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ABSTRACT
This paper revisits the state-of-the-art resampling detec-
tor, which is based on periodic artifacts in the residue of
a local linear predictor. Inspired by recent findings from
the literature, we take a closer look at the complex detec-
tion procedure and model the detected artifacts in the spa-
tial and frequency domain by means of the variance of the
prediction residue. We give an exact formulation on how
transformation parameters influence the appearance of peri-
odic artifacts and analytically derive the expected position
of characteristic resampling peaks. We present an equiva-
lent accelerated and simplified detector, which is orders of
magnitudes faster than the conventional scheme and exper-
imentally shown to be comparably reliable.

Categories and Subject Descriptors
I.4.m [Image Processing]: Miscellaneous

General Terms
Algorithms, Security

Keywords
digital image forensics, tamper detection, resampling detec-
tion, predictor residuum, periodic artifacts

1. INTRODUCTION
Over the past years, research on digital image forensics

and tamper detection has become a hot topic in the multi-
media security community [12]. A wide distribution of low-
cost digital imaging devices and sophisticated image editing
software allow the production of image forgeries that are vir-
tually indistinguishable from authentic photographs. Schol-
ars in digital image forensics aim at restoring some of the
lost trustworthiness to digital images by providing tools to
unveil conspicuous traces of previous image manipulations.
The key point of all image forensic methods is the absence
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of any prior knowledge of the original image. This obviously
proves to be beneficial in many practical applications where
the original data is not directly accessible.

Amongst others, resampling detection has become a stan-
dard tool for the forensic analysis of digital images. The
creation of convincing image forgery oftentimes involves ge-
ometric transformations, which typically comprise a resam-
pling of the original image to a new sampling grid. The de-
tection of resampling is therefore of particular interest and
several schemes have been proposed to address this question.
As a common ground, all these detectors exploit periodic
interpolation artifacts. While Popescu and Farid’s state-of-
the-art detector [9], to the best of our knowledge also the
first proposed technique, identifies such traces in the residue
of a local linear predictor, more recent algorithms analyze
the variance of derivatives of a resampled image [2, 7, 11].

Inspired by these recent findings, in this paper, we will
revisit Popescu and Farid’s scheme and take a closer look at
the origin of periodic artifacts in the p-map of a resampled
image, which is the main output of the detector. A simpli-
fied model based on the variance of the prediction residue
will serve as a tool to explain the actual appearance of the
p-map and its spectral representation for arbitrary geomet-
ric transformations. This goes beyond the original work of
Popescu and Farid, as they did not provide an explicit re-
lation on how a particular transformation will influence the
detector’s output in the spatial and in the frequency do-
main. In addition, we will present an accelerated version of
the original detector which bypasses the most computation-
ally demanding elements in the detection process and at the
same time provides equally reliable detection of resampling.

The rest of this paper is organized as follows. Section 2
reviews the basic principles of resampling and the detection
algorithm as proposed by Popescu and Farid. In Sect. 3 we
will model periodic artifacts in the p-map of a resampled
signal based on the variance of the residue of the employed
linear predictor and highlight implications on the detection
process. Before presenting our modified detector in Sect. 5,
Section 4 addresses the localization of characteristic peaks in
a p-map’s spectral representation. Section 6 finally reports
first experimental results before Sect. 7 concludes the paper
and discusses implications on related fields.

2. DETECTION OF RESAMPLING

2.1 Resampling
Oftentimes, the creation of convincing image forgery in-

volves scaling or rotation operations. In general, such ge-
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ometric transformations imply a resampling of the origi-
nal image [13], i.e., a mapping of discrete integer source
coordinates χ = (χ1, χ2) to real-valued target coordinates
x = (x1, x2) = Ψ(χ) according to a specified mapping func-
tion Ψ : Z2 → R

2. In the course of this paper we will restrict
ourselves to the important class of affine transformations,

x = Aχ , (1)

where A is the 2 × 2 transformation matrix. Interpolation
is the key to smooth and visually appealing image transfor-
mation and can be written as

s(Aχ′) =
X
χ∈Z2

s(χ)h(Aχ′ − χ) , (2)

where s is the signal of interest and h : R2 → R
2 is the in-

terpolation kernel. Note that for notational convenience and
without loss of generality we will focus our analysis on one-
dimensional (1D) signals. Extensions to two-dimensional
(2D) signals will be provided when necessary and/or use-
ful. In the 1D case, resampling can be seen as a mapping
between discrete source coordinates χ ∈ Z and target coor-
dinates ωχ ∈ R, where ω > 0 is the inverse resampling rate.
Equation (2) reduces to

s(ωχ′) =

∞X
χ=−∞

h(ωχ′ − χ)s(χ) , (3)

with ω < 1 for upsampling and ω > 1 for downsampling.

2.2 Detection of Resampling
A virtually unavoidable side effect of typical interpolation

algorithms is that they create linear dependencies between
groups of neighboring samples. As shown by Gallagher [2]
and Mahdian and Saic [7], the strength of dependence varies
periodically with the cycle length, which itself depends on
the resampling rate ω−1. To the best of our knowledge, all
resampling detectors exploit these periodic artifacts, which
can be found in the residuals of a local linear predictor [9]
as well as in the derivatives of a resampled signal [2, 7, 11].

