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Abstract—In this article, we propose a new method for the 

problem of digital camera identification from its images based on 
the sensor’s pattern noise. For each camera under investigation, 
we first determine its reference pattern noise, which serves as a 
unique identification fingerprint. This is achieved by averaging 
the noise obtained from multiple images using a denoising filter. 
To identify the camera from a given image, we consider the 
reference pattern noise as a spread spectrum watermark, whose 
presence in the image is established using a correlation detector. 
Experiments on approximately 320 images taken with 9 
consumer digital cameras are used to estimate false alarm rates 
and false rejection rates. Additionally, we study how the error 
rates change with common image processing, such as JPEG 
compression or gamma correction. 

 
Index Terms—Fixed pattern noise, sensor identification, digital 

forensic, pattern noise, pixel non-uniformity  

I. INTRODUCTION 
 As digital images and video continue to replace their analog 

counterparts, the importance of reliable, inexpensive, and fast 
identification of digital image origin will only increase. 
Reliable identification of the device used to acquire a 
particular digital image would especially prove useful in the 
court for establishing the origin of images presented as 
evidence. In the same manner as bullet scratches allow 
forensic examiners to match a bullet to a particular barrel with 
reliability high enough to be accepted in courts, a digital 
equivalent of bullet scratches should allow reliable matching 
of a digital image to a sensor. In this paper, we propose to use 
the sensor pattern noise as the tell-tale “scratches” and show 
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that identification is possible even from processed images.  
The problem of digital image authentication may be 

approached from several different directions. On the most 
obvious and simplest level, one could inspect the electronic 
file itself and look for clues in headers or any other attached or 
associated information. For instance, the EXIF header contains 
information about the digital camera type and the conditions 
under which the image was taken (exposure, date and time, 
etc.). Additional information can be obtained from the 
quantization table in the JPEG header (some cameras use 
customized quantization matrices). This header data, however, 
may not be available if the image is resaved in a different 
format or recompressed. Another problem is the credibility of 
information that can be easily replaced. 

There has been some effort in the digital watermarking 
community to embed in the image an invisible fragile 
watermark (Epson PhotoPC 700/750Z, 800/800Z, 3000Z) or a 
visible watermark (Kodak DC290), that would carry 
information about the digital camera, a time stamp, or even 
biometric of the person taking the image [1]. A similar 
approach is used in the Canon Data Verification Kit [2] that 
uses the hash of the image and a special secure memory card 
to enable tracing the image to a specific Canon camera. Only 
relatively expensive Canon DSLR cameras (digital single-
lens-reflective) support this solution. While the idea to insert 
the “bullet scratches” in the form of a watermark directly into 
each image the camera takes is an elegant and empowering 
solution to the image authentication and camera identification 
problem, its application is limited to a closed environment, 
such as “secure cameras” for taking images at crime scenes. 
Under these controlled conditions, such secure cameras can, 
indeed, provide a solution to the problem of evidence integrity 
and origin. This approach, however, cannot solve the problem 
in its entirety unless all cameras either insert watermarks or 
embed secure hashes in their images. 

Kharrazi et al. [4] proposed a novel idea for camera 
identification based on supervised learning. In their method, 
each image is represented using a vector of numerical features 
extracted from it. Some features are calculated in the spatial 
domain while the rest are computed in the wavelet domain as 
in [5]. A multi-class SVM classifier (support vector machine) 
is then trained to classify images from 5 different cameras. 
The correct classification ranged from roughly 78% for the 
worst case to 95% in the best case. Forensic applications at the 
court are likely to require a substantially higher level of 
accuracy. 

Another previously investigated approach is analysis of 
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pixel defects. In [3], the authors show that hot pixels or dead 
pixels (defective pixels in general), could be used for reliable 
camera identification even from lossy JPEG compressed 
images. However, there are cameras that do not contain any 
defective pixels or cameras that eliminate defective pixels by 
post-processing their images on-board. For such cameras or 
sensors, this method cannot be applied. 

Kurosawa’s approach [6] is the closest in spirit to our 
method but still fundamentally very different. The authors 
mention the pattern noise of video-camera imaging sensors for 
the purpose of camera identification. We note that the pattern 
noise is defined [7] as any noise component that survives 
frame averaging. However, what the authors use in their 
article is just one component of this noise – the dark current 
noise (also called fixed pattern noise1 [7]), which is a signal 
collected from the sensor when it is not exposed to light. Dark 
current can only be extracted from dark frames. This limits the 
method because, as the authors themselves point out, camera 
identification is not possible from regular (non-dark) frames. 
The fixed pattern noise is only a small component of the 
pattern noise. Another, and much stronger, component that 
better survives processing, is the pixel non-uniformity noise 
caused by different sensitivity of pixels to light. The method 
proposed in this article primarily relies on this component. 
Another important difference between our approach and [6] is 
that we use correlation to establish the presence of a certain 
pattern in an image, while Kurosawa at al. just amplify the 
fixed pattern noise and continue detecting it as local pixel 
defects. 

The camera identification method based on sensor’s pattern 
noise proposed in this paper gives significantly more reliable 
results compared to previous approaches. Moreover, the origin 
and character of some components of the pattern noise make it 
a good candidate for the equivalent of biometrics for sensors 
(“devicemetrics”) suitable for forensic applications. 

