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ABSTRACT
This paper adds a new perspective to the analysis and de-
tection of periodic interpolation artifacts in resized digital
images. Instead of relying on a single, global predictor, we
discuss how the specific structure of resized images can be
explicitly modeled by a series of linear predictors. Charac-
teristic periodic correlations between neighboring pixels are
then measured in the estimated predictor coefficients itself.
Experimental results on a large database of images suggest a
superior detection performance compared to state-of-the-art
methods.

Categories and Subject Descriptors
I.4.m [Image Processing]: Miscellaneous

General Terms
Algorithms, Security

Keywords
digital image forensics, tamper detection, resampling detec-
tion, linear prediction, periodic artifacts

1. INTRODUCTION
Resampling detection [12, 4, 10, 7], meanwhile a standard

problem in digital image forensics [13, 3], strives to analyze
and expose traces of geometric image transformations such
as scaling or rotation. These image processing primitives are
of particular interest in the forensic analysis of digital im-
ages for several reasons. First and foremost, complex image
forgeries oftentimes rely on the transformation of (parts of)
images when objects have to be aligned in their size or per-
spective. Moreover, while especially the resizing of digital
images can be seen as a type of plausible post-processing,
which is in the first instance without consequences on the
image’s integrity, it is still of relevance in a general foren-
sic analysis of the image, where every information about the
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processing history adds value. In this context, a detection of
downscaling is particularly important, as a reduction in im-
age size is a common form of universal attack to hide traces
of previous manipulations [2].

Most of the prior work in the literature that is concerned
with a detection of resampling exploits periodic linear cor-
relations between neighboring pixels. These correlations are
an inevitable side-product of interpolation, which itself is
the key to visually appealing image transformations. In this
paper, we follow this general approach. However, we add a
new perspective and thereby hope to deepen the understand-
ing of the specific artifacts in resized images. In particular,
we will show how a series of tailored linear predictors, which
anticipate the inherent structure of resized images, can be
used to explicitly model and detect traces of interpolation.
This goes beyond prior work, where interpolation artifacts
are usually measured in the residue of one global predic-
tor (or equivalently in a difference signal obtained by linear
filtering with a fixed kernel).

The remainder of this paper starts with an overview of
interpolation artifacts in resized images in Sect. 2, before
Sect. 3 presents our findings on how the characteristics of
resized images can be exploited to construct a suitable de-
tector. Section 4 then reports experimental results from a
large database of images and motivates some concluding re-
marks in Sect. 5.

2. INTERPOLATION ARTIFACTS
In typical signal processing applications, interpolation is

implemented by means of a linear kernel that assigns scalar
weights to genuine samples in close proximity. Since virtu-
ally all n-dimensional interpolation kernels of practical rel-
evance are of separable nature, we will restrict ourselves in
the following to one-dimensional (1D) signals whenever ap-
plicable. Then, interpolation of a signal s at an arbitrary
real-valued position x ∈ R with a kernel h : R → R is to be
written as a linear combination of original samples at integer
positions χ ∈ Z,

s(x) =

∞
X

χ=−∞

h(x − χ)s(χ) . (1)

Typically, the need for interpolation is driven by a spe-
cific geometric transformation, which determines the map-
ping of integer source coordinates χ′ to real-valued target
coordinates x. Resizing, or scaling—the most fundamental
mapping—links target coordinates with source coordinates
through a linear factor ω, x = ωχ′. The factor ω is usually
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referred to as the inverse scaling factor, where ω < 1 cor-
responds to upsampling and ω > 1 means downsampling,
respectively.

To recall that a scaling factor ω−1 = p/q, with p and
q relatively prime, p⊥ q, results in periodic interpolation
artifacts with period p, we firstly note that interpolation
weights h(x−χ) can, without loss of generality, be expressed
in terms of the differences δx = x − ⌊x⌋ and rewrite (1) as

∞
X

χ=−∞

h(x − χ)s(χ) =
∞

X

l=−∞

h (l − δx) s(⌊x⌋ + l) . (2)

From (2) follows that two samples s(x1) and s(x2) are in-
terpolated from their corresponding neighbors with exactly
the same set of interpolation coefficients whenever δx1

= δx2
.