Popescu and Farid’s detector [9], probably the most exten-
sively tested1 and most widely used method for resampling
detection, employs a linear predictor to approximate each
sample’s value as the weighted sum of its 2K surrounding
samples,

s(ωχ′) =

KX
k=−K

αks(ωχ
′ + ωk) + e(ωχ′) with α0 := 0 . (4)

A so-called p-map as a measure for the strength of linear
dependence is derived from the prediction error e, which is
modeled as a zero mean Gaussian random variable. Large
prediction errors indicate a minor degree of linear depen-
dence and therefore result in small values in the p-map. The
core of the detection procedure is a weighted least squares
(WLS) estimation of the initially unknown scalar weights
α, incorporated into an iterative expectation maximization
(EM) framework [1]. A stylized block diagram of the detec-
tion process is given in Fig. 1.

Previous resampling operations leave conspicuous pattern
in the estimated p-map. The pattern becomes most evident
after a transformation into the frequency domain, using a

1Test results for a wide variety of resampling parameters
can be found in [8].

α[0]
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p-map
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Figure 1: Iterative EM estimation of the prediction
weights α.

Figure 2: Results of resampling detection for origi-
nal image (top row) as well as 111 % and 150 % up-
sampling (bottom rows). p-Maps are displayed in
the middle column. Periodic resampling artefacts
lead to characteristic peaks in the corresponding
spectrum (rightmost pictures).

discrete Fourier transform (DFT), where it shows up as dis-
tinct peaks that are characteristic for the resampling param-
eters. The decision whether an image was resampled or not
is made on the basis of this spectral representation, as the
magnitude of distinct peaks can be easily measured in an
automated process.

Figure 2 presents some typical detection results for a grey
scale image which has been scaled up to 111 % (ω = 0.9) and
150 % (ω = 2/3) of the original (left column). The calculated
p-maps are displayed in the middle column. Note that only
resampling causes strong periodic artifacts in the p-maps,
resulting in very pronounced peaks in the spectrum.

3. ORIGIN OF PERIODIC ARTIFACTS
Although the above described detection method is already

known as an effective and powerful tool, we believe that an
in-depth analysis of the origin of the periodic artifacts in a



resampled image’s p-map can help to further clarify why the
rather complex detector works as it does.

Independent of Popescu and Farid’s work, Gallagher [2]
noticed that the variance of the second order derivative of
an interpolated i.i.d. Gaussian signal is periodic with the
sampling rate of the original signal. Only recently, Mahdian
and Saic [7] gave an extended view and analytically showed
that, under a stationary signal model, the variance of the
n-th order derivative of a resampled signal is periodic with
the original sampling rate.

3.1 Periodic Artifacts of the Prediction Error
To get a better understanding of the actual output of

Popescu and Farid’s detector, we show the relation between
this method and the derivative-based approaches [2, 7] and
take a closer look at the prediction error, which is obviously
the origin of periodic artifacts in the p-map of a resampled
signal. From Eq. (4), the residuum can be written as

e(ωχ′) = s(ωχ′)−
KX

k=−K
αks(ωχ

′ + ωk) . (5)

Obviously, e(ωχ′) can be expressed solely in terms of original
samples s(χ) by incorporating Eq. (3) as follows:

e(ωχ′) =

∞X
χ=−∞

h(ωχ′ − χ)s(χ)

−
KX

k=−K
αk

∞X
χ=−∞

h(ωχ′ + ωk − χ)s(χ) (6)

Alternatively, we can write e(ωχ′) as a weighted sum of the
actual sample of interest, s(ωχ′), and its surrounding 2K
neighbors,

e(ωχ′) =

KX
k=−K

βk

∞X
χ=−∞

h(ωχ′ + ωk − χ)s(χ) , (7)

with weights β defined as

βk =

(
1 for k = 0

−αk else.
(8)

Finally, by interchanging the order of summation, the residuum
becomes

e(ωχ′) =
∞X

χ=−∞
ϕω(ωχ′ − χ)s(χ) , (9)

where function ϕω is defined as

ϕω(x) =

KX
k=−K

βkh(x+ ωk) . (10)

Equation (9) reveals that e(x) is basically a linearly filtered
version of the original signal s(χ) with filter coefficients ϕω
derived from weighted interpolation coefficients. Note that
Eq. (9) is a generalization of Gallagher’s work [2], who gave
an equivalent formula for a linear derivative filter.

From Eq. (9), we can compute the prediction error’s vari-
ance Var[e(x)] as

Var[e(x)] =

∞X
χ=−∞

ˆ
ϕω(x− χ)

˜2
Var[s(χ)] +

+ 2

∞X
χ1=−∞

∞X
χ2=χ1+1

ϕω(x− χ1)ϕω(x− χ2) Cov[s(χ1), s(χ2)]

(11)

For our theoretical analysis we will assume s(χ) to be a
wide sense stationary signal2 with Var[s(χ)] = const and
Cov[s(χ1), s(χ2)] = Cov[s(χ1 + κ), s(χ2 + κ)].