In the next section, we describe the processing stages inside 
a digital camera and explain the origin of imperfections and 
noise sources. In particular, we focus on the properties of the 
pattern noise. The camera identification algorithm is 
introduced in Section III, where we also describe the 
procedure for extracting the reference pattern for each camera 
and the correlation detector. The performance of the 
identification method is evaluated using false acceptance and 
false rejection rates in Section IV, where we report how image 
processing, such as JPEG compression or gamma correction, 
influence the error rates. In Section V, we discuss other 
relevant questions, such as the possibility to remove or forge 
the pattern noise. The paper is concluded in Section VI. 

II. SIGNAL PROCESSING IN DIGITAL CAMERAS 
In this section, we briefly describe the processing stages 

inside a typical digital camera and discuss various 
imperfections that inevitably enter the image acquisition 
process. In particular, we focus on the pattern noise and its 

                                                           
1 We use the same terminology as Kurosawa et al. [6] and [7], which is, 

however, different than in [8]. 

properties and evaluate which components are likely to be 
useful for camera identification. 

The heart of every digital camera is the imaging sensor. The 
sensor is divided into very small minimal addressable picture 
elements (pixels) that collect photons and convert them into 
voltages that are subsequently sampled to a digital signal in an 
A/D converter. Before the light from the photographed scene 
reaches the sensor, however, it passes through the camera 
lenses, an antialiasing (blurring) filter, and then through a 
color filter array (CFA). The CFA is a mosaic of color filters 
that block out a certain portion of the spectrum, allowing each 
pixel to detect only one specific color. The Foveon™ X3 
sensor is the only sensor that does not use CFA and is able to 
capture all three basic colors at every pixel. 

If the sensor uses a CFA, the digitized sensor output is 
further interpolated (demosaicked) using color interpolation 
algorithms to obtain all three basic colors for each pixel. The 
resulting signal is then further processed using color 
correction and white balance adjustment. Additional 
processing includes gamma correction to adjust for the linear 
response of the imaging sensor and kernel filtering to visually 
enhance the image. Finally, the digital image is written to the 
camera memory device in a user-selected image format. This 
may require additional processing, such as JPEG compression. 

A. Imperfections and noise 
There are numerous sources of imperfections and noise that 

enter into various stages of the image acquisition process 
above. Even if the imaging sensor takes a picture of an 
absolutely evenly lit scene, the resulting digital image will still 
exhibit small changes in intensity between individual pixels. 
This is partly because of the shot noise (also known as 
photonic noise [7], [8]), which is a random component, and 
partly because of the pattern noise – a deterministic 
component that stays approximately the same if multiple 
pictures of the exact same scene are taken. Due to this 
property, the pattern noise is present in every image the sensor 
takes and thus can be used for camera identification. Because 
the pattern noise is a systematic distortion, it may appear that 
it is improper to call it noise. Nevertheless, by slight abuse of 
language, the pattern noise is a well established term in the 
imaging sensor literature [7], [8] and we accept this 
terminology here as well. We note that averaging multiple 
images reduces the random components and enhances the 
pattern noise. 

The two main components of the pattern noise are the fixed 
pattern noise (FPN) and the photo-response non-uniformity 
noise (PRNU) (see Fig. 1). The fixed pattern noise (FPN) is 
caused by dark currents. It primarily refers to pixel-to-pixel 
differences when the sensor array is not exposed to light. 
Because the FPN is an additive noise, some middle to high-
end consumer cameras suppress this noise automatically by 
subtracting a dark frame [9] from every image they take. FPN 
also depends on exposure and temperature.  

In natural images, the dominant part of the pattern noise is 
the photo-response non-uniformity noise (PRNU). It is caused 
primarily by pixel non-uniformity (PNU), which is defined as 
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different sensitivity of pixels to light caused by the 
inhomogenity of silicon wafers and imperfections during the 
sensor manufacturing process. The character and origin of the 
PNU noise make it unlikely that even sensors coming from the 
same wafer would exhibit correlated PNU patterns. As such, 
the PNU noise is not affected by ambient temperature or 
humidity. 

 

 
Fig. 1: Pattern noise of imaging sensors. 

Light refraction on dust particles and optical surfaces and 
zoom settings also contribute to the PRNU noise. These 
components are known as “doughnut” patterns and vignetting 
and are of low spatial frequency in nature [8]. Because these 
low frequency components are not a characteristic of the 
sensor, we should not use them for sensor identification and 
only use the PNU component, which is an intrinsic 
characteristic of the sensor. 

We now describe a mathematical model of the image 
acquisition process. Let us denote the photon counts that 
would be ideally registered by the sensor due to incoming 
light as x = (xij), i = 1, …, m, j = 1, …, n, where m×n is the 
sensor resolution Denoting the shot noise as η = (ηij), the 
additive random noise (represented by read-out noise, etc.) as 
ε = (εij), and the dark current as c = (cij), the output of the 
sensor y = (yij) can be expressed in the following form (before 
any other camera processing) 

 
yij = fij (xij + ηij) + cij + εij.  (1) 

 
The factors fij are typically very close to 1 and capture the 

PRNU noise, which is a multiplicative noise. As mentioned 
above, the signal y goes through a long chain of complex 
processing before it is stored in an image file. This processing 
includes operations on a local neighborhood of pixels, such as 
demosaicking, color correction, or kernel filtering. Some 
operations may be non-linear in nature, such as gamma 
correction, white balance, or adaptive color interpolation. 
Thus, the final pixel values pij, which we will assume to be in 
the range 0 ≤ pij ≤ 255, are 
 

 pij = P(yij, N(yij), i, j),   (2) 
 
where P is a non-linear function of yij, the pixel location (i, j), 
and values y from a local neighborhood N(yij). 

