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ABSTRACT 
 
In this paper, we show that the communication channel known as writing in memory with defective cells [1][2] is a relevant 
information-theoretical model for a specific case of passive warden steganography when the sender embeds a secret message 
into a subset C of the cover object X without sharing the selection channel C with the recipient. The set C could be arbitrary, 
determined by the sender from the cover image using a deterministic, pseudo-random, or a truly random process. We call this 
steganography “writing on wet paper” and realize it using a simple variable-rate random linear code that gives the sender a 
convenient flexibility and control over the embedding process and is thus suitable for practical implementation. The 
importance of the wet paper scenario for covert communication is discussed within the context of adaptive steganography 
and perturbed quantization steganography [3]. Heuristic arguments supported by tests using blind steganalysis [4] indicate 
that the wet paper steganography provides improved steganographic security and is less vulnerable to attacks compared to 
existing methods with shared selection channels. 

1. MOTIVATION 
The importance of the informed coder channel of Gelfand-Pinsker [5] for steganography and watermarking has been widely 
recognized by many researchers. A special case of the informed sender channel that is highly relevant for robust 
watermarking and active warden steganography is Costa’s writing on dirty paper [6] and its extensions [7][8]. In this paper, 
we point out the importance of another special case of the informed sender channel that is known as memory with defective 
cells [1][2]. When used in passive warden steganography, we coin a new term for this channel and call it “writing on wet 
paper”, which intentionally evokes analogy with Costa’s work. Indeed, similar to the result of Costa that the channel capacity 
is independent of the Gaussian noise known to the encoder but not to the decoder, in the wet paper scenario, quite similarly 
the sender can send the same number of bits to the recipient who is unaware of the selection channel (as described in the 
bstract).  a

 
To explain the metaphor “writing on wet paper”, imagine that X is an image exposed to rain and the sender can only slightly 
modify the dry spots of the cover object X (the set C) but not the wet spots. During transmission, the stego image Y dries out 
and thus the recipient does not know which pixels were used by the sender. We note that the rain can be random, pseudo-
random, completely determined by the sender, or an arbitrary mixture of all. This communication setup gives the sender 
complete freedom in choosing the dry pixels that will be used for embedding because the recipient does not need to 
determine the dry pixels from the stego image in order to read the message. In particular, the sender may formulate selection 
rules based on side information that is in principle unavailable to the recipient and thus to any attacker. This is likely to 

rovide better security [9]–[13] than steganographic schemes with public selection rules [14]–[17]. 

                                                          

p
 
The “wet paper” channel is highly relevant to steganography and arises in several different situations. One of them is 
adaptive steganography, where the sender selects the location of pixels that will carry message bits based on pixels’ 
neighborhood in the cover image. A fundamental problem with adaptive schemes is that the requirement that the recipient be 
able to recover the same message-carrying samples from the stego object undermines the security of the algorithm because it 
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gives an attacker a starting point for mounting an attack [17]. Another potential problem here is that the recipient may not be 
able to recover the same set of message carrying pixels from the stego image, which is modified by the embedding act itself. 
This problem is usually solved either by increasing the message redundancy using error correction to recover from random 
bit losses and inserts or by employing some artificial measures, such as special embedding operations matched to the 
selection rules [14][15]. These measures, however, usually limit the embedding capacity [38], complicate the embedding 
algorithm, and do not give the sender the ability to fully utilize his side-information – the cover image. Moreover, the pixel 
selection rule is often ad hoc and it is not always possible to justify it from the point of view of steganographic security. In 
fact, ideally, the sender should be able to use his side information in an unrestricted manner and perform embedding while 
focusing on important steganographic design principles and necessary security considerations rather than the receiver’s 
bility to read the message.  

ld substantially improve the steganographic security and remove the above mentioned problem of adaptive 
eganography. 

r is concluded in Section 5 
where we outline future research directions and list several other applications of wet paper codes. 

2. WET PAPER CODES FOR STEGANOGRAPHY 

j
 by the sender to communicate a secret message to the recipient. 

t agree on a public parity function P, which is a mapping P: J→{0,1}. 
lthough we do not consider it in this paper, this mapping could in principle depend on the sample position i and a secret 

j j

s . The recipient will decode message bits from the 

it-stream of parities of samples from the stego object n
iiyP 1)}({ = . 
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A different case of the wet paper scenario occurs when the cover image is processed before embedding using an information-
reducing operation, such as A/D conversion during image acquisition, lossy compression, dithering, recoloring, downsizing, 
etc. Most today’s steganographic algorithms1 disregard this side information (the raw cover image before processing) and 
work with the processed image only. However, there is no reason why the steganographer could not utilize, for example, the 
knowledge of the raw, uncompressed cover image when embedding into its JPEG compressed form. In fact, the sender will 
have access to the unquantized values of the processed image (e.g., non-rounded DCT coefficients during compression or 
non-rounded pixel values after downsampling) and may utilize this information for coefficient/pixel selection (Section 4). 
This side information is largely ignored by current steganographic algorithms because of the seemingly insurmountable 
obstacle that the receiver would not be able to read the message due to the fact that the coefficient/pixel selection is based on 
information that is practically completely removed during quantization. On the contrary, we view the fact that one can create 
an embedding scheme where the information about dry pixels is unavailable to the recipient (and any attacker) as a good 
property that cou
st
 
In Section 2, we describe a variable-rate random linear code for writing on wet paper and show that its average capacity 
reaches the channel capacity (Appendix A). In Section 3, we give a detailed description of the encoder and decoder while 
paying close attention to implementation issues. In the same section, we also discuss further improvements, such as 
minimizing the impact of embedding changes or using random linear codes with sparse matrices. In Section 4, we describe 
several practical steganographic schemes that use wet paper codes, most notably the Perturbed Quantization [3], and briefly 
evaluate their steganographic security using heuristic arguments and blind steganalysis. The pape

2.1 Basic concepts 
Let us assume that the sender has a cover object X consisting of n samples n

iix 1}{ = , xi∈J, where J is the range of discrete 
values for xi. For example, for an 8-bit grayscale image represented in the spatial domain, J = {0, 1, …, 255} and n is the 
number of pixels in the cover image X. The sender uses a Selection Rule (SR) to select k changeable samples x , j∈C ⊂ {0, 1, 

, n–1}. The changeable samples may be used and modified…
The remaining samples are not modified during embedding.  
 
