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ABSTRACT

Resampling detection has become a standard tool in digital
image forensics. This paper investigates the important case
of resampling detection in re-compressed JPEG images. We
show how blocking artifacts of the previous compression step
can help to increase the otherwise drastically reduced detec-
tion performance in JPEG compressed images. We give a for-
mulation on how affine transformations of JPEG compressed
images affect state-of-the-art resampling detectors and derive
a new efficient detection variant, which better suits this rele-
vant detection scenario. The principal appropriateness of us-
ing JPEG pre-compression artifacts for the detection of re-
sampling in re-compressed images is backed with experimen-
tal evidence on a large image set and for a variety of different
JPEG qualities.

Index Terms— digital image forensics, tamper detection,
resampling detection, re-compression artifacts

1. INTRODUCTION

Digital image forensics and tamper detection have become
widely studied subjects in the multimedia security commu-
nity [1, 2] and a broad fund of available techniques to dis-
tinguish original from manipulated images has evolved. As
reported in the body of literature, most of the known foren-
sic methods work pretty well under laboratory conditions. On
the downside, however, there is definitely a gap to bridge be-
tween promising results in controllable test environments and
‘real life’ conditions. One of the largest issues for a lot of
approaches is lossy compression, which is likely to smooth
out subtle artifacts of previous manipulations. JPEG post-
compression, probably the most common way to save images
in a storage-friendly way, is at the same time a serious ob-
structor to a reliable detection of image manipulations.

Resampling detection [3–7], meanwhile a standard tool
in image forensics, is a typical representative in this regard.
While a reliable detection for almost arbitrary geometric
transformations in uncompressed images has been reported,
it is well-known that detection performance severely drops
already for moderate JPEG compression [3, 6].

Two recent studies [8, 9] allude to the case of resampling
of pre-compressed images, where JPEG artifacts from the first

compression can actually help to increase the detection per-
formance under a second (post-)compression. This interest-
ing idea is of high practical relevance, since images from most
digital cameras are already in JPEG format before they are
further processed on a computer. Unfortunately, both author
teams did not provide a thorough description or a quantitative
experimental evaluation of these additional artifacts, which
leaves the question about the detectability of resampling in
pre-compressed images open.

This paper strives to fill this gap by applying our recent
model of resampling artifacts in uncompressed images [5] to
the case of resampling of pre-compressed images. We will
start with a short review on ‘classical’ resampling detection
in Sect. 2, before we give a description of resampling artifacts
in pre-compressed images in Sect. 3. Section 4 presents an
adapted detector, which is extensively tested on a large set
of images in Sect. 5. The paper is concluded by Sect. 6 with
remarks on future research and open problems.

2. RESAMPLING DETECTION IN BITMAP IMAGES

Using the notation of inverse mapping [10], the affine trans-
formation of a digital image is to be formulated as resampling
of discrete integer target coordinates χ = (χ1, χ2) to real-
valued source coordinates x = (x1, x2) = A−1χ according
to the 2× 2 transformation matrix A. Interpolation is the key
to smooth and visually appealing image transformation and
can be written as

s(A−1χ) =
∑
χ′∈Z2

s(χ′)h(A−1χ− χ′) , (1)

where s is the signal of interest, and h is the interpolation
kernel. A virtually unavoidable side effect of typical inter-
polation algorithms is that they create periodic linear depen-
dences between groups of neighboring samples. To the best
of our knowledge, all resampling detectors exploit these arti-
facts by analyzing resampled signals in terms of their linear
predictor residue [3, 5] or n-th order derivatives [4, 6, 7, 9].

2.1. Resampling Detection with Linear Predictor Residue

In the course of this paper, we shall focus on the predictor-
based approaches, where, adhering to Popescu and Farid’s



original scheme [3], a residue signal e is calculated as

e(A−1χ) = s(A−1χ)−
∑

k∈{−K,...,K}2
αk s

(
A−1(χ+ k)

)
, (2)

with α0,0 := 0 and K integer. The idea behind predicting a
transformed pixel’s intensity from its surrounding is that large
absolute prediction errors indicate a minor degree of linear
dependence and vice versa. A so-called p-map as a measure
for the strength of linear dependence can be derived from the
prediction error, which is modeled as a zero mean Gaussian
random variable.1 Previous resampling operations leave no-
ticeable periodic pattern in the p-map, which result in distinct
peaks in its Fourier spectrum. Typically, the detection is based
on the existence of such peaks in the frequency domain.