By further noting that scaled discrete coordinates x = ωχ′,
with ω = q/p and p⊥ q, can be written as

x =
q

p

„

pm

q
+ n

«

, with m ∈ Z and n ∈ {0, 1, . . . , p − 1} ,

the periodicity of δx with period p becomes apparent:

δx = m +
qn

p
−

—

m +
qn

p

�

=
qn

p
−

—

qn

p

�

.

The periodicity of interpolation weights ultimately leads to
periodic linear correlations between neighboring interpolated
samples. The specific form of correlation generally depends
on the difference δx. Assuming a symmetric auto-correlation
in the original signal as well as a symmetric interpolation
kernel, a value 0 < δx < 0.5 means that the corresponding
sample is stronger correlated with its left neighbors (and vice
versa for 0.5 < δx < 1). Both δx = 0 and δx = 0.5 result
in a symmetric dependence on the right and left neighbors,
respectively. Since δx is monotonically increasing within one
period, scaled signals typically exhibit an asymmetric auto-
correlation that has a gradually varying, periodic bias.

It was Popescu and Farid’s seminal paper [11, 12] that
first discussed the existence of such characteristic correla-
tions as an indication of geometric transformations. The
authors proposed a detector based on a linear predictor. By
predicting each sample from its neighbors, the residual sig-
nal e,

e(x) = e(ωχ) = s(ωχ) −
X

|k|≤K
k 6=0

αk s(ωχ + ωk) , (3)

gives information about strength and characteristics of the
linear dependencies between neighboring samples. Large ab-
solute differences indicate a minor degree of linear correla-
tion and vice versa. In this setting, interpolation generally
leads to periodic artifacts in the predictor residue [7].

In preparation for our following considerations, we would
like to stress that the very same predictor coefficients α are
applied for all samples throughout the entire signal. Equa-
tion (3) can thus be understood as a convolution of the inter-
polated signal with a fixed linear kernel with predictive prop-
erties. Popescu and Farid devised a weighted least squares
(WLS) estimation of the kernel coefficients, which they em-
bedded in an expectation/maximization framework. The
estimation procedure chooses those coefficients that mini-
mize the overall weighted squared prediction error, with the
weights being determined in an iterative process [12]. Ul-
timately, the estimated coefficients can be interpreted as a

measure of average linear dependence between neighboring
samples. It is thus not surprising to see that subsequent
work reported a strong symmetry (αk ≈ α−k) and, to a cer-
tain degree, invariance with respect to the parametrization
of the underlying geometric transformation [7].

A largely equivalent approach for the detection of interpo-
lation artifacts stems from the analysis of (partial) deriva-
tives. As shown by Gallagher [4], and later on generalized
by Mahdian and Saic [10], the variance of the (n-th order)
derivatives of interpolated signals exhibits a characteristic
periodic pattern. Interesting parallels to predictor-based
detectors become apparent by recalling that typical imple-
mentations of discrete derivative operators are based on a
convolution with a fixed symmetric kernel [7].

In summary, we can conclude that, to the best of our
knowledge, the vast majority of resampling detectors un-
covers interpolation artifacts in some type of residue signal,
which is obtained by linear filtering with a fixed kernel. In
the following, we will vary this procedure by not only em-
ploying a single (i. e., global) predictor, but rather a series of
local predictors that anticipate the characteristic structure
of resized images. As a consequence, periodic interpolation
artifacts can be measured and analyzed more explicitly, as
they manifest themselves in the actual predictor coefficients.

3. PREDICTOR COEFFICIENTS TO MEA-
SURE INTERPOLATION ARTIFACTS

The key observation of this paper follows from the sep-
arability of typical interpolation kernels. For resized im-
ages, a separable interpolation kernel means that all pixels
within one row are correlated with their corresponding ver-
tical neighbors in exactly the same way (the same holds for
columns and their horizontal neighbors).1 This characteris-
tic structure can be expressed in terms of a linear model by
denoting r(i) as the vector of all pixels in the i-th row,

r
(i) − η

(i) =
X

|k|≤K
k 6=0

α
(i)
k

“

r
(i−k) − η

(i−k)
”

+ ǫ
(i) . (4)

In the above model, η means quantization errors due to
rounding and ǫ describes the model error, i. e. the portion
of r(i) − η(i) that cannot be explained by linear inter-pixel
dependencies. By assuming a suitable neighborhood size K,
the model error vanishes for upsampling (ω < 1), i. e., each
pixel is (apart from rounding errors) fully determined by
its vertical neighbors. For downsampling, this is not nec-
essarily the case and rather depends on the support of the
interpolation kernel and the inverse scaling factor ω.