B. Flat fielding 
It is possible to suppress the pattern noise using a process 

called flat fielding [7], [8], in which the pixel values are first 
corrected for the additive FPN and then divided by a flat field 
frame îjf   

ˆˆ ( ) /ij ij ij ijx y c f= − .   (3) 
 

In (3), ˆijx  is the corrected sensor output and îjf  is an 
approximation to fij obtained by averaging K images of a 
uniformly lit scene ( )k

ijf , k = 1, …, K 
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Note that this process cannot be done correctly from the 

final pixel values pij and must be performed on the raw sensor 
output y before any further image processing. While it is 
commonly done for astronomical imaging2, consumer digital 
cameras do not flat-field their images because it is difficult to 
achieve a uniform sensor illumination inside the camera. 

C. Properties of pixel non-uniformity noise 
In order to better understand the impact of the pattern noise 

on the final image pij and to determine its properties, we 
performed the following experiment. Using a light-box 
producing a uniformly illuminated surface3, we took 118 
images using a Canon G2 camera (for camera specifications, 
see Table I below). The camera was set to automatic exposure 
and was focused to infinity. The white balance was set so that 
the light-box produced neutral gray images. 
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Fig. 2: Magnitude of Fourier transform of one row in an image 

obtained as average over 118 images of a flat scene. 
                                                           

2 We note that in most scientific applications flat-fielding does not include 
subtraction of the dark frame because the FPN is usually suppressed by 
cooling the sensor. 

3 Taking pictures of a flat scene helps reduce the impact of color 
interpolation and other in-camera processing. 
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All images exhibited a slight intensity gradient and 
vignetting. To remove these low-frequency patterns, we 
applied a high-pass filter with cut-off frequency of 
(150/1136)π. After filtering, the images were averaged. The 
averaging reduced the random noise components, while the 
pattern noise accumulated. In Fig. 2, we show the magnitude 
of the Fourier transform F(r) of one pixel row r in the 
averaged image. The signal r exhibits properties of a white 
noise signal with an attenuated high frequency band. This 
attenuation is likely due to the low-pass character of the CFA 
interpolation algorithm. 

The PNU noise can not be present in completely saturated 
areas of an image, where the pixels were filled to their full 
capacity, producing a constant signal. It is also clear from (1) 
that in very dark areas (when xij ≈ 0) the amplitude of the PNU 
noise is suppressed as well, leaving the FPN as the dominant 
component of the pattern noise. 

We close this section with a note that essentially all imaging 
sensors (CCD, CMOS, JFET, or CMOS-Foveon™ X3) are 
built from semiconductors and their manufacturing techniques 
are similar. Therefore, it is reasonable to expect that the 
pattern noise in all these sensors has similar properties. 
Although [7] and [8] deal mainly with CCDs, it is noted in [7] 
(page 92) that CMOS sensors also experience both FPN and 
PRNU. Moreover, according to [10] the PRNU noise strength 
is comparable for both CMOS and CCD detectors. As JFET 
sensors do not differ too much from CMOSs, they should also 
behave similarly. Our experiments with the CMOS-Foveon™ 
X3 based Sigma SD9 camera confirm the presence of pattern 
noise that survives frame averaging and that can be used for 
camera identification. 

III. CAMERA IDENTIFICATION ALGORITHM 
Because of the noise-like character of the PNU noise, it is 

natural to detect its presence in an image using correlation as 
is commonly done in robust watermark detection [11]. To 
verify that a specific image p was taken with camera C, we 
first determine the camera reference pattern PC, which is an 
approximation to the PNU noise. The presence of the 
reference pattern in p will be established using correlation. We 
now describe this process in detail. 

A. Camera reference pattern 
Because of the complex nature of the processing (2) and 

because most consumer cameras do not allow access to the 
raw sensor output yij, it is generally not possible to extract the 
PNU noise using flat fielding. It should be, however, possible 
to obtain an approximation to the PNU noise by averaging 
multiple images p(k), k = 1, …, Np. This process can be sped up 
by suppressing the scene content from the image prior to 
averaging. This is achieved using a denoising filter F and 
averaging the noise residuals n(k) instead, 

 
n(k) = p(k) – F(p(k)).   (5) 

 
Another benefit of working with the noise residuals is that 

the low-frequency components of PRNU are automatically 
suppressed. Obviously, the larger the number of images Np, 
the more we suppress random noise components and the 

impact of the scene. Based on our experiments, we 
recommend using Np > 50. 

We have experimented with several denoising filters and 
eventually decided to use the wavelet-based denoising filter 
described in Appendix A because it gave us the best results. 
This is likely because the noise residual obtained using this 
particular filter contains the least amount of traces of the scene 
(areas around edges are usually misinterpreted by less 
sophisticated denoising filters, such as the Wiener filter or the 
median filter). 

Finally, we would like to point out that there are two 
advantages of this method for obtaining the reference pattern: 
a) it does not require access to the camera (assuming we have 
images taken by the camera), b) it is applicable to all cameras 
independently of the fact whether or not the camera allows 
access to raw sensor output. 

