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Abstract. Photo-response non-uniformity noise present in output signals of 
CCD and CMOS sensors has been used as fingerprint to uniquely identify the 
source digital camera that took the image. The same fingerprint can establish a 
link between images according to their common source. In this paper, we re-
view the state-of-the-art identification method and discuss its practical issues. 
In the camera identification task, when formulated as a binary hypothesis test, a 
decision threshold is set on correlation between image noise and modulated 
fingerprint. The threshold determines the probability of two kinds of possible 
errors: false acceptance and missed detection. We will focus on estimation of 
the false acceptance probability that we wish to keep very low. A straightfor-
ward approach involves testing a large number of different camera fingerprints 
against one image or one camera fingerprint against many images from differ-
ent sources. Such sampling of the correlation probability distribution is time 
consuming and expensive while extrapolation of the tails of the distribution is 
still not reliable. A novel approach is based on cross-correlation analysis and 
peak-to-correlation-energy ratio. 

1 Introduction 

Digital cameras became affordable commodity for almost everyone. Tens of millions 
of them have been produced and sold every year. Billions of images are taken and 
stored in digital form. Along with the scene content, they contain auxiliary data in file 
headers. But even if the file header is stripped off, the pixels data contain some traces 
of signal and image processing that can be used in forensics analysis. Image forensics 
aims to reveal information about the source camera, its brand and model, camera 
setting, amount of zoom, exposure, time and date, to detect image forgeries and ma-
nipulations, reverse-engineer cameras and more. For example, the work of Khanna et 
al. addresses the problem of classification of imaging sensor types [1], [2], Swamin-
than et al. recognizes color filter arrays and interpolation methods [3], Popescu and 
Farid introduced a large number of image forensic tools [4] that can reveal forgeries. 
Forensic analysis of this kind is in an early stage of development but increasing inter-
est of research community speeds up the progress. One of the most reliable methods 
was proposed by Lukáš et al. [9] and further explored by Chen et al. [10] and others 
[11] that is capable of identifying the exact digital camera the image was taken with 



(source identification). There are some situations, when such information is a vital 
piece of evidence in crime investigation. One of them is child pornography where 
linking photos to the suspect camera can provide a strong evidence for prosecution or 
steer the investigation. Applications like this require very low probability of wrong 
accusation. This paper addresses the problem of false camera identification and aims 
to improve error control while lowering the cost and demand on computations. 

One of the challenging aspects is the large number of cameras that have to be 
uniquely distinguished in an analogy with human fingerprinting. A list of require-
ments on a camera identifier (camera fingerprint) is the following 

• high dimensionality (to cover the large number of cameras) 
• uniqueness (no two cameras have the same fingerprint) 
• stability over time and typical range of physical conditions under which 

cameras operate 
• robustness to common image processing, including brightness, contrast, and 

gamma adjustment, filtering, format conversions, resampling and JPEG 
compression 

• universality (virtually all digital cameras have it). 
On the one hand, this list may not be complete; on the other hand, some requirements 
may be relaxed if necessary.  

In digital image watermarking, an invisible signal (watermark) is inserted in the 
image to carry some information. This information can be used for owner identifica-
tion, for an evidence of image authenticity and integrity, for media fingerprinting, or 
to carry auxiliary data inseparably from the image pixels for other applications. There 
is a trade-of between watermark robustness and the amount of data it can carry. Im-
age forensics, in contrast to image watermarking, cannot plant fingerprints into exist-
ing images. The only option is to explore existing signals that are produced in cam-
eras during image acquisition and on-board signal processing. Fortunately, Photo-
Response Non-Uniformity (PRNU) of imaging sensors (CCD, CMOS, and their mod-
ern derivatives) is an ideal source of such fingerprinting watermark that is already 
inherently present in almost all pictures imaging sensors produce. PRNU is caused by 
material impurities and imperfections in CCD and CMOS manufacturing. Dark con-
tent images, such as those taken at night with low light exposure, are not as much 
affected by PRNU while they may contain dark current [13]. Both these signals re-
semble noise, and, together, they do exhibit the desirable properties listed above.  