We further assume that the sender and the recipien
A
stego key K shared by the sender and the recipient. 
 
During embedding, the sender either leaves the changeable sample ∈C, unmodified or replaces x  with y  such that 
P(xj) = 1 – P(yj). The stego object Y will consist, again ple

s xj, j
n
iiy 1}{ =, of n sam

b

 
1 A few notable exceptions include the fragile authentication by Marvel et al. [18] and the embedding-while dithering method [15]. 



 
Obviously, if the recipient could determine the same set of changeable samples from the stego object, the sender would be 
able to communicate up to k = |C| bits, one parity bit per each changeable sample. However, as discussed in the introduction, 
there are two problems with this scenario. First, the requirement that the recipient be able to determine the same set of 
changeable samples imposes a limitation on the SR and the embedding modification. Second, the fact that the message-
carrying samples can be determined from the stego object may help an attacker to mount an attack. Thus, we propose a 
different approach that solves both problems at once – the recipient can read the correct message but does not need to know 
the set of changeable samples (or even the SR or the embedding operation xj→yj) because the message bits are not 
communicated directly as sample parities. All the recipient needs to share with the sender is a secret key and the public parity 
function P. 

y 
ork on partitioned codes [22][23] are cases of nested linear codes capable of achieving the theoretical maximum capacity. 

e modified, which further 
improves steganographic security and minimizes the impact of embedding changes (Section 3.1). 

2.3 Wet paper codes 

re are q 
hangeable samples in the group, one can attempt to embed q message bits by forming q linearly independent linear 

o relax this assumption. The sender and recipient use a 
ared stego key to generate a pseudo-random  bi atrix D of dimensions q×n. The sender will modify bj, j∈C, 

so that the modified binary column vector b' = n
iib 1}'{ =  satisfies 

Thus, the sender needs to solve a system of linear equations in GF(2). The question of solvability of (1) is discussed in detail 
in Section 2.3.3. Note that the selection channel [10] is a special case of (1) when D = [1, …, 1]. 

2.2 Writing on wet paper as memory with defective cells 
Let bi = P(xi) be the sequence of parities of all n samples from the cover object X. All the bits bi are known to the sender. The 
sender can modify all k bits bj, j∈C, but cannot modify the remaining n – k bits. The recipient does not know the set C. This 
is an example of a channel known as an n-bit memory containing n – k defective cells, which are stuck either at 0 or 1, 
introduced in 1974 by Tsybakov and Kusnetsov [1]. A simple random binning argument (see, e.g., [19]) can show that 
asymptotically the capacity of this channel is k. It is also known that the capacity of this channel is k [2][20][21]. For non-
binary alphabet, this capacity can be achieved, for example, using an algebraic coding scheme that uses the cosets of an 
erasure correction code as bins [19]. A noisy generalization of this channel is given in [19], where it is shown that the earl
w
 
In steganographic applications, both the number of defective cells (wet samples) and the dry samples may be quite large. For 
example, in the double compression embedding (Perturbed Quantization) described in Section 4.2, for a typical JPEG image, 
n ~ 106 and k ~ 104. Due to the large variability of k from image to image, one cannot assume a reasonable upper bound on 
the number of defective cells without sacrificing the capacity. Thus, considering these specifics of our application, in the next 
section we describe a simple variable-rate random linear code that also enables the sender to communicate on average k bits. 
The simplicity of this code enables efficient implementation of the wet paper scenario for steganography. Another advantage 
of this code is its flexibility and control it gives to the sender to choose which samples should b

2.3.1 Encoder 
In Sections 2 and 3, we use capital non-bold letters to denote the cover and stego object and their subsets, bold small letters 
for vectors, and bold capital letters for matrices. The proposed code can be viewed as a generalization of the selection 
channel proposed by Anderson and Petitcolas [10] where one message bit is embedded as the parity of a group of individual 
samples. In the selection channel, at most one sample value must be changed in order to match the parity of a group of 
samples to the message bit. The parity of the group is a sum modulo 2 of the individual sample parities. Now, if the
c
combinations of sample parities instead of just one sum. This suggests the following approach to the wet paper code. 
 
We repeat that the sender has a binary column vector b = n

iib 1}{ =  and a set of indices C⊂{0, 1, …, n–1}, |C| = k, of those bits 
that can be modified to embed a message. The sender wants to communicate q bits m = {m1, …, mq}T. For a moment, let us 
assume that the recipient knows q. In the next secti

 random
on, we show how t

nary msh

 
Db'= m .      (1) 

 



2.3.2 Decoder 
The modified stego object Y ' ={  is sent to the recipient. The decoding is very simple because the recipient first forms 
the vector b'

n
iiy 1}' =

i = Parity(yi') and then obtains the message m = Db' using the shared matrix D. The biggest computational load is 
on the sender’s side who needs to solve (1). Note that the recipient does not need to know the set of changeable elements C 
to read the message. 
 
We now explain how to relax the assumption that the recipient knows q. The sender and recipient can generate the matrix D 
in a row-by-row manner rather than generating it as a two-dimensional array of q×n bits. In this way, the sender can reserve 
the first log2 n bits of the message m for a header to inform the recipient of the number of rows in D – the message length 
q. The symbol x is the smallest integer larger than or equal to x. The recipient first generates the first log2 n rows of D, 
multiplies them by the received vector b', and reads the header (the message length q). Then, he generates the rest of D and 
reads the message m = Db'. 
 
The decoding mechanism is similar to that of matrix embedding [24][25], where the recipient also extracts the message bits 
by multiplying the parity vector by an appropriate code matrix. The difference is that in matrix embedding the sender’s goal 
is to maximize the embedding rate utilizing the positions of the changes to convey information. While in matrix embedding 
any element can be modified, in writing on wet paper the set of elements that can be modified is pre-determined by the 
sender (or the cover object, or some randomness) beforehand and is different for different objects. 