B. Detection by correlation 
To decide whether a specific image p was taken by camera 

C, we calculate the correlation ρC between the noise residual 
n = p – F(p) and the camera reference pattern PC 

 
( ) ( )

( ) ( , ) C C
C C

C C

corrρ
− ⋅ −

= =
− −

n n P P
p n P

n n P P
,  (6) 

 
where the bar above a symbol denotes the mean value. 

We can now experimentally determine the distribution of 
ρC(q) for other images q taken by C and the distribution of 
ρC(q’) for images q’ that were not taken by C. Accepting a 
parametric model for both distributions, we calculate a 
threshold using the Neyman-Pearson approach and minimize 
the false rejection rate (FRR) while imposing a bound4 on the 
false acceptance rate (FAR). The value ρC(p) is then compared 
to the threshold to reach the final decision. 

To assess the reliability of this camera identification 
algorithm, in the next section we performed several 
experiments with 320 images from 9 digital cameras. 

IV. EXPERIMENTS AND RESULTS 
In this section, we experimentally estimate the error rates of 

the camera identification method above. We also study how 
the error rates are influenced by common image processing 
operations, such as JPEG compression and gamma correction. 

A. Cameras and test images 
For our tests, we prepared an image database containing 

approximately 320 images from each camera listed in Table I 
with a variety of outdoor and indoor scenes, including close-
ups and landscapes taken under varying light conditions. A 
few selected images are shown in Appendix B. 

Images were taken with and without the flash and with 
varying zoom settings. Also, these images were taken under 
vastly different ambient temperatures ranging from winter 
scenes taken at –10°C to scenes taken at outside temperature 

                                                           
4 This is because in forensic applications in general, it is important to keep 

the FAR low. 
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close to 30°C and relative humidity over 90%. Images from 
Olympus C3030 and Kodak DC290 were taken over a long 
time span of about 5 years. 

We point out that the Canon G2 and S40 share the same 
CCD sensor type and the two Olympus C765 cameras are of 
the exact same brand and model. 

Table I shows for each camera the imaging sensor, its native 
resolution, and image format in which the images (all in native 
resolution if not mentioned otherwise) were taken. Images in 
the Canon CRW raw format were converted using the Canon 
Utilities RAW Image Converter version 1.2.1 to the 24-bit true 
color TIFF format. Images taken in the Nikon NEF raw format 
were converted by Nikon Capture 4.0 into the 24-bit true color 
TIFF format. All images from Canon A10 and Olympus 
Camedia C3030 were collected in the JPEG format. The 
Sigma SD9 is a semiprofessional DSLR camera with the 
CMOS-Foveon™ X3 sensor. It only outputs images in its 
proprietary X3F raw format. All images were converted to 24-
bit TIFF using Sigma PhotoPro 2.1. 

B. Experiment I 
We calculated the reference pattern for each camera by 

averaging the noise residual (5) for Np = 300 images from the 
database. Then, we calculated the correlation of each reference 
pattern with the noise residual from every image from the 
database. Unless noted otherwise, when correlating a noise 
residual with a camera reference pattern of different 
dimensions, we cropped the larger of the two to fit the 
dimensions of the smaller one. Because digital cameras differ 
in image resolution and aspect ratios (3:2 or 4:3), cropping 
seemed to be the natural choice for comparing pixel-to-pixel 
differences. 

For every image from the database of 9×300=2700 images, 
the correlation with the reference pattern of the camera that 
took the image was always the highest. The distributions were 
also always well separated indicating that this method for 
camera identification has good potential. To estimate the FAR 
and FRR, we performed the following statistical analysis of 
the experimental data. 

The proper way to estimate the FAR and FRR is to collect 
enough data to experience both types of errors. The 
Doddington’s rule of 30 [14] requires conducting enough tests 
to experience at least 30 errors. In our case, the distributions of 

correlations for the correct camera and all 8 remaining 
cameras are well separated, which means that we do not 
observe any errors. Although substantially increasing the 
number of cameras or test images is the only proper way to 
estimate the errors, it is not a feasible approach in the short 
term. Instead, we decided to use a conservative parametric 
model of the data and obtain estimates of the error rates. 

Let )(' ic
cρ , i = 1, …, N, denote the vector of N = 300 

correlations between the reference pattern from camera c∈{1, 
…, 9} with the noise residual from N images from camera c’. 
Fig. 3 shows an example of the distribution of )(' ic

cρ  for c and 
c’ corresponding to Canon S40 and Olympus C765, 
respectively. The shape of the distributions changes very much 
for different combinations of cameras c and c’. In particular, 
they may have thick tails or may be quite “spiky.” We 
modeled the individual distributions of )(' ic

cρ , i = 1, …, N, for 
fixed c and c’ using the Generalized Gaussian model with 
probability density function 

 
| |

1( ; , , )
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f x e
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Fig. 3: Distribution of correlation of the reference pattern from 
Canon S40 with noise residual from 300 Olympus C765 images. 

TABLE I  
CAMERAS USED IN EXPERIMENTS AND THEIR PROPERTIES. 