Theorem 1. For wide sense stationary signals s(χ) with
χ ∈ Z and Var[s(χ)] > 0 it holds for arbitrary prediction
weights α 6= 0 and ∀x ∈ R that Var[e(x)] = Var[e(x+ 1)].

Proof. Let ∆(x) : R→ [0, 1) be a function defined as

∆(x) = x− bxc (12)

so that ∆(x) = ∆(x+ 1). We write Var[e(x)] as

Var[e(x)] =

∞X
χ=−∞

ϕ2
ω(∆(x)− χ) Var[s(χ+ bxc)] +

+ 2

∞X
χ1=−∞

∞X
χ2=χ1+1

ϕω(∆(x)− χ1)ϕω(∆(x)− χ2)

Cov[s(χ1 + bxc), s(χ2 + bxc)] (13)

where ϕω(∆(x)−χ) = ϕω(∆(x+ 1)−χ). From Var[s(χ)] =
const as well as Cov[s(χ1 + bxc), s(χ2 + bxc)] = Cov[s(χ1 +
bx+1c), s(χ2 +bx+1c)] (stationarity assumption) it follows
that Var[e(x)] = Var[e(x+ 1)].

Basically, Theorem 1 states that for resampled station-
ary and non-constant signals s(χ), χ ∈ Z, the variance of
a linear predictor’s residuum varies with a period of 1, in-
dependent of the actual prediction weights. This specific
periodicity can be inferred from the convolutive nature of
kernel-based interpolation, which employs the very same in-
terpolation weights to determine new samples at positions
x and x+ 1.With 1 being the original sampling rate, Theo-
rem 1 shows a relation between the derivative-based detec-
tion schemes and Popescu and Farid’s detector.

It is straightforward to show that Theorem 1 also holds for
two-dimensional resampled stationary signals. In this case,
Var[e(x1, x2)] is periodic in both dimensions, thus

Var[e(x1, x2)] = Var[e(x1 + 1, x2)] =

Var[e(x1, x2 + 1)] = Var[e(x1 + 1, x2 + 1)] . (14)

3.2 Why Periodic Variance Matters
As described in Sect. 2.2, Popescu and Farid’s detector

[9] models e(ωχ′) as a N (0, σ) Gaussian random variable.
According to the employed model, larger prediction errors
correspond to less linear dependence and thus yield smaller
values in the p-map. From Theorem 1 we can infer that the
theoretically derived variance of the prediction error peri-
odically varies throughout the whole signal. Since a large

2This is a reasonable assumption especially for homogeneous
parts of a signal.
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Figure 3: Periodic artifacts in the variance of the prediction error. Theoretical graphs (solid lines) for sample
resampling rates together with their sampled versions (dashed lines). Inverse resampling rates ω > 0.5 will
cause aliasing frequencies.

variance increases the probability of a large prediction er-
ror and vice versa, the identified periodicity of variance can
serve as a simplified model to explain the observed periodic
artifacts in the p-map of a resampled signal.

3.3 Periodic Artifacts in Resampled Signals
To reveal the relation between the theoretical periodic-

ity and the actually observed pattern in a p-map, we note
that in resampled signals s(ωχ), Var[e(x)] is sampled with
a frequency fs = ω−1, Eq. (11). As Var[e(x)] is periodic
with 1, the Nyquist criterion states that the original peri-
odicity is only preserved for fs ≥ 2. Figure 3 shows the
continuous (theoretical) graphs of Var[e(x)] for exemplary
resampling rates (solid lines) together with their sampled
versions Var[e(ωχ)] (dashed lines) for an i.id. Gaussian sig-
nal with Var[s(χ)] = 1. The weights have been chosen as
β = (−0.5, 1,−0.5). Observe that in our example both
ω = 2/3 and ω = 0.9 do not fulfill the Nyquist criterion
and thus result in an increased period. The depicted graphs
conform to Fig. 2, where resampling with ω = 0.9 yields
a p-map with a much larger period than resampling with
ω = 2/3.

It is interesting to mention that the chosen weights are
closely connected to the second order derivative, typically
calculated as 2s(ωχ)− s(ωχ− ω)− s(ωχ+ ω). This reveals
a strong parallel between Popescu and Farid’s detector and
the resampling detectors based on the variance of the signal’s
derivatives [2, 7].

Note that for 2D signals, Var[e(x1, x2)] = Var[e(x)] is
sampled in two dimensions. For an affine transformed sig-
nal, sampling of Var[e(x)] can be understood as sampling of
an accordingly transformed version Var[e(x̃)] = Var[e(Ax)],
where A is the 2 × 2 affine transformation matrix and the
sampling frequencies are given by fs = (1, 1).

3.4 Implications
In the following, we will highlight three implications which

follow directly from our findings in the previous section and
especially from Theorem 1.