The row index in (4) highlights the difference in our ap-
proach of modeling interpolation artifacts compared to prior
art. Each row has its own predictor α(i) that explicitly re-
flects the actual linear correlation between pixels in that
row and their vertical neighbors. Contrary to an implicit
model of periodic artifacts by means of the deviation from
the average predictor, a series of tailored predictors allows
to measure periodic traces in the predictor coefficients itself.
The estimation of the predictor coefficients can be conducted
using standard linear regression methods, whereas one re-

1For notational convenience, we will subsequently only re-
fer to rows and their vertical neighbors. The reader should
however keep in mind that our considerations can be readily
reframed to a column-wise model.
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Figure 1: TLS estimates of row predictor coeffi-
cients for a sequence of 11 rows of a 150 % bilin-
early upsampled image (K = 3, image size 350×350
pixel). The expected coefficients are {3/2,1, 1/3} for
α1, {−3/2, −1/3,0} for α2 and {1/2,0,0} for α3.

gression is required per row. The following subsections shall
discuss concrete implementations.

3.1 Ideal case: total least squares
For a vanishing model error, ǫ(i) = 0, all pixels of a partic-

ular row can (apart from rounding errors) be fully described
as a linear combination of their vertical neighbors. Since in
(4), both dependent and explanatory variables are subject to
measurement errors, a total least squares (TLS) estimation
of the predictor coefficients is appropriate [14].

Rewriting (4) as

r
(i) − η

(i) =
“

R(i) −N(i)
”

· α(i) ,

with R(i) =
h

r
(i−K), . . . , r(i−1), r(i+1), . . . , r(i+K)

i

and N(i) =
h

η
(i−K), . . . , η(i−1), η(i+1), . . . , η(i+K)

i

,

TLS aims at finding a coefficient vector α̂(i), such that

r̂
(i) = R̂(i) · α̂(i) and

‚

‚

‚

h

R(i), r(i)
i

−
h

R̂(i), r̂(i)
i‚

‚

‚

F
→ min .

The solution follows from the singular value decomposition

(SVD) of the augmented matrix
h

R(i), r(i)
i

, cf. [14].

In general, TLS allows a very precise estimation of the
actual linear correlation in interpolated images, given that
the neighborhood size K is properly chosen. This is also
demonstrated by Figure 1 that depicts a series of predic-
tor coefficients, estimated from a 150 % (ω = 2/3) bilinearly
upsampled image. Observe the periodic structure of the es-
timated coefficients, which (on average) perfectly obey the
expected numerical configuration.

Unfortunately, despite being very accurate in principle,
TLS has some severe practical limitations in our field of
application. The most fundamental drawback lies in the as-
sumption of a vanishing model error. Since TLS assumes
homoscedastic error terms, a large model error can lead to
incorrect or instable coefficient estimates. This is especially
the case for downsampling. However, also an inappropri-
ate predictor size can raise problems (whereas too small
neighborhoods are principally more troublesome than too

large neighborhoods).2 While the literature on TLS dis-
cusses corrective measures like regularization or scaled error
terms [14], we found in our experiments that a weighted
least squares approach is generally more adequate for the
sole detection of interpolation artifacts.

3.2 A practical approach
The above Sect. 2 mentioned that the correlation between

interpolated samples will, depending on the sample’s rel-
ative position δx, gradually vary in the bias towards left
and right neighbors. The detection of interpolation artifacts
thus not necessarily requires a perfect knowledge of the co-
efficients α(i). On a coarser level, it may be rather sufficient
to analyze the relative influence of left and right neighbors,
respectively.

