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Abstract. This paper introduces novel hiding techniques to counter the
detection of image manipulations through forensic analyses. The pre-
sented techniques allow to resize and rotate (parts of) bitmap images
without leaving a periodic pattern in the local linear predictor coeffi-
cients, which has been exploited by prior art to detect traces of manip-
ulation. A quantitative evaluation on a batch of test images proves the
proposed method’s efficacy, while controlling for key parameters and for
the retained image quality compared to conventional linear interpolation.

1 Introduction

Within just one decade, digital signal processing has become the dominant tech-
nology for creating, processing and storing the world’s pictorial memory. While
this new technology clearly has many advantages, critics have expressed concern
that it has never been so easy to manipulate images, often in such a perfection
that the forgery is visually indistinguishable from authentic photographs. Hence,
digitalisation reduces the trustworthiness of pictures in particularly those situ-
ations where society is used to base important decisions on them: in the court-
room (photographs as pieces of evidence), in science (published photographs as
empirical proofs), and at the ballot box (press photographs).

As a result, research on digital image forensics and tamper detection has
gained ground. These techniques can be broadly divided into two branches. One
direction tracks particularities of the image acquisition process and reports con-
spicuous deviations as indications for possible manipulation. Typical represen-
tatives of this category include [1,2,3,4,5]. The other approach tries to identify
traces from specific image processing functions [6,7,8,9]. Although forensic tool-
boxes are already quite good at unveiling naive manipulations, they still solve
the problem only at its surface. The key question remains open: How reliable
are these forensic techniques against a farsighted counterfeiter who is aware of
their existence?

To the best of our knowledge, this paper is the first to focus on hiding tech-
niques that help the counterfeiter to defeat forensic tools. We believe that re-
search on “attacks” against forensic techniques is important to evaluate and
ultimately improve detectors, as is steganography for steganalysis and vice versa.

Continuing the analogy with steganalysis, one can distinguish targeted and
universal attacks. A targeted attack is a method that avoids traces detectable
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with one particular forensic technique, which the developer of the attack usu-
ally knows. Conversely, universal attacks try to maintain or correct (i.e. make
plausible) as many statistical properties of the image to conceal manipulations
even when presented to unknown forensic tools. In this sense, a low quality
JPEG compression of doctored images can be interpreted as universal attack.
While compression often is both plausible and effective—the dominant artefacts
from quantisation in the frequency domain are likely to override subtle statis-
tical traces of manipulation—it goes along with a loss in image quality. This
highlights the fact that the design space for some attacks against forensic tech-
niques is subject to a trade-off between security (i.e. undetectability) and quality
(transparency). This is another parallel to steganography and watermarking.

Tamper hiding techniques can also be classified by their position in the process
chain. We call a method integrated if it replaces or interacts with the im-
age manipulation operation (e.g. an undetectable copy-move tool as plug-in to
image processing software) as opposed to post-processing, which refers to al-
gorithms that try to cover all traces after a manipulation with conventional
methods.

In this paper we present targeted attacks against a specific technique to de-
tect traces of resampling in uncompressed images proposed by Popescu and
Farid [7]. Section 2 recalls the details of this detection method before our coun-
termeasures are discussed in Section 3, together with experimental results. To
generalise from single examples and provide a more valid assessment of the pro-
posed methods’ performance, a quantitative evaluation on a larger set of test
images has been conducted. Its setup and results are given in Section 4. Fi-
nally, Section 5 addresses implications for future research on both forensics and
counter-forensics.

2 Detecting Traces of Resampling

Most attempts of image forgery rely on scaling and rotation operations, which
involve a resampling process. As a result, scholars in image forensics have de-
veloped methods to detect traces of resampling in bitmap images. This section
reviews the state-of-the-art method proposed by Popescu and Farid [7].