1. Using the simplified model for periodic artifacts in the
p-map of a resampled signal, we can employ basic sig-
nal processing primitives to derive an exact formula-

tion on how a specific transformation will influence
the position of the characteristic peaks in the p-map’s
spectrum.

2. Furthermore, and probably most important, the detec-
tor’s prediction error will exhibit periodic traces of re-
sampling independent of the actual prediction weights.
We therefore believe that a rather complex and time-
consuming EM estimation of α is not compulsory. In
the most simple case, resampling detection involves
only linear filtering with preset filter coefficients.

3. For the same reason, the size of the prediction neigh-
borhood K is only of minor influence.

All these issues will be analyzed in more detail in the follow-
ing sections. More specifically, Sect. 4 will present formulas
to predict the expected location of characteristic peaks in
a p-map’s spectrum by adopting basic principles from sam-
pling theory. Afterwards, based on implication 2, we will
propose a fast and simplified detector with comparable re-
liability, which will be evaluated experimentally in Sect. 6,
together with a study on the influence of different prediction
neighborhoods.

4. LOCATING CHARACTERISTIC PEAKS
Section 3 highlighted that the formation of periodic arti-

facts in the p-map of a resampled signal can be idealized as
sampling of the periodic variance of the detector’s prediction
error. Below, we will use this model to analytically derive
the characteristic peaks in a p-map’s spectral representation.

4.1 1D Signals
Let V be the Fourier transformation of Var[e(x)], i.e.,

V = F(Var[e(x)]). As Var[e(x)] is periodic with 1, V has a
distinct peak at |fp| = 1.

It is well known from signal processing theory that the
Fourier transformation of a sampled signal is a periodic ex-
tension of the original spectrum, where the period is given
by the sampling frequency fs. Let Vω be the discrete Fourier
transformation (DFT) of Var[e(ωχ)],

Vω =
∞X

n=−∞
V (f − nfs) =

∞X
n=−∞

V
`
f − nω−1´ . (15)
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The baseband of Vω is given by −1/2ω ≤ f ≤ 1/2ω. As was
already mentioned in Sect. 3.3, “correct” sampling implies
fp ≤ 1/2ω and thus ω ≤ 0.5. In this case, the character-
istic peaks in the p-map’s spectrum are directly given by
±1. Otherwise aliasing occurs, which means that so called
alias frequencies from high frequency bands will appear as
characteristic peaks in the baseband.

Let f ′ = fω be a normalized frequency with a normalized
baseband −0.5 ≤ f ′ ≤ 0.5. The characteristic peaks ±f ′c in
a p-map’s baseband spectral representation are then given
by

|f ′c| = 0.5− |∆(ω)− 0.5|

=

(
∆(ω) for ∆(ω) ≤ 0.5

1−∆(ω) for ∆(ω) > 0.5 .

(16)

This can be shown by noting that fp = 1 will yield distinct
peaks at normalized alias frequencies ω − n, n ∈ Z. If we
write ω as ω = m + y,m ∈ N, y ≤ 1, then y = ∆(ω) is
an alias of fp as well. Obviously, Eq. (16) gives the correct
baseband alias of fp = 1 for ∆(ω) ≤ 0.5. For ∆(ω) > 0.5,
the baseband alias is given by ∆(ω)−1, which complies with
Eq. (16) as well.

Apparently, Eq. (16) can be used to reason about the ex-
pected characteristic peak position in a p-map’s spectral rep-
resentation for a given ω. However, it should be noted that
an unique inverse mapping is not possible. To demonstrate
the ambiguity in the formation of the characteristic peaks,
Fig. 4 shows a plot of |f ′c| as a function of ω. Obviously, two
resampling rates ω1 and ω2 will produce the same peaks, if
ω1 = n+ ω2 or ω1 = n+ 1− ω2, ∀n ∈ N.

4.2 2D Signals
In order to adapt the insights of the previous section to

two-dimensional signals, we note that due to Eq. (14) V =
F(Var[e(x)]) has distinct peaks at fp1 = (1, 0), fp2 = (0, 1)
and fp3 = (1, 1) (and the corresponding peaks due to sym-
metry of the spectrum). From [4, p. 53]

F(Var[e(Ax)]) =
1

det A
V
`
(A′)−1f

´
(17)

follows that the spectrum of the variance of an affine trans-
formed version e exhibits distinct peaks at (A′)−1fpi , i =
1, 2, 3. As with the 1D case, sampling implies a periodic
extension of the original spectrum (this time in two dimen-
sions),

VA =
X
∀n∈Z2

V
`
(A′)−1f − n

´
. (18)

f1

b

r

(0, 1)

(0, 1)−(−1, 1)

alias
(−1, 1)

bc

rs

f2

0.5−0.5

0.5

−0.5

Figure 5: Characteristic peaks as a result of alias-
ing for 2D resampling (counterclockwise rotation of
45◦). Characteristic peak in the baseband (solid
square) originates from high frequency alias (−1,1).