In a simplified 2D linear model, we refrain from making
rounding errors explicit and write pixels of the i-th row as a
linear combination of their vertical neighbors, superimposed
with an additive error term ε,

r
(i) = R(i) · β(i) + ε

(i) . (5)

In the course of this paper, we will employ a weighted least
squares (WLS) procedure to estimate the coefficients β̂(i),
such that

r̂
(i) = R(i) · β̂(i) and

‚

‚

‚
w

(i)
“

r
(i) − r̂

(i)
”

‚

‚

‚
→ min .

The weights w
(i)
j are chosen to mitigate the impact of highly

textured regions and are computed from the variance σ2
j of

the pixel’s 2K vertical neighbors, w
(i)
j ∝ 1/(c + σ2

j ), c > 0.
Since it is mainly the relative influence of upper and lower

neighbors that is of interest in our setting, we focus our

analysis on the coefficients β
(i)
−1 and β

(i)
1 , which correspond

to the direct vertical neighbors. Experiments suggest that
the differences

di = β
(i)
−1 − β

(i)
1 (6)

are particularly promising to detect traces of resizing.
When analyzing a sequence of predictor coefficients (or

their differences), we expect to observe periodic interpola-
tion artifacts if the image was resized. Typically, a detec-
tion of such periodicities is carried out in the frequency do-
main, where the existence of a distinct spectral component is
taken as an indicative measure. It is worth mentioning that
analyzing the differences di instead of the predictor coeffi-
cients itself, as a by-product, inherently reduces the influ-
ence of undesired low-frequency components, which might
stem from the image content. Damping functions [12] or
cut-offs [4, 8] are thus typically not necessary.

Realistically, especially downsampling will hardly result
in perfectly periodic predictor coefficients β̂(i). This means
that the corresponding interpolation artifacts can be difficult
to detect with traditional spectral methods such as Fourier
analysis, as employed for instance in [12, 4, 10, 8]. We will
rather turn to a robust spectral estimator that can better
deal with “imperfect” signals. More specifically, we employ
Ahdesmäki et al.’s spectral density estimator [1], which is
based on Spearman’s rank correlation coefficient ̺ :

S(f) =
L

X

l=−L

̺(l) exp(−2πifl)

2Recall that the optimal neighborhood size is unknown in a
realistic forensic setting.



Table 1: Detection of downsampling with row/column (RC) predictors and Popescu and Farid’s [12] global
predictor (GP), respectively. Detection rate at FAR ≤ 1% and area under the ROC curve (AUC) for varying

scaling factors ω−1 and different interpolation kernels*.

ω−1 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

RC/GP RC/GP RC/GP RC/GP RC/GP RC/GP RC/GP RC/GP RC/GP RC/GP

detection rate at 1% false acceptance rate (TP0.01)

Bilinear 0.01 / 0.01 1.00/ 0.99 1.00/0.41 0.94/0.60 0.95/0.62 0.75/0.58 1.00/0.82 1.00 /1.00 1.00 /1.00 1.00 /1.00

Bicubic 0.01 / 0.01 0.17/ 0.08 0.62/0.32 0.78/0.66 0.84/0.70 0.99/0.75 0.99/0.82 0.99/0.84 0.99/0.93 0.99/0.97
Lanczos 0.01 / 0.01 0.14/ 0.05 0.64/0.29 0.81/0.66 0.87/0.70 0.86/0.66 0.80/0.56 0.73/0.48 0.85/0.48 0.92/0.67

Spline 0.01 / 0.01 0.03/ 0.01 0.35/0.02 0.61/0.12 0.69/0.18 0.67/0.19 0.59/0.12 0.52/0.10 0.49/0.10 0.38/0.05

area under the ROC curve (AUC)

Bilinear 0.53/ 0.52 1.00 / 1.00 1.00/0.98 0.99/0.95 1.00/0.97 0.95 /0.95 1.00/0.99 1.00 /1.00 1.00 /1.00 1.00 /1.00

Bicubic 0.51 /0.56 0.68 /0.81 0.91 /0.91 0.96 /0.96 0.98/0.97 1.00/0.98 1.00/0.99 1.00/0.99 1.00/0.99 1.00 /1.00
Lanczos 0.48 /0.58 0.64 /0.76 0.90 /0.90 0.97 /0.97 0.97 /0.97 0.97/0.96 0.96/0.94 0.95/0.92 0.98/0.94 0.99/0.98

Spline 0.58/ 0.44 0.60/ 0.46 0.81/0.57 0.91/0.74 0.93/0.80 0.93/0.82 0.91/0.78 0.91/0.75 0.91/0.78 0.88/0.75

*corresponding ImageMagick -filter setting: Triangle, Catrom, Lanczos, Cubic.