2.2. Effects of JPEG Post-compression

Results documented in the literature show that resampling
with low-order interpolation kernels is reliably detectable for
almost arbitrary transformation parameters. However, it has
been mentioned from the very beginning [3, 4] that subse-
quent JPEG compression diminishes detection performance
mainly for two reasons. First, the lossy compression gener-
ally tends to blur the output signal. Second, JPEG compres-
sion is based on a 8 × 8 block-based processing of the im-
age, which can lead to sharp transitions between neighboring
pixels at the borders of two consecutive blocks. Both effects
are not without consequences to the prediction error. While
subtle periodic traces in resampled images are smoothed out
due to smaller prediction errors within a block, new periodic
artifacts originating from systematically increased prediction
errors at the block borders are introduced. As a result, the
magnitude of resampling peaks in JPEG images is generally
lower compared to uncompressed images. Further, the detec-
tor must ignore those peaks that stem from block-based lossy
compression. An immanent side-effect is the detector’s blind-
ness to any resampling peak superimposed with a JPEG peak.

3. RESAMPLING ARTIFACTS IN
PRE-COMPRESSED IMAGES

Research on resampling detection so far was mainly con-
cerned with the analysis of resampling of never-compressed
bitmap images (and possibly subsequent compression). Here,
JPEG artifacts are associated with negative influence on the
detection performance. In the case of pre-compressed images,
however, JPEG artifacts of the first compression actually give
rise to the formation of additional indicative traces [8, 9].

For a description of resampling artifacts in pre-compressed
images we will adhere to our recent work [5] on the analysis
of periodic patterns in the prediction error of resampled im-
ages. Modeling the prediction error as a zero-mean random

1See [3, 5] for a description of the computation of the p-map.

variable, we used the variance Var[e(χ)] as a simple model
of the p-map of a wide-sense stationary signal and showed
how resampling introduces the known periodicities.

In the following, denote the (continuous) Fourier transfor-
mation of Var[e(x)] and Var[e(Ax)] by V and V (A), respec-
tively. The two spectra are interrelated by [10, p. 53]

V (A)(f) = F(Var[e(Ax)]) =
1

det A
V
(
f (A)

)
, (3)

with f (A) being the ‘affine transformed’ frequency,

f (A) = (A′)−1f . (4)

Taking the discrete sampling coordinates χ ∈ Z2 into ac-
count, the spectrum of Var[e(χ)] is given by its discrete
Fourier transformation (DFT) Ṽ (A),

Ṽ (A) =
∑
∀n∈Z2

V
(
f (A) − n

)
. (5)

Note, that we have dropped the scalar term from (3) for no-
tational convenience. From the Nyquist theorem, we know
that the baseband of Ṽ (A) is given by

∣∣f (A)
∣∣ ≤ (0.5, 0.5),

where |f | = (|f1|, |f2|) denotes element-wise absolute val-
ues. Thus, whenever |(A′)−1f | > (0.5, 0.5), alias frequen-
cies from high frequency bands will be mapped to baseband
frequencies b(A),∣∣∣b(A)

∣∣∣ =
∣∣∣f (A) −

[
f (A)

]∣∣∣ , (6)

with [f ] = ([f1], [f2]) denoting element-wise rounding.

3.1. Resampling Peaks

The formation of ‘classical’ resampling peaks in the p-map’s
spectrum can be modeled by noting that the predictor residue
of a wide-sense stationary signal have periodic variance with
a period of 1 [5],

Var[e(x1, x2)] = Var[e(x1 + 1, x2)] =
Var[e(x1, x2 + 1)] = Var[e(x1 + 1, x2 + 1)] . (7)

Consequently, we expect V to have distinct peaks at integer
frequencies p ∈ Z2. Under an affine transformation A, these
peaks are mapped to the baseband according to (6) to form
the characteristic baseband resampling peaks.