Note, that we have dropped the scalar term from Eq. (17) as
we are mainly interested in the peak position. The baseband
of VA is given by (|f1|, |f2|) = |f | ≤ (0.5, 0.5), thus aliasing-
free sampling requires |(A′)−1fpi | ≤ (0.5, 0.5). Otherwise,
alias frequencies from high frequency bands will appear as
characteristic peaks in the baseband.

Figure 5 demonstrates the formation of characteristic base-
band peaks from high frequency aliases for a 45◦ counter-
clockwise rotation. The filled dot in the two-dimensional
frequency plane marks the original peak fp2 = (0, 1). Due
to rotation, the peak is transformed to (A′)−1fp2 . Since, for
plain rotation, (A′)−1 = A, the transformation solely com-
prises a rotation of the original peak (plain circle). The base-
band is given by |f | ≤ (0.5, 0.5) and therefore (A′)−1fp2 =
(− sin π/4, cos π/4) is located outside the baseband. Never-
theless, an alias of fp2 will appear in the baseband (plain
square), namely those for n = (−1, 1).

The calculation of the normalized characteristic baseband
peaks f ′ci

for a given transformation A follows straightfor-
ward from the one-dimensional case. According to Eq. (18)
the baseband of VA is already equivalent to a normalized
baseband with |f ′| ≤ (0.5, 0.5). In order to use a consis-
tent notation, we will therefore simply write f ′ = f . The
three distinct original peaks fpi will yield normalized peaks
at f ′pi

− n, n ∈ Z2, where

f ′pi
= (A′)−1fpi . (19)

Adapting Eq. (16) to the two-dimensional case, the baseband
characteristic peaks can be calculated as

|f ′ci
| = b′ − |∆(f ′pi

)− b′| , (20)

with b′ = (0.5, 0.5) denoting the normalized baseband and
∆(f) =

`
∆(f1),∆(f2)

´
.

Figure 6 gives a concluding example for the location of
characteristic resampling peaks by depicting p-maps and
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Figure 6: p-maps and peak position in 2D for sample shearing (left) and rotation (right) transformations.

their spectra for shearing (left) and counterclockwise rota-
tion (right), respectively. More specifically, transformation
matrices

A1 =

»
1 0

1.1 1

–
and A2 =

»
cos π/4 sin π/4
− sin π/4 cos π/4

–
have been used to achieve 10 % vertical shearing and 45◦

rotation of the test image from Fig. 2. From Eq. (20), we
expect shearing peaks at f ′c1 = (0, 0) and f ′c2 = f ′c3 = (0.1, 0)
as well as rotation peaks at f ′c1 = f ′c2 = (0.293, 0.293) and
f ′c3 = (0.414, 0). Observe that the determined peaks in Fig. 6
concur with the theoretically calculated peak positions. It
is worth mentioning that a peak at (0,0) interferes with the
DC component and is therefore not detectable.3 Further-
more, we found that fc3 (the one originating from diagonal
periodicity) is typically less prominent.

5. FAST DETECTION OF RESAMPLING
In the remainder of this paper we will present an accel-

erated version of Popescu and Farid’s resampling detector
which is orders of magnitudes faster than the original algo-
rithm and at the same time provides comparable accuracy.
Basically, our modifications are twofold as we will

1. replace the complex and time-consuming EM estima-
tion of the scalar weights α with fast linear filtering
with preset coefficients, and

2. propose a fast procedure to automatically detect the
presence of characteristic peaks in a p-map’s spectrum.

While the first modification directly follows from Sect. 3.4,
the second variation will be shown to be a simplified heuristic
for an automated analysis of resampling artifacts.

5.1 Fast Computation of the p-Map
Remember that the original detection scheme involved an

iterative execution of a weighted least squares (WLS) esti-
mator in order to obtain a stable estimate of the prediction
weights α. Section 3 suggests that the prediction error of
resampled signals will exhibit periodic artifacts independent
of the actual weights. Our modified detector will thus by-
pass the computationally demanding EM estimation of the
scalar weights by using a linear filter with preset coefficients,

3The DC component is missing as we computed the DFT
from zero mean p-maps.

which will result in a tremendous speed up of the detector,
cf. Tab. 1 in the Appendix.

Once the prediction error e has been determined, cf. Eq. (5),
we determine the p-map similar to Popescu and Farid’s
Gaussian distribution based calculation as

p = λ exp

„
−|e|

τ

σ

«
, (21)

where λ, σ > 0 and τ ≥ 1 are controlling parameters. Basi-
cally, p can be seen as a contrast function, which penalizes
larger absolute values of e with smaller resulting values in
the corresponding p-map.

5.2 Automatic Detection of Resampling
Although a human investigator might be well able to iden-

tify periodic traces of resampling in the p-map of a given sig-
nal, a detector which can reliably distinguish between origi-
nal and resampled signals in an automated batch process is
highly desirable.