Once we know that a fingerprint exists, using it for camera sensor identification 
(CSI) consists of two tasks. One is fingerprint estimation, for which we may have the 
functional camera or a set of images that were positively taken with that camera. The 
second is fingerprint detection or testing the hypothesis that the camera fingerprint is 
present in the image under investigation. We shortly reiterate the estimation and de-
tection parts in the next section. We choose the simplest form without improvements 
found in recent publication of Chen et al. [12]. We will discuss the detector proper-
ties, the problem of setting detection threshold, and our new approach in Sections 3 
and 4. Experiments are presented in Section 5. The summary concludes the paper. 



2 Fingerprint Estimation and Detection 

Because all images from one camera should contain the same fingerprint, a naïve but 
a fair representation of the camera fingerprint is a pixel-wise average of a number of 
images taken with the camera. However, simple averaging is not the best choice. 
First, such average would contain a significant portion of images’ content, so it is 
better to work with noise residuals. Second, simple averaging does not take into ac-
count the fact that PRNU is modulated by the amount of light that falls on the imag-
ing sensor. The maximum likelihood estimate derived by Chen et al. [12] for the 
multiplicative model of PRNU [13] is therefore a better camera fingerprint. In the 
next paragraph, we adopt necessary notation and concepts from the referenced paper 
[12]. 

2.1   Estimation  

Let the grayscale (or one color – red, green, or blue) image be represented with an 
m × n matrix I[i, j], i = 1, …, m, j = 1, …, n, of integers (pixel intensities) ranging 
from 0 to 255. To eliminate the image content and to increase signal-to-noise ratio for 
the fingerprint as the signal of interest, the first step is noise extraction. Noise residual 
W is obtained by Wiener filtering the image in wavelet domain. We prefer the filter 
according to [14] for its performance and high speed implementation. Its computa-
tional complexity is linear in the number of pixels. (For example, applying the filter 
to a 4 Mpixel gray scale image on a PC with  Pentium 4, 3.4 GHz takes around 2.25 
sec, 8 Mpixel image around 4.5 sec.) The only parameter of the filter is variance σ 2 
of the stationary noise that is being separated. Denoting the denoised image as F(I), 
W = I–F(I). We start with a multiplicative model of PRNU K, 

 a= +W IK Ξ , (1) 

where a is a constant, Ξ  is a noise term representing all random noises. Throughout 
this paper, matrices and vectors are in bold font and the operations between them, 
such as multiplication or ratio of matrices, will always be understood as element-
wise. This model is simpler than the one in the reference [12], where an attenuation 
matrix is considered instead of the constant a. With this complexity reduction in the 
model, the performance of CSI may slightly drop. What we will gain by that is a 
much simpler detection part later (no need for a correlation predictor and for more 
images associated with it) and the system will be more amenable to error analysis. At 
this point, we omit the property of dark current that behaves the same way as PRNU 
for fixed image intensities. We will address this issue partially later with an attenua-
tion function.  

The maximum likelihood estimation of PRNU  (together with dark current) 
from a set of N images I

K̂
1, …, IN originated from one camera is given by formula (2).  
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up to a multiplicative constant. The noise residuals in the formula are calculated inde-
pendently as Wk = Ik–F(Ik) for each k = 1, …, N. At this point, becomes our cam-
era fingerprint.  

K̂

Images that are brighter than others contribute more to the sum in (2) because 
PRNU is more pronounced in them. If we have the camera at hand the best images we 
can obtain for PRNU estimation are images of high luminance, (obviously) no satura-
tion and uniform content (flat fields). The mean square error of this estimate increases 
with N.  