2.3.3 Average capacity 
We now investigate the issue of solvability of (1) and determine the average number of bits that the sender can communicate. 
Obviously, for small q, (1) will have a solution with a very high probability and this probability decreases with increasing q. 
We rewrite (1) to 

Dv = m – Db      (2) 
 
using the variable v = b'– b with non-zero elements corresponding to the bits the encoder must change to satisfy (1). In the 
system (2), there are k unknowns vj, j∈C, while the remaining n – k values vi, i∉C, are zeros. Thus, on the left hand side, we 
can remove from D all n – k columns i, i∉C, and also remove from v all n – k elements v  with i∉C. Keeping the same 
symbol for v, (2) now becomes 

i

ssage m as long as rank(H) = q. The probability Pq,k(s) that the rank of a 
ndom q×k binary matrix is s, s ≤ min(q, k), is [26] 

 

Pq,k(s) =

Hv = m – Db,       (3) 
 
where H is a binary q×k matrix consisting of those columns of D corresponding to indices C, and v is an unknown k×1 binary 
vector. This system has a solution for an arbitrary me
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∏
−

=
−

−−
−−+

−
−−1

0

)(

)21(
)21)(21(2

s

i
si

kiqi
qkskqs .      (4) 

 
 

k k–1 k–2 k–3 k–4 k–5 k–6 k–7 k–8 k–9 k–10
0 

0.2 

0.4 

0.6 

0.8 

1 

q

P q
,k
(q

) 

 
Figure 1. Probability that a random q×k binary matrix has rank q (for k=100). 



From Lemma 1 and (A2) in Appendix A, it can be shown that for a large fixed k, Pq,k(q) = 1 – O(2q–k), which very quickly 
approaches 1 with decreasing q < k (see Figure 1). This suggests that the sender can on average communicate close to k bits 
to the recipient. We now prove that the expected maximal number of bits that can be communicated is exactly equal to k. 
 
Trying to embed the longest possible message, the sender keeps on adding rows to D while (3) still has a solution. The 
probability that the sender can communicate at least k – r (r ≥ 0) bits will be denoted p≥k–r. This will happen when the first k–
r rows in H form a submatrix whose rank is k–r or its rank is k–r–i and each of the i linearly dependent rows is compatible 
with the corresponding bit on the right hand side, which will happen with probability 2–i. Thus, 
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while the probability that one can communicate at least k + r (r ≥ 0) bits is, using a similar argument, 
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From (5–6), we calculate the expected maximum number qmax of bits that can be communicated using k changeable bits as 
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where p=i = p≥i – p≥i+1 is the probability that one can communicate exactly i bits. In Figure 2, we show the probability 
distribution p=i , which appears to be symmetrical about i=k and quickly falls to zero to the sides. This indicates that qmax(k) ≈ 
k, which is indeed the case. A precise formulation of this statement and its derivation is given in Appendix A. This result 
means that on average, using the wet paper code described above, the sender will be able to communicate k bits to the 
recipient. 
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Figure 2. PDF p  for the number of communicated bits. =i

3. PRACTICAL ENCODER/DECODER IMPLEMENTATION 
The main complexity of this communication setup is on the side of the sender, who needs to solve q linear equations for k 
unknows in GF(2) (in binary arithmetic). Assuming that the maximal length message q = k is sent, the complexity of 
Gaussian elimination for (3) is O(k 3), which would lead to impractical performance for large payloads, such as k > 105. At 
this point, we would like to stress that the computational requirements are less of an obstacle in our application, which is 
steganography, when the coding and embedding is usually performed off-line, as opposed to coding for a communication 
channel where real time performance is essential. We set our goal to finding an implementation of the encoder/decoder with 
embedding of the order of a few seconds for typical steganographic scenarios, cover images, and payloads. 



 
By far the best performance and most flexible method2 for solving (3) was obtained using structured Gaussian elimination by 
dividing the bit-stream {  into β disjoint pseudo-random subsets Bn

iib 1} = i and using the Gaussian elimination on each subset 
separately. This can bring down the computational requirements substantially because the complexity of Gaussian 
elimination will decrease by the factor of β 3 while the number of solvings increases β-times. This gives performance 
improvement of β 2. The division into subsets, however, requires communication of the message length in each subset, which 
leads to a slight decrease in channel capacity (a few percent). Overall, the small decrease in capacity is well worth the 
significant improvement in speed. The performance of the structured Gaussian elimination is evaluated and compared to 
other solvers in Section 3.4. 
 
Let us assume that the communicating parties know the range of typical values of the rate r = k/n, r1 ≤ r ≤ r2. If the range is 
unknown or r2/r1 is too large, the sender can modify the pseudo-code below and communicate r to the recipient (see Section 
3.3). The specific value of r will be influenced by the cover object content, the SR, and other specifics of the embedding 
algorithm. To keep the encoding time short, we desire approximately kavg ~ 250 changeable bits in each subset. We also 
require all subsets to be of approximately the same size. Thus, we choose the number of sets β = nr2/kavg. The size ni of 
each subset Bi will be ni∈{n/β, n/β} chosen so that n1+n2+…+nβ = n. Both the encoder and decoder must follow the same 
pseudo-random process for dividing b into subsets. This process may use the stego key as a parameter. 
 
The number of changeable bits ki varies for each subset Bi and follows the hypergeometric distribution (see Section 3.2.1) 
with mean value k/β. The number of message bits embedded in each subset is denoted qj and will be allocated dynamically 
during embedding by the sender (see the pseudo-code below). Without changing the notation, we will assume that the bits b 
are permuted using a pseudo-random permutation generated from a shared secret stego key. Then, the subsets Bi can simply 
be taken as segments of ni consecutive bits and b = (b(1), b(2), …, b(β)), where b(i) is a vector of ni bits from Bi. We are now 
ready to describe the details of the encoding algorithm (follow Figure 3). 
 
Encoder 

 a  columns and sufficiently many rows E0.   Using a PRNG, generate a random bin ry matrix D with n/β
  header size h = log (nr / ) +1, q = |m| + βh  E1.  Determine the

'  , 
2 2 β

i

i

in the i-th segment b' (i) of the vector b' by modifying or leaving b (i) unchanged 
 append them to m 

 – ki, i ← i +1 

E11. 