5.2.1 Automatic Detection via Exhaustive Search
In order to automatically decide whether an signal was

resampled or not, Popescu and Farid [9] propose to trans-
form the signal’s p-map to the frequency domain using the
discrete Fourier transform (DFT). Periodic pattern in the p-
map will yield distinct peaks in the spectral representation,
cf. Sect. 4. Strength and visibility of the characteristic peaks
are enhanced by using a contrast function. The function is
composed of a radial weighting window, which attenuates
low frequency noise, and a gamma correction step. The
detector’s final decision is based on the similarity between
the p-map of the given signal and elements of a candidate
set of synthetically generated periodic patterns. Popescu
and Farid [9] gave an empirically derived formula, how to

calculate a synthetic map ρ(A) for an affine transformation
matrix A. As the detector lacks any prior knowledge about
the actual transformation parameters, the detection process
involves an exhaustive search in a sufficiently large set A of
candidate transformation matrices. The maximum pairwise
similarity between an empirical p-map and all elements of
A is taken as a decision criterion δ,

δ = max
A∈A

X
|f |≤b

˛̨̨
Γ(DFT(p))

˛̨̨
�
˛̨̨
DFT

“
ρ(A)

”˛̨̨
, (22)

where Γ is the contrast function. If δ exceeds a specific



(original) (10 % upscaling) (25◦ rotation)

Figure 7: Spectra and cumulative periodograms of p-maps for original, 10 % upscaled and 25◦ rotated test
image (from left to right). In each case, the baseband spectrum is shown on the left and the cumulative
periodogram of the first quadrant is shown on the right. Resampling yields sharp-edged periodograms.

threshold δT , the corresponding signal is flagged as resam-
pled.

One of the drawbacks of the procedure is that approximate
synthetic maps ρ are needed, which happen to be noisy and
error-prone. More specifically, we found that some synthetic
maps exhibit relatively strong secondary frequency compo-
nents other than the one originally intended. However, we
want to point out that this is not a serious problem in lab-
oratory tests, as all reported results in the literature attest
a very high detection accuracy [6, 8, 9]. Nevertheless, from
Sect. 4, we know that we could do even better by generating
exact synthetic spectra for a given matrix A.

5.2.2 Automatic Detection with Cumulative Periodo-
grams

A much larger drawback lies in Eq. (22) itself, as the de-
tector has to perform an exhaustive search over all candidate
matrices in order to decide whether the signal of interest has
been resampled or not. Obviously, the set A will become
very large in practical scenarios where the detector has to
cover a wide variety of possible transformations. Ultimately,
we can never be sure whether the signal has not been ma-
nipulated or whether the detector has just failed because of
missing the correct transformation matrix.

As one possible way out, we will employ the cumulative
periodogram, which is used in time series analysis to detect
the presence of particular frequency components. A 2D ver-
sion can be calculated from the first quadrant of a p-map’s
DFT (0 ≤ f ≤ b) as

C(f) =
X

0<f ′≤f

|P (f ′)|2 ·
0@ X

0<f ′≤b

|P (f ′)|2
1A−1

, (23)

where P denotes Γ(DFT(p)) and C ∈ [0, 1].
Figure 7 depicts spectrum and cumulative periodogram

of the p-maps of our original test image, a 10 % upscaled
version as well as a 25◦ rotated version (from left to right).
Observe that while the original cumulative periodogram is
well characterized by a smooth gradient from low (bottom
left) to high (top right) frequencies, the periodograms of
the processed versions exhibit sharp transitions due to the
existence of distinct peaks in the spectrum.

As distinct peaks from periodic artifacts will cause a sharp-
edged cumulative periodogram we take the maximum abso-
lute gradient of the cumulative periodogram as a new deci-
sion criterion δ′,

δ′ = max
f
|∇C(f)| , (24)

where ∇ is the gradient operator. If δ′ exceeds a specific
threshold δ′T , the corresponding signal is flagged as resam-
pled. Note that the computation of the new decision crite-
rion does not involve an exhaustive search in a set of possi-
ble candidate transformations. Instead, we base our decision
solely on the discriminative feature of prominent gradients in
the cumulative periodogram of a resampled signal’s p-map,
which can be directly derived from the signal itself. An au-
tomatic detection via cumulative periodograms is therefore
much less computationally demanding and at the same time
not blind to “unknown” transformation parameters.

6. EXPERIMENTAL RESULTS
For an experimental evaluation of our modified detector

we use a database of 200 never-compressed 8 bit grayscale
images. All images were taken with a Canon PowerShot
S70 digital camera at full resolution (3112×2382 pixels). In
order to preclude possible interferences from periodic pat-
terns which might stem from a color filter array (CFA) in-
terpolation inside the camera [10], each image was down-
sampled by factor two using nearest neighbor interpolation.
Detection results are given for a subset of 100 randomly cho-
sen images, each resized and rotated by various degrees us-
ing linear interpolation. The performed transformations are
parametrized by inverse scaling rates ω−1, 0.5 ≤ ω−1 ≤ 2
and counterclockwise rotation angles Θ, 0 < Θ ≤ 45, re-
spectively. To limit the computation time of the original
detection scheme, the transformed images were cropped to
256× 256 pixels prior to analysis.