Interpolation algorithms are key to smooth and visually appealing image
transformation, however a virtually unavoidable side effect of interpolation is
that it introduces linear dependencies between groups of adjacent pixels [10].
The idea of Popescu and Farid’s detection method is in identifying these arte-
facts. They presume that the intensity of each pixel yi,j can be approximated as
the weighted sum of pixels in its close neighbourhood (window of size N × N ,
with N = 2K + 1 and K integer) and an independent residual ε.

yi,j = f(α, y) + εi,j =
∑

(k,l)∈{−K,...,K}2

αk,l · yi+k,j+l + εi,j (1)
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They further demonstrate that after interpolation, the degree of dependence
from its neighbours differs between pixels. These differences turn out to appear
systematically and in a periodic pattern.

The pattern is referred to as p-map and can be obtained from a given image
as follows: Using a simplified model, pixels y, yi,j ∈ [0, 255], are assigned to
one of two classes M1 and M2. Set M1 contains those pixels with high linear
dependence whereas set M2 comprises all pixels without it. The expectation
maximisation (EM) algorithm [11], an iterative two-stage procedure, allows to
estimate simultaneously both, the set a specific pixel most likely belongs to, and
the unknown weights α. First, the E-step uses the Bayes theorem to calculate
the probability for each pixel belonging to set M1.

pi,j = Prob(yi,j ∈ M1|yi,j) =
Prob(yi,j |yi,j ∈ M1) · Prob(yi,j ∈ M1)∑2

k=1 Prob(yi,j |yi,j ∈ Mk) · Prob(yi,j ∈ Mk)
(2)

Evaluating this expression requires

1. a conditional distribution assumption for y: y ∼ N (f(α, y), σM1) for yi,j ∈
M1 and y ∼ U(0, 255) for yi,j ∈ M2,

2. knowledge of weights α (initialised with 1/(N2 − 1) in the first round),
3. knowledge of σM1 (initialised with the signal’s empirical standard deviation),
4. another assumption saying Prob(yi,j ∈ M1) = Prob(yi,j ∈ M2).

In the M-step, vector α is updated using a weighted least squares estimator:

α = (Y ′WY )−1Y ′W · y (3)

Matrix Y has dimension |y|×(N2−1) and contains the non-center elements of all
windows as stacked row vectors. Matrix W holds the corresponding conditional
probabilities pi,j of (2) as weights on its diagonal, hence p = diag(W ). Given
new estimates for p and α, σM1 can be computed as weighted standard deviation
from the residuals ε. E-step and M-step are iterated until convergence.

Previous resampling operations leave periodical pattern in the so-obtained
p-maps. This pattern becomes most evident after a transformation into the fre-
quency domain, using a Discrete Fourier Transformation (DFT), where it causes
distinct peaks that are typical for the specific resampling parameters. To en-
hance the visibility of the characteristic peaks, Popescu and Farid propose to
apply a contrast function C [7]. The contrast function is composed of a radial
weighting window, which attenuates very low frequencies, and a gamma correc-
tion step. The absolute values of the resulting complex plane can be visualised
and presented to a human forensic investigator.

Figure 1 illustrates the detection process by comparing an original greyscale
image to a processed version that has been scaled up1 with linear interpolation
to 105% of the original (left column). The resulting p-maps are displayed in the
centre. As expected, the rather chaotic p-map of the original image shows a very
1 We show upscaling because it is particularly likely to leave detectable traces in the

redundancy of newly inserted pixels. So it forms a critical test for our methods.
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Fig. 1. Results of resampling detection for original image (top row) and 5% upsampling
(bottom row). Complete p-maps are displayed in the centre column; frames mark the
parts depicted on the left. Periodic resampling artefacts lead to characteristic peaks in
the corresponding spectrum (rightmost pictures).

clear periodic structure after transformation, which also explains the different
appearance of the spectrum (right column). To enhance the quality in print,
each spectrum graph in this paper is normalized to span the full intensity range.
We further apply a maximum filter to improve the visibility of the peaks.