 D b  for kβ unknowns v. If this system does not have a solution, exit and report failure to embed the message. 
According to the solution v, obtain the β-th segment b' (β) of the vector b' by modifying or leaving b(β) unchanged 

 
Decoder 

 PRNG, generate a random binary matrix D with n/β columns and sufficiently many rows 

om D and denote this submatrix D(β). 

                                                          

E2. b ← b i ← 1 
h (i)E3. qi = ki (q +10)/k , qi = min{qi, 2 –1, |m|}, m  ← the next qi bits in m 

E4. Select the first ni columns and qi rows from D and denote this submatrix D( ). Solve qi equations H(i)v = m(i) –
 D(i)b(i) for ki unknowns v, where H(i) is a qi×ki submatrix of D( ) consisting of those columns of D(i) that correspond 
to changeable bits in Bi. If this system does not have a solution, the encoder decreases qi till a solution is found 

E5. According to the solution v, obta
E6. Binary encode qi using h bits and

 bits from m E7. Remove the first qi

E8. q ← q – qi, k ← k
E9. IF  i < β  GOTO 3 
E10. IF  i = β, qβ ← q 

Binary encode qβ using h bits and prepend to m, m(q) ← m 
β β βE12. Select the first nβ columns and qβ rows from D and denote this submatrix D( ). Solve qβ equations H( )v = m( ) –

(β) (β)

E13. 

D0.   Using a
D1. Determine the header length h = log2(nr2/β) +1 
D2. i ← β 
D3. Select the first with nβ columns and qβ rows fr

 
2 Alternative approaches to solving (3) are discussed in Section 3.4. 



         D ← the first h rows of D(β), obtain h bits as D b' (β) 

 m 
lumns and qi rows from D and denote this submatrix D(i).  

d Db' (i) to m, m ← Db' (i)&m 
D8. IF  i > 1  GOTO 5 
D9. ELSE   m

 

D4. D ← the next qβ – h rows of D(β), m = Db' (β) 
D5. i ← i – 1 
D6. Decode qi from the last h bits of m and remove the last h bits from
D7. Select the first ni co
         D ← the first qi rows of D(i), prepen

 is the extracted message 

 

q 1  
m(β)  

q 2  

…  
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q β–1  
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m(2) q 2      …  
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k 1   

q 1   m(1)   
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minimize the probability of this happening when q is close to k, we force 
e encoder to embed slightly more bits in all other blocks than in the last one. This is the reason why the sender starts 

 using this algorithm is approximately k–βh = k–β×log2(r2k/β) . 
es of n and k is discussed in Section 3.4. 

cluded in the set of changeable samples. In Steps E4 and E12, when solving qi equations H v = m  – D b  for ki 

f maximizing the rate is a binary vector 
uantization problem. To see this, we repeat that the sender needs to solve the system of q linear equations (3) Hv = m – Db 

Figure 3. Placement of message bits and headers within blocks. 

 
We now explain Steps E4 and E12 in more detail. In both steps, the sender forms an upper diagonal matrix from H(i) using 
Gaussian elimination, exchanging columns as needed to obtain 1’s everywhere on the main diagonal. Once qi rows are 
successfully processed, the sender sets the remaining values vi = 0 for i = qi +1, …, ki and calculates the unknowns vi, i = 1, 
…, qi. This will ensure that the embedding rate will on average be 2 bits per change. Also, the encoder is allowed to decrease 
qi whenever it cannot form an upper diagonal matrix (with ones on the diagonal) from H(i) using Gaussian elimination and by 
exchanging columns. Note that the encoding process may fail in the last block because this is the only block in which the 
sender doesn’t have the freedom to decrease qβ. To 
th
dividing the message bits with q +10 rather than q. 
 
Notice also that the sender reserves one more bit for headers to cover a possibly larger ki in a block than the expected value 
k/β. Because the header in each block has h bits, the message length in one block must not exceed 2h–1 (Step E3). 
 
The maximum number of bits that can be communicated
The performance of this algorithm for some “typical” valu

3.1 Minimizing the impact of embedding 
When embedding a shorter than maximal message, in Steps E4 and E12 the sender will have freedom in choosing which 
unknowns vi should be set to 0 and which will be determined by the Gaussian elimination. This freedom can be used to 
further minimize the impact of embedding. The SR will usually be formulated in quantitative terms and thus it will be 
possible to associate with each changeable sample xi a numerical value f(xi) that somehow expresses its “fitness” to be 

 (i) (i) (i) (i)in
unknowns v, the sender can solve for those unknowns vi that correspond to samples with the largest fitness and set the 
remaining vi to zero. This way, the impact of embedding will be further minimized and the security further improved. 
 
A different way to minimize the impact of embedding is to minimize the number of embedding changes (maximize the 
embedding efficiency). With a fixed set of changeable pixels C, the problem o
q



for k unknowns v1, …, vk. Also, recall that the non-zer  the vector v are the places where the sender needs to 
pply the perturbed quantizer. If q < k, the set of all solutions to (3) is of the form 

stortion is equivalent to finding a vector v = v0 + x with the minimal Hamming weight. Thus, the sender needs 
to perform binary vector quantization, which is, however, known to be an NP complete problem. Nevertheless, there is a 

ntizers. This research direction will be part of our 

to codes with 
al performance. 
ler performance 

o elements of
a
 

v0 + Ker(H) 
 
where v0 is one solution to (3) and Ker(H) is the kernel of H formed by vectors x, such that Hx = 0. Minimizing the 
embedding di

potential for improvement here even using suboptimal binary vector qua
future effort. 