When employing the original detector, a set of altogether
692 synthetic maps is used to compute the decision criterion
δ, cf. Eq. (22). More specifically, we use 601 maps for scaling
in the range of 0.5 ≤ ω−1 ≤ 2, with ω−1 sampled in steps
of ∆ω−1 = 0.0025 and 91 maps for rotation in the range of
0 ≤ Θ ≤ 45, with Θ sampled in steps of ∆Θ = 0.5.

The detection thresholds δT and δ′T have been determined
empirically for defined false acceptance rates (FAR) by ap-
plying the detectors to all 200 images in the database.

6.1 Size of Prediction Neighborhood
In their original paper [9], Popescu and Farid use a 5× 5

(K = 2) prediction neighborhood in order to detect traces
of resampling in digital images. As they did not provide a
strong motivation for this particular choice, we are interested
in how the size of the prediction neighborhood influences the
detection accuracy.

Remember that in Sect. 3.4, we argued that due to Theo-
rem 1 the size of the comprised neighborhood has only minor
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Figure 8: Detection rates (left) and decision criterion (right) for the original detector and varying prediction
neighborhood sizes and scaling factors (FAR ≤ 1 %). Right: Solid dots denote median values, 25 % and 75 %
quantiles are represented by attached lower and upper bars.

impact on the detector’s output. Figure 8 depicts detection
results of Popescu and Farid’s detector for scaling and pre-
diction neighborhoods of size 3× 3, (K = 1), 5× 5, (K = 2)
and 7×7, (K = 3), respectively. More specifically, detection
rates for a false acceptance rate of FAR ≤ 1 % are shown on
the left and corresponding values of the decision criterion δ
are reported on the right. Here, solid diamonds denote the
median value of δ for a specific scaling rate, whereas the 25 %
and 75 % quantiles are represented by the attached lower
and upper bars. The horizontal dashed line corresponds to
the 99 % quantile for the original images (FAR ≤ 1 %) for a
3× 3 neighborhood. As the threshold is nearly constant for
all tested sizes, we refrain from plotting them all separately.

As we can see from the left graph, detection rates dif-
fer only marginally for different neighborhood sizes, which
conforms to our initial conjecture. Upsampling is perfectly
detected, downsampling is detectable with high accuracy
(except for ω−1 = 0.5).Nevertheless, a comparison of the
corresponding decision criteria reveals that there are mea-
surable differences especially for strong upsampling. Inter-
estingly, K = 1 (3 × 3 neighborhood) is the best performer
for ω−1 > 1.5. However, it seems hard to gather a general
rule, as K = 2 lies more or less in between its smaller and
larger alternatives.

Overall, the observed invariance of the detection rate to
different neighborhood sizes is a very interesting result, as
larger prediction neighborhoods typically increase the com-
puting time necessary to arrive at a stable estimate of the
prediction weights α, cf. Tab. 1 in the Appendix. From our
experiment we may conclude that a straightforward “speed
up” of the detector thus simply suggests the use of a small
3× 3 prediction mask.

6.2 Performance of the Accelerated Detector
As was described in Sect. 5.1, a much more substantial

saving in computation time can be achieved by dropping the
EM estimation of the prediction weights. Before presenting
detection rates for the simplified detector, we will have a look
at the actual estimates of the original detector. Adhering to
Sect. 6.1, we will focus on 3× 3 neighborhoods only.
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Figure 9: Scalar weights α1 and α2 for varying scal-
ing factors, as estimated with the EM algorithm.
Median values (solid line) together with 25 % and
75 % quantiles (dashed lines) from 100 images.

Figure 9 depicts the estimated weights for scaling of 100
images, each at varying scaling factors. The detector was

initialized with α
[0]
i = 1/((2K + 1)2 − 1). Writing α as

α =

24α1 α4 α7

α2 0 α8

α3 α6 α9

35 ,

we found that the estimate typically shows a strong symme-
try, namely α1 ≈ α3 ≈ α7 ≈ α9 and α2 ≈ α4 ≈ α6 ≈ α8.
Figure 9 therefore contains plots for α1 and α2 only. Dots
connected with a solid line denote median values; dashed
lines below and above correspond to the 25 % and 75 % quan-
tiles. Observe that the median estimates are on a nearly
constant level throughout all scaling rates whereas upscal-
ing estimates show virtually no considerable variation. The
depicted graphs thus encourage us even more to omit the
EM estimation of the prediction weights.
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Figure 10: Detection rates at FAR ≤ 3 % of the modified fast detector together with results of the original
scheme for scaling (left) and rotation (right). Perfect detection of upscaling and rotation as well as high
detection accuracy for downscaling for both detectors.

Figure 9 will act as an indicator for the setup of the fast
resampling detector. More specifically, we used preset filter
coefficients α∗ for the computation of the prediction error,4

α∗ =

24−0.25 0.50 −0.25
0.50 0 0.50
−0.25 0.50 −0.25

35 . (25)

The controlling parameters have been fixed to λ = 1, σ = 1
and τ = 2 throughout all experiments. In order to determine
the decision criterion δ′, we employ a Sobel edge detector, a
well-known image processing primitive which is often used
as a simple approximation of the gradient operator [4].

