

Synthesis of Color Filter Array Pattern in Digital Images

Matthias Kirchner and Rainer Böhme

{matthias.kirchner,rainer.boehme}@inf.tu-dresden.de

Media Forensics and Security XI

San Jose, CA · 2009/01/20

Digital image forensics and tamper hiding

- variety of different forensic tools can be found in the literature
- existing schemes work well under laboratory conditions

How reliable are forensic results if the presumed counterfeiter is aware of the forensic tools?

Digital image forensics and tamper hiding

- variety of different forensic tools can be found in the literature
- existing schemes work well under laboratory conditions

How reliable are forensic results if the presumed counterfeiter is aware of the forensic tools?

Tamper hiding

 mislead forensic tools such that they produce false negatives

1

CFA Synthesis

Problem statement

 typical digital cameras use a color filter array (CFA) to capture full color images

 color filter interpolation introduces periodic correlation pattern between neighboring pixels

Problem statement

 typical digital cameras use a color filter array (CFA) to capture full color images

 color filter interpolation introduces periodic correlation pattern between neighboring pixels CFA pattern has to be restored to conceal traces of manipulation

Problem statement

 typical digital cameras use a color filter array (CFA) to capture full color images

 color filter interpolation introduces periodic correlation pattern between neighboring pixels

- CFA pattern has to be restored to conceal traces of manipulation
- straight-forward: re-interpolation

 overwrites two thirds of all pixels with new (interpolated) values

A minimal distortion approach

Linear model

- ► CFA interpolation follows a linear equation
- \blacktriangleright image with incomplete/missing CFA pattern is corrupted by an additive residual ϵ

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{x}$$

$$y = Hx + \epsilon$$

CFA synthesis

- find a possible sensor signal x such that
- least squares solution

$$\|\boldsymbol{\epsilon}\| = \|\mathbf{y} - \hat{\mathbf{y}}\| \to \min$$

 $\mathbf{x} = (\mathbf{H}'\mathbf{H})^{-1}\mathbf{H}'\mathbf{v}$

CFA re-interpolation not from the signal itself, but from a pre-filtered version

Structure of H

▶ for N pixels per channel and $M \leq N/2$ genuine sensor samples, a direct implementation of the LS solution is impossible for typical image sizes

- ightharpoonup matrix **H** has dimension $N \times M$
- cubic complexity: $\mathbf{x} = (\mathbf{H}'\mathbf{H})^{-1}\mathbf{H}'\mathbf{y}$

inversion $\mathcal{O}(M^3)$ multiplication $\mathcal{O}(M^2N)$

Structure of H

▶ for N pixels per channel and $M \leq N/2$ genuine sensor samples, a direct implementation of the LS solution is impossible for typical image sizes

- ightharpoonup matrix $\mathbf H$ has dimension $N \times M$
- cubic complexity: $\mathbf{x} = (\mathbf{H}'\mathbf{H})^{-1}\mathbf{H}'\mathbf{y}$

inversion $\mathcal{O}(M^3)$ multiplication $\mathcal{O}(M^2N)$

Efficiency improvements

 matrix H is typically sparse (interpolation kernels have finite support) and has a regular structure (Bayer pattern)

2

Red Channel

Partitioning H

- columns partition H into repeating blocks
 A, B with B = 1/2A
- $\blacktriangleright \ \mathbf{H} = \mathbf{A} \otimes \mathbf{A}$
- ▶ A has only dimension $\sqrt{N} \times \sqrt{N}/2 + 1$

Partitioning H

- ► columns partition \mathbf{H} into repeating blocks \mathbf{A} , \mathbf{B} with $\mathbf{B} = 1/2\mathbf{A}$
- $\blacktriangleright \ \mathbf{H} = \mathbf{A} \otimes \mathbf{A}$
- ▶ A has only dimension $\sqrt{N} \times \sqrt{N}/2 + 1$