2.2   Detection  

The very basic scenario for the camera identification problem is the following. All we 
have is an image in a format produced by a digital camera, not further processed in 
other ways than lossless conversions, and one camera fingerprint obtained by the 
estimation in Section 2.1. Let I denote the image matrix that represents pixel values. 
The question is whether or not the image originated from the camera. At this point, 
we assume that the question is equivalent to deciding whether or not the image con-
tains the camera fingerprint. This leads to a binary hypothesis test. As we did before, 
we apply the host signal rejection by noise extraction from the image data I. 

Let W= I–F(I) be the noise residual of the image. The binary hypothesis test contains 
noise-only hypothesis H0 and fingerprint presence hypothesis H1,  

 H0: =W Ξ ,  
 H1: ˆ= +W IK Ξ . (3) 

The optimal detector under the assumption that the noise term Ξ  is a sequence of 
i.i.d. random variables with unknown variance is the normalized correlation  

 ( )ˆ ,corrρ = IK W . (4) 

The decision is obtained by comparing ρ to a decision threshold ρth.  

In Neyman-Pearson hypothesis approach, the decision threshold is set so that the 
false acceptance probability will not exceed a certain level α. False acceptance (FA) 
occurs when hypothesis H0 is true but we decide H1, while false rejection (FR) occurs 
when we accept H0 when H1 is true. In our scenario, FA occurs when the camera 
fingerprint is declared to be present in the image while it is not, FR occurs when the 
presence of the fingerprint is missed. To satisfy the desired level α for FA probabil-
ity, PFA, we need to estimate the pdf f0 of the test statistics (4) under H0, f0 (x) = 
Pr(x|H0). This typically requires evaluation of (4) for a large amount of images com-
ing from other cameras than the fingerprint K. Relations between probability of false 
acceptance PFA or false rejection PFR and the threshold ρ0 are given by equations (5).  
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3 System Improvements and Generalization – Previous Art 

The first publication on PRNU based camera identification by Lukáš et al. in 2005 
[15] spurred a lot of research and publications [16], [12], [17]. Some adjusted the 
method to address other devices. Its applicability to scanners was tested by Khanna et 
al. [18], Sankur et al. studied cell phone cameras that produce highly compressed 
JPEG images [19], [20] is devoted to camcorders. Other work deals with various 
image processing generalizing the detection part of CSI for cropped and scaled im-
ages, including digitally zoomed ones [11], and for printed images involving very 
small rotation and nonlinear distortion [21]. PRNU often survives image processing, 
such as JPEG compression, noise adding, filtering, or gamma correction, unless the 
PSNR is too low. Surprisingly, no improvement has been done at the noise extraction 
stage, i.e., the SNR between the fingerprint and the noise residual W seems to be hard 
to improve. This is namely true when computational complexity is an issue. Other 
characteristics than PRNU have also been explored, dust specs on the sensor protec-
tive glass of SLR cameras [22], optical deficiencies of lenses [23], or CFA artifacts 
[24], [3].  

The demand for minimizing error rates has been the motivation for some previous 
work. Chen et al. [10] introduced a correlation predictor and modified the fingerprint 
detection in terms of prediction error. By modeling the prediction error and conse-
quently pdf f1(x)  = Pr(x|H1) as identically distributed Gaussian variables, this con-
struction allows for satisfying estimation of the FR probability. Only this innovative 
modification takes into account the prior knowledge of image I and corresponds to a 
slightly different scenario in which one image is fixed and the camera fingerprints are 
what is being randomly chosen.  

As noted in Section 2, to evaluate false acceptance probability as a function of the 
threshold on the normalized correlation (4) one may need a large amount L of “ran-
domly chosen” images and calculate ρ for each of them and every time a new finger-
print is taken into the hypothesis test. The FA probability is then estimated by the 
false alarm rate, which is the function of the decision threshold x,  
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The problem with such sampling becomes apparent when we are after a very small 
probability α <<1. The amount of images needed is of the order of L ≈1/α . The 
smaller the number L, the less reliable the FA probability estimate is. Early attempts 
to model this probability with Generalized Gaussian pdf had limited success [9]. The 
biggest obstacle was instability of the shape of samples (6), a bias and skewness in 
their distribution. More light into this problem was shed in [10] in the section about 
preprocessing . The noise term in (1) almost always contains periodic signals and 
structured noise responsible for small positive correlation between noise residuals of 
images from different cameras. After realizing the reason for this effect, the impor-
tance of separating such unwanted signals from the PRNU estimate became eminent.  