In general, this detection method is known as an effective and powerful tool.
Robustness against several image manipulation operations (except lossy com-
pression) has already been proven in the original publication and could be con-
firmed by us, also with respect to non-linear interpolation methods, such as
B-splines.

3 Countermeasures Against Resampling Detection

In the hand of forensic investigators, this powerful detection method might raise
the temptation to use its results as proof of evidence in legal, social and sci-
entific contexts. However, one must bear in mind that forensic methods merely
provide indications and are by orders of magnitude less dependable than other
techniques, such as decent cryptographic authentication schemes. In contrast to
cryptography, multimedia forensics remains an inexact science without rigourous
security proofs. To draw attention to this problem, we will present three meth-
ods to perform image transformations that are almost undetectable by the above
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described method. In this sense, these techniques can be considered as attacks
against the detection algorithm.

3.1 Attacks Based on Non-linear Filters

The detection method is based on the assumption of systematic linear depen-
dencies between pixels in close neighbourhood (see Eq. (1)). Hence, all kinds
of non-linear filters, applied as post-processing step, are candidates for possible
attacks. The median filter, a frequently used primitive in image processing [12],
replaces each pixel with the median of all pixels in a surrounding window of de-
fined shape and size. This acts as a low-pass filter, however with floating cutoff
frequency.

Fig. 2. Results after upsampling by 5% and post-processing with a 5×5 median filter:
characteristic peaks in the spectrum vanish, however the image appears excessively
blurred

Figure 2 shows the results of the detection algorithm applied on a transformed
image that has been post-processed with a 5×5 square median filter. This attack
is successful as the characteristic peaks in the spectrum have disappeared. Note
that the amplitudes corresponding to the brightest spots in the rightmost graph
are by magnitudes smaller than the peaks in Fig. 1. However, a simple median
filter negatively affects the quality of the post-processed image, which is reflected
in noticeable blurring. Therefore, despite effective, naive non-linear filters are
suboptimal for mounting relevant attacks in practice.

3.2 Attacks Based on Geometric Distortion

Inspired by the effectiveness of geometric attacks against watermarking schemes
[13], we have explored geometric distortion as building blocks for attacks against
tamper detection. We expect it to be effective in our application as well because
the detection method exploits the periodic structure in mapping discrete lat-
tice position from source to destination image, where the relative position of
source and target pixels is repeated over the entire plane. This systematic sim-
ilarity allows to separate it statistically from residual image content. To break
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Fig. 3. Block diagram of geometric distortion with edge modulation

the similarity, each individual pixel’s target position is computed from the trans-
formation relation with a random disturbance vector e superimposed.

[
i
j

]
= A ·

[
ix
jx

]
+

[
e1,i,j

e2,i,j

]
where e ∼ N (0, σ) i. i. d. (4)

A is the transformation matrix and indices ix, jx refer to source positions as op-
posed to i, j which index the resampled image. Parameter σ controls the degree
of distortion. However, naive geometric distortion may cause visible artefacts,
such as jitter, which is perceived most visually disturbing at straight lines and
edges. To evade such quality loss, we modulate the strength of distortion adap-
tively from the local image content. The modulation is controlled by two edge
detectors, one for horizontal and one for vertical disturbance, as follows:

[
i
j

]
= A ·

[
ix
jx

]
+

[
e1,i,j · (1 − 1/255 · sobelH(y, iy, jy))
e2,i,j · (1 − 1/255 · sobelV(y, iy, jy))

]
. (5)

Functions sobelH and sobelV return the value of a linear Sobel filter for hori-
zontal and vertical edge detection, respectively [12]. This construction applies
fewer distortion to areas with sharp edges, where the visible impact would be
most harmful otherwise. The Sobel filter coefficients are defined as

H =

⎡

⎣
1 2 1
0 0 0

−1 −2 −1

⎤

⎦ and V =

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ .

Our implementation ensures that the range is truncated to the interval [0, 255].
Note that the filter is applied to a transformed image without any distortion
y. As a consequence, this attack requires the image to be transformed twice, as
depicted in the block diagram of Fig. 3.

The results demonstrate that geometric distortion is capable to eliminate the
characteristic traces from the p-map spectrum (Fig. 4). In line with our expec-
tations, the edge modulation mitigates the loss in image quality considerably.

3.3 A Dual Path Approach to Undetectable Resampling

While geometric distortion with edge modulation generates already good results,
we found from a comprehensive evaluation of many different transformation pa-
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Fig. 4. Results after upsampling by 5 % with geometric distortion of strength σ = 0.4.
Comparison between naive distortion (top) and edge modulation using horizontal and
vertical Sobel filters (bottom).
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Fig. 5. Block diagram of dual path approach: combination of median filter for low
frequency image component and geometric distortion with edge modulation for the
high frequency component

rameters that the undetectability can be improved further by applying different
operations to the high and low frequency components of the image signal. Such
approaches have already been applied successfully in noise reduction [14] and
watermarking attacks [15]. Figure 5 illustrates the proposed process. The two
frequency components are separated with a median filter. First, the low fre-
quency component of the output image is obtained by applying a median filter
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Fig. 6. Dual path method: 5% upsampling, 7 × 7 median filter for low frequency
component combined with geometric distortion (σ = 0.3) and edge modulation

directly to the resampled source image (see Sect. 3.1). Second, a high frequency
component is extracted from the source image x by subtracting the result of a
median filter (other low-pass filters are conceivable as well). This component is
resampled with geometric distortion and edge modulation (see Sect. 3.2), where
the edge information is obtained from the resampled image y prior to the me-
dian filter. The final image ỹ is computed by summing up both components.
This attack has two parameters, the size of the median filter and the standard
deviation of the geometric distortion σ.

Figure 6 finally reports the results of the dual path approach. It becomes
evident that the obtained p-map is most similar to the p-map of the original (see
Fig. 1 above). Further, no suspicious peaks appear in its spectrum. The image
quality is preserved and shows no visible artefacts.

4 Quantitative Evaluation

For a quantitative evaluation of our attacks against resampling detection, we
built a database of 168 never-compressed 8 bit greyscale images, each of dimen-
sion 426×426 pixels. All images were derived from a smaller set of 14 photographs
taken with a Nikon Coolpix 4300 digital camera at full resolution (2272× 1704).
Therefore we first cut every photograph into twelve 852 × 852 parts with max-
imum 50% overlap. Then each part was downsampled by factor two to avoid
possible interference from periodic patterns that might stem from a colour filter
array (CFA) interpolation inside the camera [2].

As described in Sect. 2, the resampling detector relies on finding periodic
dependencies between pixels in a close neighbourhood. To identify forgeries au-
tomatically, Popescu and Farid propose to measure the similarity between the
p-map of a given image and a set of synthetically generated periodic patterns
[7]. The synthetic map s(A) for transformation A is generated by computing the
distance between each point in the resampled lattice and the closest point in the
original lattice,



334 M. Kirchner and R. Böhme
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Fig. 7. Results of resampling detection after upsampling (left) and downsampling
(right) by varying amounts. Each data point corresponds to the resampling of 40 im-
ages.

s
(A)
i,j =

∥∥∥∥A ·
[
i
j

]
−

⌊
A ·

[
i
j

]
+

[
1/2
1/2

]⌋∥∥∥∥ . (6)

In the absence of prior information about the actual transformations parameters
A, an automatic detector conducts an exhaustive search in a set A of candidate
transformation matrices Aq. In all our experiments, A contains 256 synthetic
maps for upsampling in the range of 1 % to 100% as well as 128 synthetic
maps for downsampling in the range of 1 % to 50% using equidistant steps of
0.4 percentage points. The maximum pairwise similarity between an empirical
p-map and all elements of A is taken as a decision criterion d.