Kronecker tweaks

$$\mathbf{x} = (\mathbf{H}'\mathbf{H})^{-1}\mathbf{H}'\,\mathbf{y}$$

with
$$\mathbf{H}^{\times} = \mathbf{H}'\mathbf{H}$$
:

$$(\mathbf{H}^{\times})^{-1} = (\mathbf{A}^{\times})^{-1} \otimes (\mathbf{A}^{\times})^{-1}$$

with
$$\mathbf{H}^+ = (\mathbf{H}^{\times})^{-1}\mathbf{H}'$$
:

$$ightharpoonup H^+ = A^+ \otimes A^+$$
 (pseudo-inverse)

Analytical inversion $\mathbf{\Phi} = (\mathbf{A}^{\times})^{-1}$

 \mathbf{A}^{\times} is tridiagonal symmetric

► method by Huang & McColl (1997)

second order linear recurrences:

$$\zeta_i = \frac{3}{2} \zeta_{i-1} - (\frac{1}{4})^2 \zeta_{i-2}$$

$$v_j = \frac{3}{2} v_{j+1} - (\frac{1}{4})^2 v_{j+2}$$

and ratios:

$$\xi_i = rac{\zeta_i}{\zeta_{i-1}} \quad ext{ and } \quad \gamma_i = rac{v_i}{v_{i+1}}$$

Analytical inversion $\mathbf{\Phi} = (\mathbf{A}^{\times})^{-1}$

► method by Huang & McColl (1997)

second order linear recurrences:

$$\zeta_i = \frac{3}{2} \zeta_{i-1} - (\frac{1}{4})^2 \zeta_{i-2}$$

$$v_j = \frac{3}{2} v_{j+1} - (\frac{1}{4})^2 v_{j+2}$$

and ratios:

$$\xi_i = rac{\zeta_i}{\zeta_{i-1}}$$
 and $\gamma_i = rac{\upsilon_i}{\upsilon_{i+1}}$

inversion has complexity $\mathcal{O}(N/4)$

Red channel approximate solution

Infinite image

$$\begin{split} &\Phi_{j,j} \to \Phi_D \\ &\Phi_{i,j} \to \left(\frac{-1/4}{q}\right)^{|i-j|} \Phi_D \end{split}$$

Red channel approximate solution

Infinite image

$$\Phi_{j,j} \to \Phi_D$$

$$\Phi_{i,j} \to \left(\underbrace{\frac{-1/4}{q}}_{q} \right)^{|i-j|} \Phi_D$$

 off-diagonal elements decay exponentially

Asymptotic kernel

Green Channel

Green channel in a nutshell

Additional border pixels

 avoid special interpolation kernel for margin pixels

Block structure

- Columns partion H into repeating blocks A₁, A₂, and B
- ▶ but: no trivial decomposition

Green channel in a nutshell

Additional border pixels

 avoid special interpolation kernel for margin pixels

Block structure

- ightharpoonup columns partion ${\bf H}$ into repeating blocks ${\bf A}_1, {\bf A}_2,$ and ${\bf B}$
- ▶ but: no trivial decomposition

Re-ordering:
$$\tilde{\mathbf{H}} = \begin{bmatrix} \mathbf{I} \\ \mathbf{A} \end{bmatrix}$$

Experimental Results

Tamper hiding performance measures

Evaluation of attacks against digital image forensics should always be benchmarked against (at least) two criteria (Kirchner & Böhme, 2008):

(Un)detectability

 state-of-the-art detector can not distinguish between original and synthesized CFA images

Visual quality

 higher image quality than naive re-interpolation

Tamper hiding performance measures

Evaluation of attacks against digital image forensics should always be benchmarked against (at least) two criteria (Kirchner & Böhme, 2008):

(Un)detectability

- state-of-the-art detector can not distinguish between original and synthesized CFA images
- fast version of Popescu and Farid's detector (Popescu & Farid, 2005; Kirchner, 2008)

Visual quality

- higher image quality than naive re-interpolation

Detectability

original CFA 9 median × **CFA** synthesis

 periodic p-map and strong high-frequency interpolation peaks

post-processing destroys CFA pattern

 CFA pattern synthesis re-introduces typical artifacts

Detectability, quantitive results

Histograms from 1000 images

Detectability, quantitive results

Histograms from 1000 images

Detectability, quantitive results

Histograms from 1000 images

Image quality

Quartiles from 1000 images

synthesis gain [dB]

Q_{25}	Q_{50}	Q_{75}	IQR	Q_{25}	Q_{50}	Q_{75}	IQR
1.07	1.18	1.28	0.21	0.89	0.94	0.99	0.10

LS approach yields better visual quality after re-interpolation.