We conclude this section with a remark on the compara-
bly moderate computational resources that a series of row
predictors requires. While the number of regressions ob-
viously grows with the number of rows in the image under
investigation, it is important to mention that each regression
entails by far fewer samples than Popescu and Farid’s itera-
tive global estimator [12]. More specifically, a N ×M image
involves N independent row predictors with each 2KM sam-
ples, whereas one iteration of the global (2K +1)× (2K +1)
predictor is based on 4K(K + 1)MN samples. This is of
particular interest in the analysis of large(r) images, where
the latter can quickly impose tremendous memory require-
ments. Compared to detectors based on fixed linear kernels
[7], regression-based methods will always be computation-
ally more demanding. However, as we shall see in the fol-
lowing section, this is leveled out by an increased reliability.

4. EXPERIMENTAL RESULTS
For a demonstration of the general applicability of row

(and column) predictors in the detection of resized images,
we make use of (a part of) the ‘Dresden image database’
[5]. More specifically, approximately 1100 never-compressed
images, stemming from five different digital camera models,
were resized by various amounts using ImageMagick’s con-

vert (version 6.6.2-8) with altogether four different inter-
polation kernels. The interpolation kernels were chosen to
cover the range from rather simple methods, such as bilinear
interpolation (-filter Triangle), to more sophisticated al-
gorithms, such as bicubic (-filter Catrom), windowed sinc
(-filter Lanczos), or cubic spline (-filter Cubic) inter-
polation. The analysis of interpolation artifacts was then
conducted using the center 512 × 512 region of the green
channel of the scaled images.

Our detector employs weighted least squares predictors
with a neighborhood size K = 3, weights wj with c = 10−5

(for pixel intensities measured in the range [0, 1]), and relies
on the decision criterion ρ,

ρ = max
f

S(f) / median
f

S(f) ,

with S(f) being the spectral density estimate [1] of the dif-
ferences di, cf. Sect. 3.2. We expect interpolated images
to exhibit a distinct peak, and thus images with ρ > T ,

with T being a predefined threshold, are flagged as resized.
To make use of row and column predictors, the detector
finally decides based on the maximum decision criterion,
max(ρrow, ρcolumn). The detection thresholds for a given
false acceptance rate (FAR) were obtained by running the
detector on all original images in the test database.

For comparison, all images were additionally analyzed with
Popescu and Farid’s detector [12], which is usually consid-
ered to be the most reliable detector, especially for down-
sampling [7]. The neighborhood of the global predictor was
set to K = 2, i. e., a window of size 5 × 5, and the detector
performed an exhaustive search over 200 synthetic down-
sampling maps with ω−1 ∈ [0.5, 1), sampled in equidistant
steps of 1/400.

Since it is generally accepted that upsampling is very well
detectable, we will center the following discussion on our
results from downsized images. Table 1 gives an overview
by reporting detection rates (true positives) at a false posi-
tive rate of ≤ 1%, TP0.01, together with AUC (area under
the ROC curve) values for both the row/column predictors
(RC) and global predictor (GP). For better visualization,
parts of the results, namely graphs for bilinear and bicubic
interpolation, are also depicted in Fig. 2.

Before we delve into a more detailed analysis of the numer-
ical results, the so far unmatched size of our employed test
database justifies a short note to support general findings
from the literature. To be more specific, bilinear interpola-
tion, due to its smaller support, is better detectable than
more sophisticated interpolation algorithms, even though
we can spot some exceptions for particular scaling factors.
Also, stronger downsampling typically leaves behind less de-
tectable traces.