K̂



Filler et al. proposed in his recent study [25] to characterize  from (2) with a set 
of features and utilize them in a different forensic application – identification of cam-
era brands and camera models. Once we admit that image noise residuals systemati-
cally contain a signal that is the same or similar in all images from more cameras the 
hypothesis test changes its character. We will come back to this in the next section.  

K̂

One significant structured noise with periodicities is called linear pattern of the 
camera fingerprint and is defined through zero-mean operation on . Elements of 

for all i=1,.. , m and j=1,.. , n are   
K̂
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which makes the mean of every column and every row of the matrix equal to zero. 
The linear pattern is  

 . (7) ˆ ˆ ˆ( ) ( )LP ZM= −K K K

It is the color interpolation (demosaicing) in cameras equipped with color filter arrays 
(CFA) and row-wise and column-wise operations in signal processing of the imaging 
sensor what is responsible for linear pattern. A slight rounding error due to limited 
bit-depth in missing colors computations is all it takes to cause this phenomenon. 
Typically, the energy of the linear pattern is about an order smaller than the 

energy of . However, it does influence pdf f

ˆ( )LP K
ˆ( )ZM K 0 and FA probability markedly as 

we will also see in the next sections. Suddenly, pdf f0 behaves nicely, Gaussian model 
fits very well. We can estimate the FA probability by fitting the model through a 
smaller number of sampled data (6) and computing the right tail probability of the 
Gaussian pdf known as the Q-function.  

Another preprocessing step proposed earlier is Wiener filtering in the Fourier do-
main in order to suppress any high magnitudes in the spectrum. The exact type of 
images, amount of lossy compression, or type of cameras for which this filtering 
really improves CSI, is yet to be determined. The importance of removing the linear 
pattern from camera fingerprints have been emphasized in publications ([10],[12]). 
Despite of that, it is still being omitted in some papers ([26][Bayram]) resulting in 
poor performance of camera identification for some cameras and image formats or 
their processing.  

From now on,  is what we call the camera fingerprint. ˆ( )ZM K

4 Normalized Correlation Abandoned 

We want to choose the FA probability for our tests, determine the threshold ρ0 once, 
and evaluate the decision possibly many times. There is no problem with this plan 



unless the camera fingerprint estimate changes. Such change will require re-
evaluation of the threshold, which can be time consuming or even infeasible. This 
problem is not new. In the work on CIS for cropped and scaled images [11], we han-
dled similar problem. Having a fixed FA probability, it was not guaranteed that the 
threshold for resized images had to stay the same. The need for a more stable relation 
between FA probability and the decision threshold led to the introduction of Peak to 
Correlation Energy (PCE) ratio as a replacement for normalized correlation detector. 
We demonstrate that PCE is much more suitable detection statistic, even for the basic 
problem of camera identification, than the normalized correlation. This may be sur-
prising when the correlation was derived as the optimal detector. But assumptions on 
the model, which our hypothesis test (3) is based on, may not be satisfied. The as-
sumption of independence of Gaussian variables (the noise term Ξ ) is one culprit. 
Properties of PCE are especially useful when a periodic signal common to images 
from various cameras (like the linear pattern) enter the image noise residuals W as 
well as W1, …, Wk. 