3.2 Imposing structure on D to speed up the coding 
An obvious question to ask is whether it is possible to solve (3) faster by imposing some structure on the matrix D (and thus 
indirectly on H). Recall that H is obtained from D by selecting those columns of D that correspond to changeable samples. 
The matrix D is generated from a secret stego key and thus does not depend on the cover object or the secret message. 
Because the positions of changeable samples will be different for different covers, the sender has no control over the process 
of selecting the submatrix H from D. One could, however, impose some structure on the columns in D, such as requesting a 
certain number of ones in each column. Note that, however, introducing any regularity into D is likely to lead 
suboptimal performance because, as shown in Section 2, random matrices D achieve in a certain sense optim
On the other hand, it may be worth sacrificing the embedding capacity a little in return for a faster and simp
(part of a future effort). 
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Figure 4. Capacity ratio qmax(δ)/qmax(1/2) as a function of δ for three values of k (averaged over 100 randomly 
generated matrices).  
 
Another possibility to speed up the coding is to use sparse matrices D and H. Let us assume that the elements of H are 
realizations of an i.i.d. random variable τ with range {0,1} and Prob(τ =1) = δ and Prob(τ =1) = 1–δ with δ < 1/2. The 
smaller the density δ, the faster the Gaussian elimination can be carried out in Steps E4 and E12. Also, allowing H to be 

arse opens up new possibilities for solving (3) using solvers for sparse matrices (Section 3.4). What needs to be clarified, 

k–r,k  (log2k)/k. 
Since this is an asymptotic result and in our applications k could be as small as 250, we need to verify the validity of 

sp
however, is how the sparseness influences the embedding capacity qmax(δ), which now depends on δ. Figure 4 shows that the 
capacity stays very close to qmax(1/2) till a certain critical value of the density δ is reached. Then, it abruptly falls to zero. 
 
According to the result proved by Cooper [28], the probability that a random k×k matrix H with density δ is nonsingular 
tends to limk→∞ Pk,k(k) = 0.2889…, provided δ > (log2k + d(k))/k for any d(k)→∞. Although this result does not tell us 
anything about the values P (s) necessary to evaluate (7), it suggests that the critical density might be close to



Cooper’s result for “small” values of  δ1(k) for which 1 –
 qmax(δ1)/qmax(1/2) < 0.01. Figure 5 shows that (log δ1(k) even for small k. 

k. We have experimentally determined the value of the density
2k)/k is, indeed, a good approximation of 
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ring embedding. Thus, 
e sender and recipient will set the density δ = (log2kmin)/kmin, where kmin is the largest integer for which the probability 

he probability P(r; n, k, ni) that in a set of ni t changeable bits (assuming we are 
selecting the bits from a set of n bits that contains 
 

Figure 5. Comparison of critical density δ1(k) and (lo

3.2.1 Using sparse matrices with structured Gaussian elimination 
Because in the structured Gaussian elimination, the number of changeable samples ki in each subset varies, when using 
parse matrices we need to guarantee that in each subset Bi the density of 1s in H(i) does not fall below the critical density 
δ(ki) = (log2ki)/ki for each i. Recall that the recipient does not know k (and thus ki) and only knows that nr1 ≤ k ≤ nr2. Because 
δ(k) is decreasing, the critical density will be determined by the smallest ki that one can encounter du
th
Prob(ki<kmin) ≤ p1, where p1 is a small number (e.g., p1 = 0.01) shared by both communicating parties.  
 
T  randomly selected bits there will be 

k changeable bits) is 
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Thus, the sender and the recipient determine the de

g2kmin)/kmin,       (9) 

where kmin is the largest integer satisfying the inequality 
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3.3 Communicating the rate r 
In applications where the range for r = k/n is very large, the encoding algorithm may have suboptimal performance, such as 
longer computing times and smaller capacities. In this section, we briefly describe a slightly different implementation, in 
which the sender actually communicates the rate r, 0 < r < 1, encoded using u bits, to the receiver. The communication of r 

akes the whole scheme more flexible espem



formats, and various audio formats, because the communicating parties do not need to research (and agree on) the typical 
range of r for all these different cover types. 
 
For a given r = k/n, the sender communicates the integer l for which r1 = l2–u ≤ r < (l+1)2–u = r2, 0 ≤ l < 2u. In order to 

 
1.  Set β = nr2/kavg. Determine the header size h = log2(kavg) +1, q = |m| + βh + u 

E12. Select the first nβ columns and qβ – u rows from (β). Using a PRNG seeded with the stego 
key, generate a random binary matrix 

communicate l, Steps E1 and E12 in the pseudo-code for the encoder are modified as follows 

E
 D and denote this submatrix D

 with n columns and u rows with density δ =1/2. Solve qβ equations  D
 

 )()(( 







−




βββ bD

bD
H

H
,      (11) 

 for kβ unknowns v, where 

)(
 )() 








=




βm

v
lbin













=

)2(

)1(

...
'
'

b
b

b  







)(
'
β

b



− )1(β

b

 (11), the equations H(β)v = m(β) – D(β)b(β) are solved together with u equations  

 
and bin(l) is a column-wise binary encoding of l. If this system does not have a solution, exit and report failure to 
embed the message. 

 
vH = bin(l) – bD , where D  is a u×n In

random matrix with density δ =1/2 and H  is a u×n submatrix of D consisting of those columns of D  that correspond to 
changeable bits. 
 
The decoder will first read u bits bin(l) = b'D , calculate r1 = l2–u, r2 = (l+1)2–u, β = nr2/kavg, δ (from (9) and (10)), h = 
log2(kavg) +1, and then continues with Steps D0 to D9 for the decoder with a fixed range [r1, r2]. Note that since the decoder 
doesn’t know β and δ before he decodes u, the matrix D must have a fixed number of columns (say n) and a known density, 

e total time needed to solve the system was 
corded. All experiments were performed on a high end PC under Cygwin 1.5.9 running under Windows XP Professional. 

for fast implementation of the Gaussian elimination 
ed to a significant descrease in speed. We obtained the 

which we set at 1/2. 