3.2. Shifted JPEG Peaks

As mentioned in Sect. 2.2, JPEG compression generally in-
troduces its own characteristic artifacts to a signal and hence
to the prediction error. In terms of our model of the p-map,
a block-wise quantization will typically lower the variance of
the prediction error of pixels within a block and increase it for
pixels near the block borders. As a result, V will have addi-
tional distinct peaks at frequencies (k/8 , l/8), (k, l) ∈ Z2.



In case of a geometric transformation, these JPEG peaks
underlie the affine transformation mapping in (6), similar to
the previously mentioned resampling peaks. It also follows
from our intuition that resampling affects the shape of the
8× 8 block structure and hence shifted versions of the JPEG
peaks occur in the p-map’s spectrum, Ṽ (A). As a result, the
spectrum of a pre-compressed resampled image’s p-map ex-
hibits a mixture of resampling and shifted JPEG peaks. The
latter however, can be even more pronounced. This is not
surprising when we think of the visibility of JPEG artifacts
(depending on the JPEG quality) compared to the subtle peri-
odicity due to interpolation.

4. DETECTION PROCEDURE

Knowing that resampling yields periodic artifacts in the
p-map that are visible as distinct peaks in the p-map’s
Fourier spectrum, resampling detectors base their decision
on some kind of a peak detector. While Popescu and Farid’s
method employs an exhaustive search over a large set of pre-
computed synthetic p-maps [3], we recently proposed to cal-
culate the maximum gradient in the cumulative periodogram
to test for the existence of strong peaks more efficiently [5].

Both detectors, however, have weaknesses when pre-
compression comes into play. In order to fully exploit the
additional artifacts, Popescu and Farid’s detector [3] would
need a complete second set of synthetic p-maps, which does
not seem to be very practical. The periodogram-based de-
tector [5] has a different flaw: The existence of additional
peaks decreases the maximum gradient in the cumulative
periodogram (which, by definition, is normalized to the total
energy in the spectrum).

Additionally, every peak detector will be sensitive to
peaks due to JPEG post-compression. Consequently, these
peaks must be ignored when searching for resampling peaks
[4]. However, it is important to note that it is not enough
to simply zero-out all spectral components at frequencies
(k/8 , l/8), since the JPEG peaks are typically spread over a
certain range around their theoretical position.

We will now outline an adapted detection procedure that is
not only capable of detecting typical resampling peaks, but is
also able to exploit the existence of shifted JPEG peaks. The
basis for predictor-based resampling detection is the p-map
and its Fourier transformation [3, 5]. In the following denote
p as the p-map and P as the magnitude of its Fourier spec-
trum, P = |F(p)|. Before peaks are evaluated, we employ
the following pre-processing:
Normalization To attenuate the in general strong low-
frequency components due to image content, the spectrum
P is first normalized to its median filtered version Pmedian,

Pn = P/Pmedian . (8)

Peak finding In order to find interesting peaks in the spec-
trum, we process Pn with a maximum filter of size W and

zero-out all non-maximum frequency components:

Pm(f) =

Pn(f) if Pn(f) = max
w∈{−W,...,W}2

Pn(f +w)

0 else.
(9)

Remove JPEG peaks of post-compression In the case of
JPEG images, we remove all remaining frequency compo-
nents at frequencies (k/8 , l/8), (k, l) ∈ {−4, . . . , 4}2.
Emphasize strong peaks In order to give more weight to
strong peaks we finally perform a gamma correction step,

Pγ = max(Pm) ·
(

Pm
max(Pm)

)γ
. (10)

The so processed spectrum is now fed through a simple peak
detector. Due to symmetry in the Fourier domain we assume
that for basic affine transformations like scaling, rotation or
shearing, in theory, there will be at least two and at most
four resampling or shifted JPEG peaks with the same distance
from the DC frequency. Writing Pγ(r;φ) as the spectrum Pγ
indexed by polar coordinates (r;φ), only the four maximum
peaks on each radius r are evaluated by summing up their
magnitudes. Denote Σr as the sum corresponding to radius r,
we then take the ratio δ

δ = max
r>rt

Σr
/

median
r>rt

Σr (11)

as decision criterion. Note that all frequencies within radius
rt are ignored in order to preclude a false detection due to
low frequency “noise” stemming from the image content. We
expect δ to be larger for transformed images than for orig-
inals, since resampling and/or shifted JPEG peaks cause a
few predominant outliers, which however do not significantly
influence the median value. Thus, for a given threshold T ,
whenever δ > T , the image under investigation is flagged as
resampled.