Camera brand Sensor Native 
resolution 

Image 
format 

Canon PowerShot A10 1/2.7-inch CCD 1280×960 JPEG 
Canon PowerShot G2 1/1.8-inch CCD 2272×1704 CRW 
Canon PowerShot S40 1/1.8-inch CCD 2272×1704 CRW 
Kodak DC290 unspecified CCD 1792×1200 TIFF 
Olympus Camedia C765 UZ – 1 1/2.5-inch CCD 2288×1712 TIFF 
Olympus Camedia C765 UZ – 2 1/2.5-inch CCD 2288×1712 TIFF 
Nikon D100 23.7×15.5 mm Nikon DX CCD 3008×2000 NEF 
Sigma SD9 20.7×13.8 mm CMOS-Foveon X3 2268×1512 X3F 
Olympus Camedia C3030 1/1.8-inch CCD 2048×1536 JPEG 
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The parameters were estimated using the method of 
moments [15]. In particular, given a vector of correlations 
ρ(i), i = 1, …, N, 

1
1 2

1 2

1

1ˆ ( ),

ˆ ˆ ˆ( / ),
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and Γ(x) is the Gamma function. 

The generalized Gaussian model was used intentionally 
because models that allow thicker tails will lead to more 
conservative error estimates. In Fig. 4, we show an example of 
the distribution of correlations between the reference pattern 
from Olympus C3030 and noise residual from Canon G2 and 
the corresponding generalized Gaussian model fit. 
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Fig. 4: Distribution of correlation (plus signs) and its generalized 
Gaussian fit (line) with the shape parameter β = 1.173. 

We could estimate the FAR and the FRR for each camera c 
by fitting the model to the distribution of )(ic

cρ , i = 1, …, N, 

and modeling )(' ic
cρ , i = 1, …, N, for all cameras c’≠ c as one 

signal. However, when pooling the correlations )(' ic
cρ  for all 

cameras c ≠ c’, the resulting distribution may be multi-modal 
(see Fig. 5). This is because the reference patterns of some 
cameras exhibit a small positive correlation (e.g., Canon S40, 
Canon G2, and Nikon D100). We hypothesize that this small 
correlation is due to similar in-camera processing, such as the 
same CFA interpolation algorithm. Consequently, although 

the distributions of )(' ic
cρ  for individual pairs of c and c’ are 

well modeled using the generalized Gaussian, when pooled 
together, they no longer follow the model. Therefore, we 
carried out the error analysis in the following manner. 

Let 'c
cF , 1 ≤ c, c’ ≤ 9, be the cumulative density function of 

the generalized Gaussian distribution (7) with parameters 
( , , )α β μ  determined from correlations )(' ic

cρ , i = 1, …, Np, 
between the reference pattern of the c-th camera and the noise 
residual of N = 300 images taken by camera c’. To decide 
whether camera c0 took a given image p, we calculate the 
correlation ρ between the noise residual of p and the reference 
pattern of camera c0 and compare to a threshold t for this 
camera. If ρ > t, we will conclude that p was taken with 
camera c0. In forensic applications, it is important to minimize 
the probability of false acceptance. Thus, we use the Neyman-
Pearson approach and determine the value of t by maximizing 
the probability of detection (or, equivalently minimizing the 
FRR) given an upper bound on the FAR, FAR < αFAR. 
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Fig. 5: Distribution of correlation of the reference pattern from Nikon 
D100 with noise residual from approx. 8×300 images from all other 
cameras. 

For a given threshold t, the probability of false rejection is 
 

FRR = 0
0

( )c
cF t .    (10) 

 
Assuming p was not taken by camera c0 but is classified as 

coming from c0 based on threshold t, we obtain  
 

0

0

9

1

FAR 1 ( )c
c

c
c c

F t
=
≠

= −∏ .   (11) 

 
Thus, the FRR will be minimized for the largest t that satisfies 
 

 
0

0

9

FAR
1

1 ( )c
c

c
c c

F t α
=
≠

− ≤∏ .   (12) 
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Because (11) is monotonically decreasing with t, we find the 
threshold t by solving (12) where we replace the inequality 
sign with equality. In each particular case, this equation must 
be solved numerically. Once the threshold is found, the FRR is 
determined from (10). 
The first two columns in Table II show the FRR for all 9 
cameras when the decision threshold was set to obtain FAR = 
10–3. We point out that it is possible to distinguish between the 
two Olympus C765 cameras of the exact same brand and 
model. This supports our choice of the PNU noise as 
“biometrics” for sensors.   

The identification is successful for Canon A10 and 
Olympus C3030, although their images were only available as 
JPEGs and their reference patterns were also calculated from 
JPEG images rather than uncompressed TIFF images. 

Also note in Table II that reliable camera identification is 
possible for the Sigma SD9 camera equipped with a CMOS 
sensor. 

Table II indicates that the camera identification is the least 
reliable for Nikon D100. This is because the distribution of 
correlations between the Nikon reference pattern with noise 
residuals from other cameras has thicker tails than for other 
cameras (e.g., the shape parameter β = 0.78 for images from 
Canon A10). This increases the FRR. We hypothesize that the 
reason for this is the physical size of pixels. Semi-professional 
DSLR sensors have larger physical dimensions than those in 
compact digital cameras and thus larger pixels. Therefore, the 
PNU noise will be less pronounced due to averaging material 
inhomogenities over a larger area and more robust 
manufacturing, while random noise components are more 
likely to increase.  

C. Experiment II (gamma correction) 
Digital images are often subjected to point-wise operations, 

such as brightness/contrast adjustment or gamma correction. 

Because most spread spectrum watermarks [11] are fairly 
insensitive to such operations, the camera identification 
procedure is expected to be fairly robust to gamma 
adjustment, as well. 