3.4 Other methods for solving linear equations in GF(2) 
In Section 3.2, we experimentally showed that qmax(k) ≈ k holds for random sparse binary matrices H with the density of ones 
δ = (log2k)/k. This fact opens up new possibilities for solving (3) significantly faster using techniques designed for sparse 
matrices, such as the probabilistic algorithms of Lanczos [29] and Wiedemann [30]. Both methods have complexity 
proportional to k(k+ωk)(logk)c, where ω is the average number of ones in each row of H and c is a small positive constant. 
We have implemented the Wiedemann and Lanczos methods and the Gaussian elimination and compared their timings on a 
set of regular square random k×k matrices with δ = (log2 k)/k for k = 250, … 30000. For each k, several matrices were 
enerated and the running times averaged. For the two probabilistic algorithms, thg

re
The CPU is Intel Pentium 4 with the HT technology running at 2.4GHz with the internal cache of the size of 8KB and the 
on-board L2 cache of the size of 512KB. The results are summarized in Table 1. 
 
Wiedemann method. We implemented the basic algorithm described in the original paper [30]. The time complexity of our 
implementation is proportional to k2logk, while its spatial complexity is proportional to 2k2+8k. A naïve implementation 
representing each element of the matrix with a byte (rather than a bit) requries about 760 MB of RAM for a problem of the 
size 20,000 while system of 30,000 equations already requires as much as 1.7 GB RAM.  It is possible to save some space by 
storing the system as bits of indiviudal bytes (an approach taken 
escribed below). We implemented this algorithm also, but it actually ld



best results for a combined solution in which some parts of the system store their results so that individual elements of the 
system matrix are arrays of bytes while the most time-critical part (the Berlekamp-Massey algoritm for finding the minimal 
polynomial) is implemented by storing elements of the system as bits. 
 
Lanczos method. The implementation is based on the description of the algorithm in [29]. Because the exponentiation and 
logarithm tables for the finite field (which are jointly used to perform multiplication in the field) are accessed in a completely 
random way, the computation is much faster if these tables can reside in the cache permanently rather than being swapped 
ack and forth between cache and main memory. The total size of these tables is 8×2r integer variables when the field GF(2 r) 

o simplify the coding, we used static arrays to store coordinates of non-zero positions of the matrix H and thus limited the 

effictivelly carried out in “parallel” by using the C++ operators ^ (the bitwise eXclusive OR) and & (the 
itwise AND) respectivelly. Because these operators are natively supported by the hardware, we obtain a constant time 

improvement of 32. Additio l speed cer em si be e emory needed for the 
computations is reduced, again, by a factor of 32, which leads to an increased chance t re rows of the system will fit 
into the cache. 
 

W  Total solving time 
05 

b
is used (i.e., algebraic extension of degree r of GF(2)), and so the memory requirement is 4×8×2r bytes = 2r–5 kilobytes. This 
is consistent with our timings where we get best results for r = 14 and the cache size of 29 kilobytes. The timings shown in 
Table 1 were carried out with r = 14. 
 
T
number of ones in each row, which we set to 32 which is 2×log2(50,000). This limit certainly has no influence on the results 
for k ≤ 5,000, shown in Table 1, and even for k > 30,000 its effect should be negligible (this limit can be set higher if 
needed). 
 
Gaussian elimination. Since the system being solved is binary, we can improve the performance of the Gaussian elimination 
significantly by storing the elements of the system matrix as bits of the largest integer variable a given architecture/language 
offers. We implemented the code in the C++. Each row of the system is stored as an array of ints, where an int is 32 bit 
wide on our architecture. Given the fact that we work in GF(2), all the basic operations we need – addition and multiplication 
– can be very 
b

na -up (up to a tain probl ze) can xpected since the m
hat mo

kavg iedemann Lanczos Gauss k =1
250 0.00971 802 110 40 0.00 0.00 0.4
500 0.0349 322 0499 98 0.0 0.0 0.9

1000 0.134 47 23 0 0.1 0.0 2.3
2000 0.542 0.828 0.122 6.10 
5000 3.74 7.73 2.74 54.8 

10000 15.5 35.4 17.4 174 
20000 72.1 172 106 530 
30000 U 371 302 1208 

 
Table 1 Average running times (the fastest times are highlighted in bold face). 

 
The last column is the total time Steps E4 and E12 contribute to the total embedding time for the structured Gaussian method 
assuming the bit-stream is divided into β subsets, β = k /kavg. It was calculated as T k /kavg, where T is the solving time for 

 Wiedemann algorithm could not be run as the problem 
od leads to practical embedding times if applied to the 

NS IN STEGANOGRAPHY 
The proposed writing on wet paper enables constructions of new, more secure, steganographic schemes that were not 

 schemes that fit the wet paper communication setup and briefly discuss their 

the Gaussian elimination method (third column). For kavg = 30000, the
of this size did not fit into the main memory. Note that neither meth
whole bit-stream (k = kavg) for k ≥104. On the other hand, the structured Gaussian elimination gives the best performance and 
practical embedding times when applied to β = k /kavg subsets for kavg = 250 or 500. 

4. APPLICATIO

possible before. We show examples of
steganographic security in comparison to existing schemes. Although we will be explaining the concepts on the example of 



digital images, the considerations are clearly general enough to apply to other digital objects that allow insertion of 
steganographic content. 

4.1 Adaptive steganography 
A typical steganographic algorithm for digital media objects (images, audio, video) embeds one bit per object sample (pixel, 
DCT coefficient, index) by applying an embedding operation to the sample. This embedding operation is applied if the 
sender needs to adjust the “parity” of the sample to match the embedded message bit. The samples are selected either 
sequentially, randomly using a shared secret key, or adaptively based on the cover content. In adaptive steganography, the 
mbedding distortion and selection of message e-carrying samples in the cover object is in some way related to the cover 

ignificant Bits (MSBs) of pixels located in a small neighborhood N(x) of a given pixel x. The 

1 2 s evaluated 

each block B, at most one bit will be 
mbedded as the parity of the whole block (e.g., XOR of LSBs of all pixels in B) by changing one pixel in B. As in Example 

 the requirement of message readability by the receiver, who does not know the cover object. 
 on the impact of embedding changes on detectability and choose the embedding 
ly, rather than paying attention to the readability. This is exactly, however, what 

content. This often undermines the security of the steganographic system because the set of adaptively selected samples may 
become available to the attacker [17]. Also, since the act of embedding itself modifies the image, care needs to be taken to 
make sure that the recipient correctly recovers the message. This is usually solved by employing some artificial ad hoc 
measures whose only purpose is to guarantee the message readability. These measures limit the sender in his choice of the 
embedding operation and sample selection and often severely limit the capacity. Next, we give a few examples of adaptive 
systems previously proposed in the literature. 
 