5. EXPERIMENTAL RESULTS

For a quantitative evaluation of the detectability of resampling
in JPEG compressed images, we test our detector with a sub-
set of the ‘Dresden Image Database’ [11]. For full control
over JPEG compression qualities, we randomly chose each
100 original RAW images from a Nikon D70 and Panasonic
DMC-FZ50 digital camera and converted them into uncom-
pressed TIFF images using Adobe Lightroom. We further
cropped a 1024×1024 pixel region and used these 200 images
as test database.

The test setup includes a wide range of scaling factors
and considers two different scenarios. The baseline detec-
tion results report the detection of resampling in the absence
of pre-compression. This is basically a reproduction of al-
ready known results [3, 5]. The re-compression scenario in-
vestigates the detection of resampling in images that had been
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Fig. 1. Detection results for filters α8 and α4. (left) scaled raw images, (middle) scaled and JPEG compressed images, and
(right) scaled and re-compressed images. post-compression quality 90; pre-compression quality 80. FAR < 1 %.

JPEG compressed before the transformation. All tests were
conducted using using ImageMagick’s convert with linear
interpolation and varying JPEG pre- and post-compression
qualities in the range of {40, 50, 70, 75, 80, 90, 95, 98, 100}
where appropriate. The overall test set accumulates to more
than 400 000 analyzed images. Due to space constraints, how-
ever, we are only able to report a small subset of results, which
we deem particularly insightful.

For each image under investigation the p-map was calcu-
lated from a 512×512 region of the corresponding luminance
channel using our fast linear filtering approach [5] with the
filter masks

α8 =

[−0.25 0.50 −0.25
0.50 0 0.50

−0.25 0.50 −0.25

]
, α4 =

[
0 0.25 0

0.25 0 0.25
0 0.25 0

]
,

as p(A−1χ) = exp
(
−|e(A−1χ)|2

)
. (12)

Filter α8 was already proposed in [5], where it gave good re-
sults for uncompressed images. The right mask α4 is more
related to derivative-based resampling detectors [4, 6], how-
ever capable of detecting signal changes in two dimensions.

For a given false acceptance rate (FAR), the detection
threshold T was determined for each post-compression qual-
ity by applying the detector to all corresponding original
images in the database. The peak detector employed a 7 × 7
median filter for the normalization of the spectrum and was
operated with γ = 4, W = 4. For uncompressed images
we set rt = 1/16, whereas for JPEG images rt = 1/8 was
chosen.2

5.1. Baseline Detection Results

To demonstrate the generally good performance of resam-
pling detection in uncompressed images, the left graph in
Fig. 1 reports detection rates at FAR < 1 % for varying scal-
ing factors. Each point in the plot corresponds to 200 resam-

2Due to lossy compression, JPEG images tend to have a stronger low-
frequency part.

post-compression quality

40 50 60 70 75 80 90 95 98 100

40 70.0 83.5 94.5 99.5 99.5 99.0 100.0 100.0 100.0 99.5
50 8.5 61.0 82.5 98.0 99.0 99.5 99.5 99.0 99.5 99.5
60 2.0 11.5 63.0 96.0 100.0 100.0 100.0 100.0 100.0 100.0
70 1.5 2.0 7.0 86.0 98.0 99.5 100.0 100.0 100.0 100.0
75 4.0 3.0 2.5 55.0 94.0 95.5 100.0 100.0 100.0 100.0
80 3.0 1.5 1.5 24.0 71.0 91.5 100.0 100.0 100.0 100.0
90 2.5 2.5 1.5 5.5 10.0 25.5 99.5 100.0 100.0 100.0
95 3.0 2.5 2.0 7.0 11.0 11.5 87.5 100.0 100.0 100.0
98 2.5 3.0 2.5 5.5 9.0 10.0 56.0 99.5 100.0 100.0
100 2.0 3.0 3.0 5.5 8.5 10.0 58.0 99.0 100.0 100.0pr

e-
co

m
pr

es
si

on
qu

al
ity

* 2.5 2.0 2.5 5.0 9.0 10.5 52.5 98.5 100.0 100.0

Table 1. Detection rates [%] for varying combinations of pre-
and post-compression quality. 150 % upscaling; FAR < 1 %;
filterα4. The bottom row corresponds to uncompressed input
images.