d = max
A∈A

∑

i,j

∣∣∣C(DFT(p))
∣∣∣ ·

∣∣∣DFT
(
s(A)

)∣∣∣ (7)

Function C is the contrast function (see above) and DFT applies a 2D discrete
Fourier transformation. If d exceeds a specific threshold dT then the corresponding
image is flagged as resampled. We have determined dT empirically for a defined
false acceptance rate (FAR) by applying the detector to all 168 original images in
the database. Our performance measures are detection rates, i.e. the fraction of
correctly detected manipulations, for FAR < 1% and FAR < 50%, respectively.

Figure 7 reports the baseline detection results for upsampling and down-
sampling using plain linear interpolation. Each data point is computed as average
from 40 resampled images.2 We find perfect detection for upsampling and very
high detection accuracy for downsampling. This confirms the general effective-
ness of the detection method in the range of tested transformation parameters.
Thus, Figure 7 may serve as reference for the evaluation of our attacks with
respect to their capability to hide such image transformations.

2 The detector parameters were set to N = 2 and ‖αn−αn−1‖ < 0.001 as convergence
criterion for the EM algorithm. The modest amount of images is due to the com-
putational complexity of about 50 seconds computation time for one single p-map
using a C implementation on a 1.5 Ghz G4 processor.
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Fig. 8. Evaluation of median filter at different window sizes. Detection rates (left)
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Fig. 9. Evaluation of geometric distortion (σ = 0.4) with and without edge modula-
tion. Detection rates (left) and image quality (right). Edge modulation yields substan-
tially better quality and slightly superior detection results.

Any attempt to conceal resampling operations should not only be judged by
the achieved level of undetectability but also by the amount of image degrada-
tion. For our quantitative evaluation we resort to common image quality metrics
Q to assess the visual impact of our proposed attacks.

Q = 20 log
255

‖(y − ỹ) · v‖ (8)

We report the metrics PSNR, where v = 1, as well as a variant adjusted for
human visual perception wPSNR (‘w’ for weighted). It has been argued that
the latter metric is a more valid indicator for the evaluation of watermarking
attacks [16]. Weights v are computed from a noise visibility function (NVF),
which emphasises image regions with high local variance and attenuates flat
regions and soft gradients. Among the two NVFs proposed in [17] we have chosen
the one based on a stationary Generalised Gaussian image model. Both metrics
are measured in dB. Higher values indicate superior image quality.
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Fig. 10. Evaluation of dual path approach for upsampling (left column) and downsam-
pling (right column). Detection rates for σ = 0.3 (top row) and σ = 0.4 (centre row);
average image quality for σ = 0.4 (bottom row). Breakdown by window size of the
median filter (5 × 5 vs 7 × 7) and false acceptance rates (FAR: 1% vs 50 %). Stronger
distortion in the high frequency component decreases detectability. Smaller windows
sizes in the low frequency component retain better image quality.

Figure 8 reports detection rates (left) and average image quality (right) for
upsampled images, post-processed with median filters of sizes 3 × 3 and 5× 5,
respectively. As larger window sizes introduce a higher degree of non-linearity,
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the 5 × 5 median filter yields noticeable less detectable results than the smaller
3 × 3 filter. However, this comes at a cost of substantial losses in visual image
quality, which can be expressed both in terms of PSNR and wPSNR.

Note that the success of this attack depends on the upsampling ratio in a non-
linear manner. The results for downsampling are omitted for the sake of brevity.

Since, at practical window sizes, median-filtered images suffer from extensive
blurring, we have further investigated the effect of geometric distortion in
the resampling process. Figure 9 shows the results for upsampling by varying
amounts with distortion of strength σ = 0.4. As can be seen from the graphs,
using edge modulation is a reasonable extension to the general approach. While
detection rates remain stable on a relatively low level for all tested transfor-
mation parameters both with and without edge modulation, the latter yields a
considerable improvement in image quality between 2–6 dB on average.