It can be shown that the expected sample variance of the normalized correlation 
between two identically distributed independent random signals of length k is in-
versely proportional to k (for large k). It is also now true for correlation between noise 
residuals and camera fingerprint (multiplied by I) under hypothesis H0 since they are 
close to being perfectly independent. Thus, a change of the fingerprint size from k1 
pixels to k2 pixels will cause an expected change of the threshold from ρth to 

th 1 2k kρ . We could therefore normalize ρ by the same factor and keep the thresh-
old unchanged if it is just the camera resolution what changes. Our advocacy for PCE 
comes from elsewhere. We show that the introduction of a periodic signal (like the 
linear pattern) in both the image noise residue and the camera fingerprint increases 
correlation ρ , possibly triggering a FA (if ρth is not adjusted), while PCE drops in 
such situation (affecting the threshold for PCE very little).   

First, we introduce notation and definitions on one-dimensional vectors of real 
numbers ℝn. Their later generalization to two-dimensional matrices is straightfor-
ward: one more index is added and a sum over one index is replaced with a sum over 
both indices. The following definitions apply to centered vectors. Vector a = (a1, a2, 
…, an) is centered if the sum of all elements is zero. If a vector is not centered, its 
sample mean must be subtracted from all its elements before applying these defini-
tions. Such approach makes formulas simpler compared to general definitions that do 
not assume before-hand centralization. 

Let a and b be two centered vectors in ℝn, and operation ⊕ is modulo n addition in 
Zn. The circular cross-correlation is defined as 
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Normalized circular cross-correlation between a and b is  
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It is the scalar product of a and b circularly shifted by offset k divided by the norms 
of a and b. 

Peak to Correlation Energy (PCE) ratio is the squared correlation divided by sam-
ple variance of the circular cross-correlations,  
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where A is a small square area around zero where a peak correlation is expected for 
correlated vectors and | A| is its cardinality. Index 0 at PCE is meant to distinguish it 
from definition in reference [11] where it includes a search for signal shift (or crop-
ping). In that paper, PCE has the maximum over all circular cross-correlations in its 
numerator. Here, we basically follow the definition according to Kumar and Hasse-
brook [27]. We point out that PCE does not change if correlation c is replaced with 
normalized correlation C. The denominator from (9) cancels out when substituted 
into (10). 

From the Central Limit Theorem, the cross-correlation values for independent vec-
tors follow the Gaussian distribution. We demonstrate in Figure 1 that cross-
correlations between and W for k∉A are also well approximated using the Gaus-
sian distribution. Connecting PCE with P

ˆIK
FA then needs the following assumption. 
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Figure 1. Gaussian fit of cross-correlations for a 1-Mpixel image. 

Assumption: The mean of squared normalized correlation between image noise resid-
ual and other than correct camera fingerprints (hypothesis H0) can be estimated as the 



mean squared correlation of image noise residual and the correct but shifted finger-
print modulated by the image intensities.  

Although this assumption may not be perfectly satisfied, it offers a good insight into 
experimental evaluation of CSI. All such correlations appear in the denominator of 
PCE0 definition (10). Our new detection statistic based on PCE becomes 

 ( )( )0
ˆ ,PCE ZMϕ = IK W . (11) 

Assuming the pdf in Figure 1 is zero mean, the new detection threshold ϕth has the 
following analytical relationship to the probability of false alarm, 

 ( )th

21
FAQ Pϕ −⎡ ⎤

⎢ ⎥⎣ ⎦
= , (12) 

where Q is the complementary cumulative density function of a normal random vari-
able N(0,1), i.e., Q 

–1 is a scaled inverse error function. Notice that this threshold does 
not depend on signals length (number of pixels), while ρth does. Computation com-
plexity is not an issue. The cross-correlation (8) is implemented via Fast Fourier 
Transform and the normalization as it is in the normalized correlation, or in (9), is not 
needed. Another saving comes when removing the linear pattern from the signals. 
Zero-mean operation needs to be applied just on one of the two signals because the 
following holds, 

 ( ) ( )( ) ( )( )0 0
ˆ ,PCE ZM ZM PCE ZM=IK W IK Wˆ , . (13) 

The proof is easy, all that has to be show is that all c(k) in (10) are equal on both sides 
of (13). The same equation does not hold for the normalized correlation due to chang-
ing vector norms, i.e. corr(ZM(a), ZM(b)) ≠ corr(ZM(a), b). We thus explained why 
zero-mean preprocessing is not applied to W in (11). 