We repeated Experiment I after processing images from all 
cameras using gamma correction with γ = 0.7 and 1.4. These 
two values were chosen as the minimal and maximal gamma 
values that one can typically encounter in practice. JPEG 
images from Canon A10 and Olympus C3030 cameras were 
converted to bitmaps first and then gamma corrected. 

The results in terms of FRR are shown in Table II in 
corresponding columns. The results confirm our expectations 
that gamma correction has little influence on the reliability of 
camera identification. 

D. Experiment III (JPEG compression) 
Because it is likely that in practice images will be stored in 

the lossy JPEG format, in this section we investigate the 
impact of JPEG compression on the reliability of camera 
identification.  

In Experiment I, all images from Canon A10 and Olympus 
C3030 were already taken in the JPEG format (JPEG quality 
factor approximately 93–97 for Canon A10 and 70–95 for 
Olympus C3030). This indicates that the identification method 
is robust to JPEG compression. We decided to verify this 
claim for the remaining 7 cameras under more controlled 
conditions. We repeated Experiment I after saving all 7×300 
images as JPEGs with quality factors 50, 70, and 90.5  

In Table II, we show the FRR for a fixed FAR = 10–3 for 
JPEG quality factors 90, 70, and 50. For quality factor 90, we 
can see that, with the exception of Kodak DC290, the FRRs 
decreased when compared to the results obtained for raw 

                                                           
5 Reference patterns were obtained from raw images as before. 

TABLE II  
DECISION THRESHOLD t  AND FRR FOR ALL 9 DIGITAL CAMERAS FOR FAR = 10−3. 

Processing none Gamma 0.7 Gamma 1.4 
Camera t FRR t FRR t FRR 
Nikon 0.0449 4.68×10−3 0.0443 1.09×10−2 0.0435 6.33×10−3 
C765 - 1 0.0170 3.79×10−4 0.0163 3.88×10−4 0.0172 3.85×10−4 
C765 - 2 0.0080 5.75×10−11 0.0076 2.57×10−11 0.0081 2.83×10−10 
G2 0.0297 2.31×10−4 0.0271 3.23×10−4 0.0313 4.78×10−5 
S40 0.0322 1.42×10−4 0.0298 1.64×10−4 0.0343 1.02×10−4 
Sigma 0.0063 2.73×10−4 0.0060 2.93×10−4 0.0064 2.76×10−4 
Kodak 0.0097 1.14×10−11 0.0096 1.08×10−8 0.0094 3.73×10−13 
C3030 0.0209 1.87×10−3 0.0216 1.58×10−3 0.0195 2.67×10−3 
A10 0.0166 7.59×10−5 0.0162 4.71×10−5 0.0160 2.93×10−4 
Processing JPEG 90 JPEG 70 JPEG 50 
Camera t FRR t FRR t FRR 
Nikon 0.0225 3.71×10−3 0.0231 5.83×10−2 0.0210 1.63×10−1 
C765 - 1 0.0122 5.36×10−6 0.0064 1.55×10−6 0.0060 1.17×10−4 
C765 - 2 0.0061 0 0.0065 9.63×10−14 0.0065 2.14×10−6 
G2 0.0097 8.99×10−11 0.0079 4.85×10−11 0.0076 5.13×10−4 
S40 0.0133 3.96×10−11 0.0085 4.41×10−14 0.0083 9.48×10−5 
Sigma 0.0050 3.44×10−6 0.0055 9.16×10−6 0.0059 6.57×10−5 
Kodak 0.0107 2.27×10−9 0.0127 4.53×10−4 0.0131 4.65×10−3 



T-IFS-00064-2005.R1      8 

images (the first two columns in Table II). We now attempt to 
explain this somewhat surprising result. 

Although JPEG compression does decrease the average 
value of correlations between the image noise residual and the 
correct reference pattern, it does so very gradually with the 
decreasing quality factor. However, we observed that JPEG 
compression with quality factor 90 or less almost completely 
suppresses the small positive correlations between the 
reference patterns that can be seen in Fig. 5 (compare with 
Fig. 6). Additionally, JPEG compression makes the tails of the 
distributions )(' ic

cρ , for c ≠ c’ somewhat thinner. The 
combined effect of both phenomena results in more reliable 
identification.  
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Fig. 6: Distribution of correlation of the reference pattern from Nikon 
D100 with noise residual from approximately 6×300 JPEG 
compressed images with quality factor 90 from six other cameras. 

E. Experiment IV (resampling and JPEG compression) 
Most digital cameras have an option to save images at lower 

resolutions than the maximal resolution supported by their 
sensor. In this section, we report some preliminary results of 
our investigation whether or not it is possible to identify 
images already taken at a lower resolution. We note that it is 
not possible to simulate the resizing off line on a computer 
without a detailed knowledge of how each camera produces 
images of smaller resolution. Because this information is 
considered proprietary by most camera manufacturers, we had 
to prepare a new test database of images already taken at 
lower resolution. For this reason, we limited this investigation 
to just one camera – Canon G2. 

We set the camera to take images at a lower resolution of 
1600×1200 and took 84 test images. Total of 28 images were 
taken at low-quality setting (average JPEG quality factor of 
72), while the remaining 56 images were taken at the highest-
quality setting (with average quality factor 97). We now wish 
to decide which of the 9 cameras in our tests most likely took 
the images. 