pled images. Upscaling is generally better detectable than
downscaling.3

After JPEG compression, the detection rates considerably
drop both for up- and downscaling (cf. middle graph in Fig. 1
for JPEG quality 90). Interestingly, here filterα4 gives better
results throughout the whole range of scaling factors. In gen-
eral, we found α4 to be superior for stronger compression,
while α8 is preferable for high quality images. The reason
for this effect is subject to future research.

5.2. Re-compression Results

From the rightmost graph in Fig. 1, we can see that resam-
pling detection in re-compressed images benefits from block-
ing artifacts of the previous compression. While the post-
compression quality is the same as in the baseline scenario
(middle graph), upscaling is much better detectable since
the input images were JPEG compressed with quality 80 be-
fore. It is obvious, that the pre-compression JPEG quality is
a very influential factor on the detection performance after
resampling and post-compression. The stronger the blocking

3The doubling of image size is problematic since the resampling peaks
are superimposed with CFA peaks [12], which are ignored by the detector.



artifacts were, the more they will remain in the processed im-
ages. Further, it is advantageous when the pre-compression
quality is below that of re-compression because strong JPEG
compression causes blurred blocks. This effect can also be
inferred from Table 1 that reports detection results (usingα4)
for varying pre- and post-compression qualities at a fixed
scaling rate of 150 %. Observe how low pre-compression as
well as high post-compression qualities increase the ability to
detect resampling. In general, resampling of re-compressed
images is better detectable than resampling of solely post-
compressed images. Similar results have been be obtained
for all 21 investigated scaling factors. The strength of pre-
compression, which is necessary for a successful resampling
detection, however generally depends on the resampling pa-
rameters. Compared to upscaling, a detection of downscaling
requires a lower JPEG quality in the first compression step.
For instance, we found that for a post-compression quality of
90 (cf. Fig. 1), a pre-compression quality below 50 is required
to obtain detection rates comparable to the baseline results.

Overall, we can conclude from the reported results that it
is important to keep in mind that, for re-compressed images, a
low JPEG quality not necessarily means a bad detection per-
formance per se.

6. CONCLUDING REMARKS

In this paper, we have investigated the detection of resampling
in re-compressed images. While lossy compression so far has
mostly been discussed in terms of negative effects on the de-
tectability of geometric transformations, we have shown how
blocking artifacts in re-compressed images can actually help
to increase detection performance. Based on linear predictor
residue resampling detection [3, 5], the main contributions of
this paper lie in a description of how affine transformations of
pre-compressed images affect the detector output (i. e. the p-
map’s Fourier spectrum) and the presentation of a suitable de-
tection variant. Experimental results confirm that resampling
detection in JPEG images is not by definition a lost cause.

As to the limitations, we have to note that our detector is
no exception with regard to downscaling as the most prob-
lematic type of geometric transformation. It remains an open
research question if (and how) a more reliable detection of
downscaling is possible.

Since the results presented in this paper are limited to the
case of scaling, our future research will include an examina-
tion of additional affine transformations. We further believe
that it is worth studying how the size of the analyzed image
(region) influences the ability to detect resampling. First ex-
perimental tests indicate that a peak detector can better distin-
guish between shifted and original JPEG peaks (that have to
be ignored) the larger the spectral resolution becomes.

Finally, it is worth mentioning that the idea of using
shifted peaks for the detection of resampling is not limited
to JPEG peaks. The same effect can be observed for peaks

stemming from color filter array (CFA) interpolation inside
the camera [12]. This probably allows a reliable detection
of very slight transformations, which has not always been
possible so far.
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