes
have a Benford-like behavior. DCT coefficients with even
row or column indices differ more substantially, but show
a relatively consistent behavior across different images. Further
investigations will show how these findings may contribute to
a deepened understanding of DCT coefficient FSD distributions,
and whether forensic applications beyond the one discussed
in this manuscript exist. In particular, it will be interesting to
see how (multiple) JPEG compression(s) and image processing
affect second significant digits of DCT/JPEG coefficients.
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[3] M. Kirchner and R. Böhme, “Hiding traces of resampling in digital
images,” IEEE Transactions on Information Forensics and Security,
vol. 3, no. 4, pp. 582–592, 2008.

[4] P. Comesaña and F. Pérez-González, “Optimal counterforensics for
histogram-based forensics,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013, pp. 3048–3052.

[5] M. Barni and B. Tondi, “The source identification game: An information-
theoretic perspective,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 3, pp. 450–463, 2013.

[6] M. C. Stamm and K. J. R. Liu, “Anti-forensics of digital image
compression,” IEEE Transactions on Information Forensics and Security,
vol. 6, no. 3, pp. 1050–1065, 2011.

[7] W. Fan, K. Wang, F. Cayre, and Z. Xiong, “A variational approach to
JPEG anti-forensics,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2013, pp. 3058–3062.
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