Let us assume for simplicity that we know that the images 
were taken at a lower resolution or were rescaled on a 
computer, but have not been cropped. This assumption rules 
out cameras with the 3:2 image aspect ratio (Nikon D100, 

Sigma SD9, and Kodak DC290). For the remaining 6 cameras, 
we simply resampled6 each noise residual to the native 
resolution of each camera and then computed the correlation 
with its reference pattern. 

Due to the small number of images, we did not analyze the 
results statistically as in the previous sections. Instead, we 
only include in Fig. 7 a scatter plot of correlation values 
between the noise residual from all 84 images with all 6 
reference patterns. We see that the correlation with Canon G2 
camera was always the highest even for the low-quality JPEGs 
(images 6–33). 

We note that a much more extensive experiment performed 
on more images and across all cameras is necessary to 
determine the error rates of camera identification from low-
resolution images. This preliminary result is, nevertheless, 
encouraging. 
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Fig. 7: Correlation of noise residuals from 84 Canon G2 1600×1200 
JPEG images with 6 reference patterns. 

F. Experiment V (stability of pattern noise over time) 
If the pattern noise is to be used for forensic camera 

identification, it must be stable over a wide range of 
environmental conditions, camera settings (zoom, ISO, etc.), 
and over time. Since our image databases contained images 
taken under widely varying environmental conditions, 
different zoom and ISO settings, and battery status, the results 
of Section IV indicate that the pattern noise is fairly stable. 
However, all test images were taken over a relatively short 
period of time of 1–2 years. The stability of the camera 
identification algorithm over time is the subject of this section. 

 
TABLE III  

AVERAGE CORRELATION OVER TIME. 
Year 2000 2001 2002 2003 2004 2005 
Correlation 0.055 0.044 0.056 0.047 0.047 0.053 
 
We narrowed this experiment to the Kodak DC 290 camera 

because this was the only camera for which we had images 
taken over a span of many years (2000–2005). All images 
were taken at full resolution 1200×1792 in the JPEG format 
                                                           

6 Bicubic resampling was used in all experiments. 
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("better quality" as defined in camera specifications). The 
number of images ranged from 56 for year 2001 to more than 
700 for year 2003. For each year, we computed the average 
correlation with the reference pattern obtained from pictures 
taken in the first quarter of 2004. Table III indicates that the 
average correlation value varies very little over time.  

V. FORGING AND MALICIOUS PROCESSING 
Since camera identification techniques are likely to be used 

in the court, we need to address malicious attacks intended to 
fool the identification algorithm, such as intentionally 
removing the pattern noise from an image to prevent 
identification or extracting the noise and copying it to another 
image to make it appear as if the image was taken with a 
particular camera. 

We distinguish two situations: 1) the attacker is informed 
and has either the camera or many images taken by the camera 
or 2) the attacker is uninformed in the sense that he only has 
access to one image. 

We first discuss the issue of removing the pattern noise or 
preventing its successful detection. As already noted in 
Section II.B, an informed attacker can suppress the pattern 
noise by dark frame subtraction and flat-fielding. However, 
images are not typically stored in raw formats and are only 
available as TIFF/JPEG, which means they are already 
processed in the camera (Eq. (2) in Section II). As a result, it 
is in general not possible to perform flat fielding correctly 
from a TIFF/JPEG image. 

A simpler way to remove the pattern noise PC, well-known 
to researchers working in robust watermarking, is as follows. 
The attacker can arrange for ρC = 0 for any image p taken with 
C by solving the equation corr(p+αPC, PC) = 0 with respect to 
α and taking p+αPC as the forged image. 

An uninformed attacker could attempt to remove the pattern 
noise by applying the same denoising filter. While this, 
indeed, decreases the correlation value with the correct pattern 
approximately by a factor of two, in most cases correct 
identification will still be possible. However, repetitive 
application of the filter or more aggressive denoising filters 
will likely prevent correct identification. 

The easiest way to prevent a simple detection of the 
reference pattern is desynchronization, such as slight rotation, 
possibly combined with other processing that might include 
resizing, cropping, and filtering. Probably the simplest active 
measure that the photographer can use to complicate image 
identification later is to take images using a continuous digital 
zoom, a feature that many consumer digital cameras have 
today. 

The second problem we now investigate is whether it is 
possible to make an arbitrary image look as if it was taken by 
a specific camera. Again, having access to the reference 
pattern or the camera makes this indeed possible. We denoised 
20 Canon G2 pictures and added to them the reference pattern 
from Canon S40. We increased the amplitude of the added 
noise, till we reached a correlation that was higher than the 
correlation the image previously had with the Canon G2 

reference pattern. The peak signal to noise ratio (PSNR) for 
the forged images was on average 37.5dB and the images were 
visually indistinguishable from originals. The forgeries still 
had higher correlations with the Canon G2 reference pattern 
than expected from different camera images, but this 
correlation could be eliminated using some of the techniques 
mentioned above.  

We also tried to plant the noise extracted from a single 
Canon S40 image using the denoising filter [12] into a 
denoised Canon G2 image. The correlation of the noise 
extracted from the resulting image with the Canon S40 
reference pattern was usually within the range of the typical 
correlation values achieved by other Canon S40 images. This 
kind of malicious processing requires multiplying the added 
noise with a perceptual mask [11] to avoid creating visible 
artifacts. 