One of the most important properties of PCE in our Camera ID application is its 
response to the presence of weak periodic signals. Such signals appear in one or an-
other form in all images. They are artifacts of signal readout and image processing 
increasing correlation between image noises from one camera brand or model or 
when the same or similar imaging sensors are built in two cameras. 

Let a, b, z be i.i.d. realizations of Gaussian random variables, a, b, z ∈ ℝn. Then 
PCE0(a+z, b+z) > PCE0(a, b). The same inequality is true for the normalized correla-
tion. If z is a periodic signal (we rename it as s) the situation is different with PCE. 
Let l = m/n be an integer, s = (r1, r2, …, rm)l ∈ ℝn, m>1. The correlation is not af-
fected by the fact that s is periodic. On the other hand, PCE drops whenever the pe-
riod m is not too large, and when the circular cross-correlation c(k) peaks for more 
values of k. Then more likely, PCE0(a+s, b+s) < PCE0(a, b). PCE decreases with 
decreasing m and the drop is larger for larger variance of s. This is a desirable prop-
erty because signals with small periods (such as below 100) cannot be as unique as 
those with no periodicity and thus should not be part of camera fingerprints. If any 
periodicities are present, we wish they do not trigger positive identification.  



In an ideal case, we may be able to estimate PFA for one single hypothesis test by 
inverting (12), 

 ( )FAP Q ϕ≈ . (14) 

However, a presence of some unknown weak signals that may be hidden in finger-
prints of different cameras (still causing false alarms) would cause an error in the 
estimate (14). Large experimental tests reveal that (14) is a good practical estimate if 
we adjust it conservatively by a correction factor. But a cleaner solution lies in further 
de-correlation of all camera fingerprints – our future research topic. 

5 Experiments 

We have run several experiments to support our theoretical results. The first one 
compares behavior of the normalized correlation and the PCE detection statistics 
when evaluated for every i = 1, …, N during estimation of camera fingerprint from i 
images of a “flat” scene. We ran the experiments twice, first with zero-mean (6) pre-
processing and then without it and repeated them for two cameras, Canon G2, never 
compressed 4-Mpixel images of a twilight sky, N =100, and Fuji E550, JPEG com-
pressed 6-Mpixel images of a blue sky, N =80.  

In the plots, Figures 2-5 (left), we see that without zero-mean preprocessing the 
normalized correlation is slightly larger and is always steadily increasing with N. At 
the same time Figures 2-5 (right) show that PCE is much smaller when zero-mean 
preprocessing did not remove the linear pattern and it is not increasing for N larger 
than some N0, N0≈30 for never compressed images and N0≈1 for JPEGs.  

After scaling down the y-axis 10× in Figure 5 (right) we see (Figure 6) that PCE 
does not grow with increasing N. This means that we would not have a better identifi-
cation in terms of FAR with increasing number of images we are estimating the fin-
gerprint from at all (!). This is a very surprising observation that we can now explain. 
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Figure 2. Correlations ρ (left) and PCE ϕ (right) of one image with a Canon G2 

camera fingerprint estimated from N uncompressed images of cloudless sky. 
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Figure 3. Without zero-mean preprocessing. Correlations ρ (left) and PCE ϕ 

(right) of one image with a Canon G2 camera fingerprint estimated from N uncom-
pressed images of cloudless sky. 
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Figure 4. Correlations ρ (left) and PCE ϕ (right) of one image with a Fuji E550 

camera fingerprint estimated from N JPEG compressed images of blue sky. 
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Figure 5. Without zero-mean preprocessing. Correlations ρ (left) and PCE ϕ 

(right) of one image with a Fuji E550 camera fingerprint estimated from N JPEG 
compressed images of blue sky. 