Figure 10 depicts detection rates for scaling (left) and ro-
tation (right) of the modified detector at a false acceptance
rate of FAR ≤ 3 %. The results of the original detector
are included as reference. The graphs indicate that the
accelerated version performs equally well for the vast ma-
jority of the tested transformation parameters.5 As with
the original scheme, upscaling and rotation are perfectly de-
tected. Strong downscaling is the weak point of our modified
scheme, since Popescu and Farid’s detector gives slightly
better detectability here. For a better comparison, com-
plete ROC curves for downscaling with ω−1 = 0.55 and up-
scaling with ω−1 = 1.1 are reported in Fig. 11. We found
these transformation parameters to be good representatives
to highlight the characteristics of the modified detector. As
was already suggested by Fig. 10, performance under up-
scaling (as well as rotation) transformations is absolutely
equivalent to the much slower (cf. Tab. 1 in the Appendix)
original scheme. Downscaling is still well detectable, how-
ever we acknowledge that the results achieved so far leave
room for further improvements. Nevertheless, we believe
that the reported detection rates legitimate future research
and fine-tuning. Especially the controlling parameters τ, σ

4This conforms to a recent study [5], in which the authors
found empirically that for WS-like steganalysis α∗ is the
best predictor to minimize the L2 distance between a cover
image predicted from a stego image and the true cover.
5Detection rates as achieved with the original decision crite-
rion δ were found to be virtually identical and are therefore
not reported here.
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Figure 11: ROC curves of the modified detector
(solid lines) together with results of the original
scheme (dashed lines) for downscaling (ω−1 = 0.55)
and upscaling (ω−1 = 1.1).

as well as the contrast function Γ are natural candidates for
fine-tuning and adjusting the detector.

7. CONCLUDING REMARKS
In this paper, we have revisited the state-of-the-art re-

sampling detector as proposed by Popescu and Farid [9].
We have taken a closer look at the origin of periodic arti-
facts in a resampled signal’s p-map, which is the main out-
put of the detector, and have shown relations between this
scheme and more recent derivative-based approaches [2, 7].
The main contribution of this paper is twofold. First, we
have presented a simple model to explain the actual shape



of periodicity which can be expected in a p-map for a spe-
cific geometric transformation. Second, we have proposed
an accelerated version of the detector.

More specifically, we have shown how the variance of pre-
diction residuals of a resampled signal can be used to de-
scribe periodic artifacts in the corresponding p-map. A
calculation of the exact expected position of characteristic
peaks in the p-map’s spectrum for arbitrary geometric trans-
formations of both one-dimensional and two-dimensional sig-
nals was inferred from this model.

By recognizing that the formation of periodic artifacts
does not depend on the actual prediction weights, we pro-
posed a simplified detector which replaces the complex and
computationally demanding estimation of prediction weights
by linear filtering with fixed filter coefficients. For an auto-
mated detection scenario, an additional performance gain
was achieved by replacing the exhaustive search in a set
of candidate transformations with a much faster search for
anomalies in the p-maps’ cumulative periodogram. Exper-
imental results on a large image database confirm that the
new detector is orders of magnitudes faster than the original
scheme and at the same time comparably reliable.

Our future research will include a quantitative validation
of our model of periodic artifacts with respect to the correct-
ness of the predicted peak position in a p-map’s spectrum.
Some effort might be spent on resolving the identified am-
biguities in the expected position of characteristic peaks by
means of additional features, e.g., level the of detail in the
image under investigation. A more comprehensive quanti-
tative performance comparison will also benchmark our fast
detector with Mahdian and Saic’s derivative-based detector
[7]. Finally, we will address the identified performance dif-
ferentials in the detection of strong downscaling.

It is important to mention that – similar to the original
scheme – our modified detector is expected to be vulnerable
to recently presented geometric distortion attacks against re-
sampling detection [6]. However, an analysis of the inserted
distortion, in terms of sampling the periodic variance of the
prediction error with randomized sampling frequencies, ap-
pears to be a promising direction in order to derive possible
countermeasures.

On a more general level this paper offers some prospects
for related fields. The possibility to locate characteristic
resampling peaks can help to reduce the search space in
the re-synchronization of geometrically transformed images,
which is of particular interest in camera identification [3]
and watermark detection
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APPENDIX
Table 1 reports average computing times together with the
average number of iterations for the original detector with
different neighborhood sizes as well as average computing
times for the modified detector. The results were obtained
by running modestly optimized C implementations of both
detectors on 20 grayscale images of size 512 × 512 on a
2.2 GHz, 2 GB memory, dual core machine. The convergence
criterion for the EM algorithm was set to 0.001.

Table 1: Average computing times [s] and number of
iterations of the original detector (center columns)
and average computing time [s] for the accelerated
detector (rightmost column).

ω−1 K = 1 K = 2 K = 3 fast

0.75 6.0 s 11.1 20.2 s 13.3 52.9 s 13.9 0.1 s
orig. 7.6 s 14.4 19.9 s 13.4 45.8 s 12.8 0.1 s
1.5 6.5 s 6.5 16.8 s 11.2 38.6 s 10.7 0.1 s