What is more interesting in our setting is the relatively
good performance of the row/column predictors. As indi-
cated by Tab. 1 and Fig. 2 (a), row/column predictors out-
perform Popescu and Farid’s global predictor in particular
in the important case of small false positive rates. This
becomes most visible for downsampling with more sophisti-
cated interpolation algorithms, even though the overall re-
sults may seem not very convincing when compared to fig-
ures reported in prior work. We should however keep in
mind, that ImageMagick automatically applies some sort of
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Figure 2: Detection of downsampling with row/column (RC) predictors and Popescu and Farid’s [12] global
predictor (GP), respectively. (a) Detection rate at FAR ≤ 1%, and (b) area under the ROC curve (AUC) for
varying scaling factors ω−1. Bilinear and bicubic interpolation.

post-processing (for instance anti-aliasing and smoothing)
to create visually more pleasing images. While this admit-
tedly distracts the pure scientific view on the detectability
of interpolation artifacts to a certain degree, we neverthe-
less deliberately decided to use ‘real-world’ software in our
experiments to gain more realistic insights.

Figure 2 (a) suggests that row/column predictors are par-
ticularly favorable when striving for low false positive rates.
The gain in overall performance in terms of AUC values how-
ever strongly depends on the interpolation kernel. On the
one hand, as depicted in Fig. 2 (b), the differences for bilinear
and bicubic interpolation are rather negligible. The detec-
tion of Lanczos and cubic spline interpolation, on the other
hand, clearly benefits from an analysis with row/column pre-
dictors, cf. Tab. 1.

Since TP0.01 and AUC measures provide only a limited
view on the actual detection performance, accompanying
ROC curves for downsampling to 80 % of the original im-
age size (ω−1 = 0.8) are depicted in Fig. 3. We found this
scaling factor to be a good representative of the detectors’
typical characteristics. Note how the relative overall perfor-
mance gain of the row/column (RC) predictors over Popescu
and Farid’s global predictor (GP) increases from bilinear to
cubic spline interpolation.

In general, our experimental results suggest that row and
column predictors, combined with robust spectral estima-
tors, form a valuable alternative in the analysis and detec-
tion of resized images. While the reported results of the
row/column predictors exclusively stem from an analysis
with K = 3, it is worth mentioning that complementary
experiments with larger neighborhoods showed no notice-
able improvements. Predictors that include fewer neighbors
(K ≤ 2) may—in particular for stronger downsampling—
not always be as reliable.

5. CONCLUDING REMARKS
In this paper, we have explored how the characteristic

structure of resized (and thus interpolated) images can be
exploited to model the typical linear correlations between
neighboring pixels more explicitly. While existing methods

measure interpolation artifacts in some sort of residue sig-
nal, obtained by linear filtering with a global kernel, we have
shown that the specific periodicities can also be detected in
a series of tailored row and column predictors. The under-
lying key observation was that, in resized images, all pixels
within one row are correlated with their vertical neighbors
in exactly the same way (and correspondingly for columns
and their horizontal neighbors). Tests on a large database of
images demonstrated that an explicit model of linear depen-
dencies in scaled images forms a promising forensic approach
to detect resizing.

Apart from the discussed application in the detection of
interpolation artifacts, row and column predictors offer ad-
ditional valuable information that can be useful in a forensic
setting. Future research will investigate how the estimated
predictor coefficients can be exploited to distinguish upsam-
pled from downsampled images. It is well-known that a
whole set of geometric transformations leads to the same
spectral artifacts in the analysis of interpolated images, ren-
dering a distinction impossible [12, 7]. At the same time,
however, different scaling factors result in varying predictor
coefficients, which gives rise to a possible disambiguation.

A further interesting application may be found in the ste-
ganalysis of (down)scaled images, where an explicit model
of linear dependencies could help to better describe and es-
timate stego noise, cf. for instance [6].

As to the limitations, we have to point out that row and
column predictors are limited to the analysis of resized im-
ages. Extensions to more general geometric transformations
are not straight-forward (or even impossible). A probably
more severe, but also more general problem lies in the re-
liable detection of downsampling with more or less sophis-
ticated kernels beyond bilinear interpolation. While the re-
ported results show clear improvements over prior art, the
achievable detection rates admittedly still preclude an appli-
cation in practically relevant scenarios. It remains an open
question whether targeted detectors based on periodic in-
terpolation artifacts will ever reach a satisfactory level in
this regard, or whether we will ultimately end up with a
classifier-based approach that relies on tens or hundreds of
features [9, as a first step in this direction].
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