The estimate  from (2) contains at least 3 kinds of signals that do not average 
out with increasing N (while random noise does). It is the PRNU K coming from the 
sensor, true linear pattern L from demosaicing, and averaged JPEG compression 
artifacts J. The last one is likely enhanced by the same gradient in sky shots; the im-

K̂



ages are brightest in their upper-right corner and darkest in the lower-left corner. As 
N increases, all three signals gain SNR. When testing the hypothesis (3), we have 
increasing detection of K (good) but also increasing detection of L (bad) and J (bad). 
Moreover, PRNU follow Gaussian-like pdf while L (and similarly J) is limited within 
a small range of rounding errors and is closer to uniformly distributed random vari-
able. The gain in SNR for L and J becomes much higher once the mean square error 
(MSE) of the estimates falls below a certain level. At the same time, the estimate of K 
is improving at the same pace. This is how we explain the deterioration of the camera 
fingerprint as N exceeded 38. We have to understand that images with different con-
tent, as well as with different compression factors, may contain less similar artifacts J 
and the deterioration would not show up. This is what we see in Figure 3. Zero-mean 
preprocessing is very effective but other filtering is necessary to better remove JPEG 
compression artifacts J.   
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Figure 6. Scaled plot from Figure 5. 

These experimental examples show three things. 
a) The normalized correlation does not tell much about camera identification per-

formance in terms of detection errors. The threshold for correlation has to be adjusted 
every time the camera fingerprint is changed. 

b) PCE is likely behaving in relation with FA probability. The threshold for PCE 
can stay fixed even though the camera fingerprint changes. 

c) Processing of the camera fingerprint with the zero-mean operation (6) is highly 
important. Further filtering when JPEG compression is present is desirable. Wiener 
filtering in the Fourier domain as proposed earlier by Chen et al. may be the right 
answer.  

The second experiment was to verify the relation (14). We employed a large scale 
test with 100,050 images downloaded from the Flickr image sharing web site. Images 
were in their native resolution, camera fingerprints estimated from randomly chosen 
50 (only) images. The signals went through RGB-to-luminance conversion before 
correlating. Beside zero-mean preprocessing and filtering the camera fingerprints in 
Fourier domain, we included two correction steps: intensity attenuation function in 
the term replacing it with ˆIK ( ) ˆatt I K and cutting off all saturated pixels from the 
images. These pixels were identified automatically using a simple thresholding filter 



combined with a constraint on the minimum number 2 of such pixels in the closest 
neighborhood. The parameter for the denoising filter F was σ2 = 9. 

 For each of the 667 cameras, 150 images from different cameras were randomly 
chosen to calculate PCE statistics ϕ. The resulting histogram is in Figure 7 (left). To 
see how it compares to the ideal case, we evaluated PCE for 100,050 pairs of random 
signals with normal Gaussian pdf and plotted next to it in Figure 7 (right). 
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Figure 7. Histogram of PCE for full size images under H0 (left), for simulated 

Gaussian distributed correlations (right). 

 
Comparing the two histograms, the tail is heavier in Figure 7 (left). It suggests that 

our decision threshold ϕth may have to be adjusted by adding a small correction fac-
tor. As the conclusion of this section, we argue that the threshold ϕth does not have to 
be re-evaluated for every camera fingerprint. A certain correction factor may be 
needed to improve the estimate (14). Other measures may include additional filtering 
of the noise residuals. This will be a subject of our following-up research. 

6 Summary 

After reviewing the method of camera sensor identification by unique photo-response 
non-uniformity, we propose to replace the normalized correlation detector with peak 
to correlation energy ratio. This way, the detection threshold will not vary with vary-
ing signal length, different cameras and their on-board image processing nearly as 
much as for normalized correlation detector. We estimate the probability of FA di-
rectly from the threshold set on PCE, which reduces otherwise high demand for large 
testing needed to set up the threshold for normalized correlation used before. 



We show that the linear pattern strongly limits the performance of camera sensor 
identification if not removed from camera fingerprint estimates. Larger normalized 
correlation may not necessarily mean smaller probability of FA even if evaluated for 
the same camera. 
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