Finally, Figure 10 presents the results for the dual path approach. Since
we consider this method as benchmark for future research, graphs for both up-
sampling (left column) and downsampling (right column) are displayed. The top
four charts show detection rates for distortion strengths σ = 0.3 and σ = 0.4,
respectively. Average image quality for σ = 0.4 is reported in the bottom row.
The frequency components have been separated with 5 × 5 and 7 × 7 median
filters. While a higher degree of geometric distortion generally reduces detection
rates, we found that the choice of σ is more important for upsampling than for
downsampling. Note that both 5×5 and 7×7 median filter lead to similar detec-
tion rates, however the former might be preferred with regard to image quality
metrics. A direct comparison of the dual path approach with geometric distor-
tion as described in Sect. 3.2 (Fig. 9) reveals a clear advantage of the dual path
approach. For σ = 0.4, the latter achieves considerably better undetectability
whereas image quality metrics indicate only marginal losses.

The very low detection rates of the dual path approach for σ = 0.4 demon-
strate how successfully resampling operations can be concealed with the pro-
posed method. At a practically relevant false acceptance rate < 1 %, only about
10% of all image transformations were correctly identified as resampled (5 × 5
median filter, σ = 0.4). To allow for a better comparability with future research,
detailed numeric results including summary statistics for the decision criterion
d are given in Table 2 in the appendix. We further found that the few success-
ful detections were concentrated within just a couple of original images, which
suggests that image-specific factors may determine the efficacy of our attack.

Note that we have also tested the robustness of our results for detectors with
smaller (N = 1) and larger (N = 3) neighbourhoods. As the corresponding dual
path detection rates do not differ substantially from the reported figures, we con-
clude that our results are fairly robust and refrain from reporting them separately.

5 Concluding Remarks

This paper has taken a critical view on the reliability of forensic techniques as
tools to generate evidence of authenticity for digital images. In particular, we
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have presented and evaluated three approaches to defeat a specific method of
resampling detection, which has been developed to unveil scaling and rotation
operations of digital images or parts thereof. These attacks have turned out to be
the most effective ones in a broader research effort, which also led to a number
of dead ends. Table 1 in the appendix briefly documents our less successful
attempts as guidelines for future research in the area. Among the successful
methods, the dual path approach, which applies geometric distortion with edge
modulation to the high frequency component of an image signal and a median
filter to the (low frequency) residual, achieved the best performance and should
be regarded as benchmark for other specific tamper hiding techniques. At the
same time, we would like to point out that the resampling detector of Popescu
and Farid [7], against which our work in this paper is targeted, is certainly not a
weak or unreliable tool when applied to plain interpolation. On the contrary, we
have selected this particular detector with the aim to build an example attack
against a powerful and challenging method. And we believe that many other
published techniques would be vulnerable to targeted attacks of comparable
sophistication.

Apart from the detailed results presented in the previous section, there are at
least two more general conclusions worth mentioning. First, attacks which are
integrated in the manipulation operation appear to be more effective than others
that work at a post-processing step. This is plausible, since information about
the concrete transformation parameters is not available at the post-processing
stage and therefore much stronger interference with the image structure is nec-
essary to cover up statistical artefacts of all possible transformations in general.
Second, a closer look at all quantitative results suggests that it is easier to con-
ceal downscaling than upscaling. This is plausible as well, since downscaling
causes information loss, whereas it is more difficult to impute new pixels with
idiosyncratic information. This implies that larger window sizes (for the median
filter approach) and stronger geometric distortion are necessary for upscaling to
achieve similar levels of (un)detectability as for downscaling.