Image quality

Quartiles from 1000 images

esis	<u>@</u>
synth	gain

Q_{25}	Q_{50}	Q_{75}	IQR	Q_{25}	Q_{50}	Q_{75}	IQR
1.07	1.18	1.28	0.21	0.89	0.94	0.99	0.10

LS approach yields better visual quality after re-interpolation.

Linear filter approximation equivalent to exact solution for reasonable filter dimensions.

5

Conclusion

Concluding Remarks

Results in a nutshell

- CFA synthesis is important building block for tamper hiding techniques.
- ▶ Minimal distortion CFA synthesis can be formulated as **least squares problem**.
- Special structure allows efficient implementation; near-optimal approximate solution is only of linear complexity.

Further research and limitations

- ► More sophisticated (and signal-adaptive) interpolation algorithms?
- Discrete optimum?
- ► CFA interpolation not the last step in the in-camera processing chain!

Thanks for your attention

Questions?

Matthias Kirchner and Rainer Böhme

{matthias.kirchner,rainer.boehme}@inf.tu-dresden.de

The first author gratefully receives a doctorate scholarship from Deutsche Telekom Stiftung, Bonn, Germany.

Red channel explicit solution

$$\mathbf{x} = \mathbf{H}^{+}\mathbf{y} = (\mathbf{A}^{+} \otimes \mathbf{A}^{+}) \mathbf{y}$$
$$x_{i} = \sum_{j=1}^{N} (A_{r,s}^{+} \cdot A_{u,v}^{+}) y_{j}$$

Red channel explicit solution

$$\mathbf{x} = \mathbf{H}^{+}\mathbf{y} = (\mathbf{A}^{+} \otimes \mathbf{A}^{+}) \mathbf{y}$$

$$x_{i} = \sum_{j=1}^{N} (A_{r,s}^{+} \cdot A_{u,v}^{+}) y_{j}$$

$$(r, u) \quad (s, v)$$

$$r \rightarrow x_{i}$$

$$u$$

$$y_{j}$$

$$u \leftarrow s$$

Indices (r, u) and (s, v) are the 2D coordinates of pixels x_i and y_j in the subsampled genuine image and input image, respectively.

Green channel in a nutshell (cont'd)

Explicit solution

with
$$\Phi = (\tilde{\mathbf{H}}^{\times})^{-1}$$

$$\mathbf{x} = \Phi \tilde{\mathbf{y}}_{\mathsf{G}} + \Phi \mathbf{A}' \tilde{\mathbf{y}}_{\mathsf{CFA}}$$

Analytical inversion of $\tilde{\mathbf{H}}^{\times}$

- $\Phi = \mathbf{I} \mathbf{A}'(\mathbf{I} + \mathbf{A}\mathbf{A}')^{-1}\mathbf{A}$
- ightharpoonup I + AA' is block tridiagonal Toeplitz
- ► Huang & McColl (1997): second order matrix recurrences

Approximate filter kernel

		-0.001	0.001	0.001	0.001	-0.001		
	-0.001	0.003	0.005	-0.004	0.005	0.003	-0.001	
-0.001	0.003	0.009	-0.022	-0.029	-0.022	0.009	0.003	-0.001
0.001	0.005	-0.022	-0.072	0.165	-0.072	-0.022	0.005	0.001
0.001	-0.004	-0.029	0.165	0.835	0.165	-0.029	-0.004	0.001
0.001	0.005	-0.022	-0.072	0.165	-0.072	-0.022	0.005	0.001
-0.001	0.003	0.009	-0.022	-0.029	-0.022	0.009	0.003	-0.001
	-0.001	0.003	0.005	-0.004	0.005	0.003	-0.001	
		-0.001	0.001	0.001	0.001	-0.001		