Overall, we conclude that malicious manipulation that will 
fool the identification algorithm is, indeed, possible if the 
attacker possesses enough skill in signal processing. We note 
that it is unlikely that there exists a numerical identification 
characteristic computed from digital images that could not be 
compromised by a sufficiently sophisticated opponent. All 
previously proposed techniques based on defective pixels [3] 
[6] or image features [4], are certainly vulnerable to malicious 
attacks as well. 

VI. CONCLUSIONS 
We have developed a new approach to the problem of 

camera identification from images. Our identification method 
uses the pixel non-uniformity noise which is a stochastic 
component of the pattern noise common to all digital imaging 
sensors (CCD, CMOS, including Foveon™ X3, and JFET). 
The presence of this noise is established using correlation as in 
detection of spread spectrum watermarks. We investigated the 
reliability of camera identification from images processed 
using JPEG compression, gamma correction, and a 
combination of JPEG compression and in-camera resampling. 
Experimental results were evaluated using FAR and FRR error 
rates. We note that the proposed method was successful in 
distinguishing between two cameras of the same brand and 
model. 

Since the identification technique requires proper 
synchronization, geometrical operations, such as cropping, 
resizing, rotation, digital zoom, cause desynchronization and 
prevent correct camera identification. In this case, the 
detection algorithm will have to resort to brute force searches. 
Techniques, such as the one described in [16], may help us 
alleviate the computational complexity of brute force searches 
by retrieving some information about applied geometrical 
operations. The searches will, however, inevitably increase the 
FAR. 

We would like to point out that the problem of camera 
identification should be approached from multiple directions, 
combining the evidence from other methods, such as the 
feature-based identification [4], which is less likely to be 
influenced by geometrical transformations.  

Our future plans include developing methods for detection 
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of digital forgeries by detecting the presence of the pattern 
noise in disjoint regions. Finally, we plan to extend this 
technique to identification of video-cameras and scanners. 
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APPENDIX A (DENOISING FILTER) 
Our implementation of the denoising filter is based on the 
work proposed in [12]. It is constructed in the wavelet domain 
using the Wavelab package [13]. Let us assume that the image 
is a grayscale 512×512 image. Larger images can be processed 
by blocks and color images are denoised for each color 
channel separately. The high-frequency wavelet coefficients of 
the noisy image are modeled as an additive mixture of a 
locally stationary i.i.d. signal with zero mean (the noise-free 
image) and a stationary white Gaussian noise 2

0(0, )N σ  (the 
noise component). The denoising filter is built in two stages. 
In the first stage, we estimate the local image variance, while 
in the second stage the local Wiener filter is used to obtain an 
estimate of the denoised image in the wavelet domain. We 
now describe the individual steps: 

 
Step 1. Calculate the fourth-level wavelet decomposition of 
the noisy image with the 8-tap Daubechies QMF. We describe 
the procedure for one fixed level (it is executed for the high-
frequency bands for all four levels). Denote the vertical, 
horizontal, and diagonal subbands as h(i, j), v(i, j), d(i, j), 
where (i, j) runs through an index set J that depends on the 
decomposition level. 
 
Step 2. In each subband, estimate the local variance of the 
original noise-free image for each wavelet coefficient using 
the MAP estimation for 4 sizes of a square W×W  
neighborhood N, for W∈{3, 5, 7, 9}. 
 

2 2 2
02

( , )

1ˆ ( , ) max 0, ( , )W
i j N

i j h i j
W

σ σ
∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , (i, j)∈J. 

 
Take the minimum of the 4 variances as the final estimate, 
 

( )2 2 2 2 2
3 5 7 9ˆ ( , ) min ( , ), ( , ), ( , ), ( , )i j i j i j i j i jσ σ σ σ σ= , (i, j)∈J. 

 
Step 3. The denoised wavelet coefficients are obtained using 
the Wiener filter 
 

2

den 2 2
0

ˆ ( , )( , ) ( , )
ˆ ( , )

i jh i j h i j
i j
σ

σ σ
=

+
  

 
and similarly for v(i, j), and d(i, j), (i, j)∈J. 
 
Step 4. Repeat Steps 1–3 for each level and each color 
channel. The denoised image is obtained by applying the 
inverse wavelet transform to the denoised wavelet 
coefficients. 

To complete the description of the denoising filter, we now 
briefly discuss the choice of the parameter σ0 by investigating 
how the correlations between noise residuals and reference 
patterns are influenced when setting σ0 to different values. We 
used the reference pattern for the Canon G2 camera obtained 
in Section II.C by averaging 118 uniform gray images. Note 
that we do not need the filter for this. Using the filter with 
parameter σ0∈{1, …, 6}, we calculated the noise residual for 
20 images from each camera (20×9=180 images total). Then, 
we computed the correlations between the G2 reference 
pattern above and the noise residual from all 180 images. Fig. 
8 shows the correlations averaged over all 20 images for each 
camera as a function of σ0. This figure shows that the 
dependence of the correlations on σ0 is relatively flat (the 
small positive bias between G2 and S40 is commented upon in 
Section II.B.). 

In all experiments, we used σ0 = 5 (for dynamic range of 
images 0, …, 255) to be conservative and to make sure that 
the filter extracts substantial part of the PNU noise even for 
cameras with a large noise component. 
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Fig. 8: Correlation between the G2 reference pattern and the noise 
component from images from other cameras obtained using the 
denoising filter with parameter σ. 

APPENDIX B 
A few sample images used in our experiments: 
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