As to the limitations, we consider this work as a first and modest attempt in
an interesting sub-field. It is obvious that our results hold only for the specific
detection method and we cannot rule out that image manipulations conducted
with our proposed methods are detectable with a) other existing forensic tech-
niques or b) new targeted detection methods that are build with the intention
to discover our attacks. While this might trigger an new cat-and-mouse race
between forensic and counter-forensic techniques, we believe that such creative
competition is fruitful and contributes to a more holistic picture on the possi-
bilities and limitations of image forensics, an area where much prior research
has been done against the backdrop of a fairly naive ‘adversary model’—a term
borrowed from cryptography, where dealing with strong adversaries has a longer
tradition [18]. On a more abstract level, one may ask the question whether it
is possible at all to construct provable secure techniques under gentle assump-
tions. We conjecture that an ultimate response is far distant and it is probably
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linked to related questions, such as the search for provable secure high capacity
steganography (with realistic cover assumptions), and to the development of bet-
ter stochastic image models. In the meantime, more specific research questions
are abundant.
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Appendix

Table 1. Summary of alternative attack methods investigated in the literature and in
the course of this research

Method Typea) Successb) Image qualityc)

Existing literature [7]
Additive noise P − −
Gamma correction P − −
JPEG compression P + +
JPEG2000 compression P ◦ +

Our research
Mean filter P − −
Binomial filter P − −
Multistage median filter P − ◦
Incremental resampling 1 P − −
Incremental resampling 2 I + −
Locally correlated geometric distortion I − +
Dual path with extremum filter (HF) P − ◦

a)I integrated, P post-processing
b)+ manipulation undetectable, − manipulation detectable, ◦ parameter dependent
c)+ good quality (only plausible artefacts), − visible distortion, ◦ parameter dependent
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Table 2. Detailed results for dual path approach (σ = 0.4, window size 5 × 5)

d detection rate [%] average image quality a)

median IQR b) FAR FAR wPSNR PSNR
< 1 % < 50 % [dB] [dB]

Originals (168 images)

20.32 37.20 – – – –

Upsampling (40 images each)

5 % 29.74 91.97 10.0 60.0 51.89 (1.65) 43.03 (4.71)
10 % 32.60 101.54 10.0 57.5 51.51 (1.76) 42.86 (4.77)
20 % 39.88 82.96 10.0 72.5 50.60 (1.93) 42.24 (4.94)
30 % 32.04 58.53 12.5 67.5 49.61 (2.10) 41.68 (5.03)
40 % 32.80 40.14 12.5 72.5 48.73 (2.23) 41.07 (5.14)
50 % 29.35 84.09 10.0 67.5 47.82 (2.39) 40.60 (5.26)
60 % 28.26 65.28 7.5 60.0 47.00 (2.65) 40.22 (5.50)
70 % 27.20 62.12 5.0 55.0 46.21 (2.82) 39.88 (5.51)
80 % 27.10 56.06 7.5 57.5 45.50 (3.00) 39.80 (5.51)
90 % 29.06 46.01 7.5 60.0 44.88 (3.40) 39.79 (5.77)

average detection rate a) 9.3 (2.4) 63.0 (6.4)

Downsampling (40 images each)

5 % 23.80 106.98 10.0 57.5 52.54 (1.62) 42.72 (4.69)
10 % 23.89 100.14 12.5 52.5 52.72 (1.66) 42.13 (4.79)
15 % 24.44 84.18 12.5 55.0 52.78 (1.63) 41.29 (4.85)
20 % 25.57 78.95 10.0 52.5 52.67 (1.74) 40.19 (4.94)
25 % 39.67 84.89 10.0 55.0 52.37 (1.87) 39.06 (4.98)
30 % 39.85 96.21 10.0 65.0 51.97 (2.06) 37.79 (5.04)
35 % 48.54 85.13 12.5 65.0 51.57 (2.07) 36.46 (5.03)

average detection rate a) 11.1 (1.3) 57.5 (5.4)
a)standard deviation in brackets b)inter-quartile range (measure of dispersion)
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