Example 1 (Adaptive Least Significant Bit Embedding). The sender chooses some local complexity measure σ that is 
alculated from the 7 Most Sc

message bits are embedded in LSBs of those pixels x for which σ(N(x)) > σ0, where σ0 is an appropriately chosen threshold 
shared by the sender and the recipient. In other words, the sender is placing the message bits in the LSBs of pixels located in 
those parts of the cover image that have a certain minimal level of structure or noise. The recipient will be able to determine 
the same set of message-carrying pixels as the sender and thus read the message. This is because σ is a function of the 7 
MSBs, which are invariant with respect to the embedding operation. Note that in this scenario, an attacker also has access to 
the message-carrying pixels. 
 
Example 2 (Statistics-Preserving LSB Embedding). Franz [14] proposed to use the LSB embedding method only for pixels 

ith colors c  and c  (differing only in their LSBs) that are statistically spatially independent. This independency iw
using the chi-square test for statistical independency of the values c1 and c2 occurring as spatially neighboring pixels in the 
cover image (this is done for several orientations of the neighboring pair). The LSBs of all pixels with spatially independent 
color pairs (c1, c2) are replaced with message bits pre-biased to match the relative counts of each color. This embedding 
mechanism is intended to prevent histogram-based steganalytic attacks [31] and it also guarantees that the recipient will 
determine the same message-carrying pixels because the chi-square statistics used for determining the color pairs is invariant 
with respect to embedding changes. Again, the public selection channel gives a starting point to the attacker [17]. 
 
Example 3 (Block Parity Embedding). This technique was proposed for color palette images in [15]. The image is divided 
into disjoint blocks B (for example 3×3 blocks) completely covering the image. In 
e
1, a local block complexity measure σ  is selected together with a threshold σ0. If σ(B) > σ0, the sender embeds the message 
bit, obtaining the modified block B’, and immediately verifies that σ(B’) > σ0. If the embedding change leads to σ(B’) ≤ σ0, 
the sender makes the change anyway and re-embeds the same bit in the next block. The recipient will thus correctly read all 
message bits from blocks B satisfying σ(B) > σ0. This method also suffers from the public selection channel. In addition, the 
necessity to use non-overlapping pixel blocks leads to a significant capacity decrease. 
 
Note that in the examples above the encoder is forced to choose such combinations of the embedding operation and the 
selection rule that satisfy
Ideally, the sender should fully focus
operation and selection rule according
writing on wet paper enables the sender to do. The selection rule can be completely arbitrary (it can, in fact, contain an 
element of true randomness) and does not have to be shared with the recipient. The wet paper codes thus solve one of the 
fundamental problems of adaptive steganography and improve the steganographic security because less information is now 
available to the attacker. 



4.2 Perturbed quantization 
In this section, we give a short description and analysis of an embedding method called Perturbed Quantization that was 
previously proposed by the authors of this paper [3]. Let us assume that before embedding the sender processes a digital 
cover image using some information-reducing process F, such as A/D conversion, lossy compression, downsizing, color 
uantization, etc. The process F tq ypically consists of a real-valued transformation T and an integer quantizer Q. The sender 

-reducing, an attacker cannot easily recover those fine details of the original 
evidence that some of the samples in the stego image were quantized 
good-enough approximation to the uncompressed cover image from its 

 
ample, the sender may avoid changing coefficients in those areas of the cover image where the attacker could predict the 

original coefficient values with better accuracy. 

as a transformation 

with an n-dimensional integer vector 
y∈Jn, m ≥ n. The transform T: Im → Rn is a real-valued transformation and Q: Rn → Jn is a quantizer. The intermediate
“image” T(X) will be denoted as U and represent
owngrading operations F that could be used for steganography based on Perturbed Quantization (PQ). 

rs urs, n1 < m1, n2 < m2 using a resampling algorithm. The quantizer Q is a 
niform scalar quantizer (rounding to integers), applied to the vector u by coordinates. 

rs xij in the 
range I={0, …, 2b–1}, i=0, …, m –1, j=0, …, m2–1 into a m1×m2 matrix of real numbers uij, uij=xij/2d. The quantizer Q is the 

 Example 1. 

are m1×m2 matrix of integers xij, 
to a 8m1/8×8m2/8 matrix of real numbers uij in a block-by-block manner (z denotes the smallest integer larger than or 

equal to z). In each 8×8 pixel b
 is the quantization matrix, and the operation “./” is an element-wise division. The quantizer Q is given by (13). 

                                                          

has access to all numerical values before quantization occurs. The largest quantization errors occur for those values that are 
close to the middle of the quantization intervals of Q. Due to the noise that is commonly present in digital images, the 
quantization of these values is dominated by the noise and thus closely resembles a random process3. The sender may 
designate such samples (pixels, DCT coefficients) as changeable and use them, together with the wet paper code, for 
steganography. The remaining samples will be quantized without any changes (those are the wet pixels or “defects” in the 
“memory”). We call this method Perturbed Quantization (PQ) because the sender slightly perturbs the quantization process 
in order to embed message bits.  
 
Because the downgrading process is information
image that would enable him to find statistical 
“incorrectly” (imagine, for example, obtaining a 
JPEG compressed form). This is difficult because the sender used side information (the unquantized values) that is 
essentially removed during quantization and is unavailable to the attacker. Also, the sender can accept additional coefficient 
selection rule(s) to further decrease the probability of introducing detectable artifacts and thus improve the security. For
ex

4.2.1 Information-reducing operations 
We proceed with providing a more formal description of the embedding process. Let us assume that the cover image X is 
represented with a vector x∈Im, where I is the range of its pixel/coefficient/color/index values depending on the format of X. 
For example, for an 8-bit grayscale image, I={0, …., 255}. The downgrading process F will be modeled 
  

F = Q o T: Im → Jn,       (12) 
 
where J is the integer dynamic range of the downgraded image Y = F(X) represented 

 
ed using an n-dimensional vector u∈Rn. We give several examples of image 

d
 
Example 1 (Resizing). For grayscale images, the transformation T maps a square m1×m2 matrix of integers xij, i=0, …, m1–1, 
j=0, …, m2–1 into an n1×n2 matrix of real numbe
u

 
Q(z) = round(z),       (13) 

 
Example 2 (Decreasing the color depth by d bits). The transformation T maps a square m1×m2 matrix of intege

1
same uniform scalar quantizer as in
 
Example 3 (JPEG compression). For grayscale images, the transformation T maps a squ
in

lock Bx, the corresponding block Bu in uij is DCT(Bx)./q, where DCT is the 2D DCT transform, 
q

 
3 The authors are currently working on a better justification of this heuristic statement using statistical modeling and prove for a certain 

image model that the embedding is ε-secure in the Cachin’s sense [11]. 



4.2.2 Perturbed quantizer 
As discussed above, one of the simplest SRs that the sender can formulate is to require the intermediate values u  of 
hangeable samples yi = Q(ui) to be ε-close to the middle of the quantization intervals of Q: 

i

}.   (14) 

The tolerance ε xi. It can also be made key 
ependent, if des age X is well modeled with the 

 

and Y ' is the stego image represented using an integer vector y '∈J m. Note that Qε = Q for ε = 0. The quantizers Q and Qε are 
.5+ε) where their output differs in 50% of cases. It can be easily 

.2.3 Embedding while double compressing 

sed schemes. 

very large 
bits per non-zero DCT coefficient of the stego file. At the same time, the blind JPEG 
 to distinguish between purely double compressed images and fully embedded double 

 for embedding and are not shared with the recipient. Because in steganography the 

rule [14]–[17]. 

c
 

C = {i|i∈{0, …, n}, ui∈[L+0.5–ε, L+0.5+ε] for some integer L

 could in principle be adaptive and depend on the neighborhood of the pixel 
ired. For this SR, the act of embedding a a random message in the cover im

 

d
probabilistic process X → Qε o T(X) = Y ', where Qε  is the perturbed quantizer and L is an integer, 
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identical with the exception of the interval [L+0.5–ε, L+0
shown that, assuming u is a random variable uniformly distributed on [0, 1], the average quantization error u – Q(u) 
introduced by the scalar quantizer (13) is 1/4, while for the perturbed quantizer (15) it is 1/4+ε 2. Thus, the difference 
between the average error of both quantizers is ε 2, which for ε = 0.1 is at least by one order of magnitude smaller than the 
average quantization error. Also, note that –2ε ≤ |u – Q(u)| – |u – Qε(u)| ≤ 2ε for all u.  

4
The SR can be defined differently based on other heuristics, the image format, and properties of image pixels/coefficients. 
For example, in our previous work [3] a different example of a SR is given when the information-reducing transformation is 
recompression of the cover JPEG image using a lower JPEG quality factor. Because this steganography is discussed in detail 
in [3], in this paper we discuss it very briefly just to illustrate the point that the wet paper codes enable construction of 
teganographic techniques that have substantially better steganographic security than previously propos

 
During recompression of a JPEG file, certain values of the DCT coefficients in the cover JPEG file occur in the middle of 
quantization intervals during the second compression. These coefficients will be the changeable coefficients. Due to the 
decompression to the spatial domain, rounding and clipping errors are introduced and these errors make the second 
quantization of changeable coefficients resemble a random rather than deterministic process. Thus, the sender can round the 
changeable coefficients up or down and use them as the set of “dry” coefficients in a wet paper code. 
 
For certain combinations of quality factors for both JPEG compressions, this embedding technique provides a 
capacity of approximately 0.5 
steganalyzer of [4] was unable
compressed images [3]. Table 2 shows the detection accuracy ρ = 2A–1, where A is the area under the ROC curve, for a 
simple linear classifier trained on 1400 cover and 1400 stego (fully embedded) images and tested on 400 never seen images. 
The table also shows the detection accuracy for other state-of-the-art steganographic techniques for JPEG images. It is very 
apparent that the new method offers significantly better resistance to steganalysis than the other tested techniques. 

5. CONCLUSIONS 
The main contributions of this paper are as follows. First of all, this paper reveals an important relationship between 
memories with defective cells [1] and steganography. The defective cells correspond to those cover object elements 
esignated by the sender to be avoidedd

number of defective cells could be quite large, we coin a new term for this steganographic channel – writing on wet paper. 
This is a metaphor for a steganographic channel in which the sender embeds message bits into a subset of elements of the 
cover object and communicates the message to the recipient, who does not have any information about the selection rule 
applied by the sender. If the selection rule is determined by side information available only to the sender but in principle 
unavailable to the recipient (and any attacker), this scenario provides improved steganographic security compared to schemes 
with a public selection 



 
Second, we propose a s  varia rate r near  for m s wit ge num of defects and show how it 
can be applied for our steganographic channel. We prove that this code enables on average communication of k bits given k 
“dry” elements (n–k d e he c s i ffi ct em
control to the sender over which cover obj ent  m Th r m  the impact of embedding 
changes (Section 3.1). 
 

 M

imple ble- andom li  code emorie h a lar ber 

efectiv cells). T ode lend tself to e cient pra ical impl entations and offers flexibility and 
ect elem s will be odified. is furthe inimizes

bpc F5 F5_111 OG MB1 B2 PQ 

0.05 0.2410 0.6451 0.8789 0.2197 0.1631 ~ 0 
0.1 0.5386 0.9224 0.9929 0.4146 0.3097 0.0484 
0.2 0.9557 0.9958 0.9991 0.7035 0.5703  0.0979 
0.4 0.9998 0.9999 U 0.9375 0.8243  0.1744 

0.6 1.0000 1.0000 U 0.9834 U U 
0.8 1.0000 1.0000 U 0.9916 U U 

 
Table 2 Detection reliability ρ for F5 (F5) [25], F5 with matrix embedding (1,1,1) (F5_111), OutGuess 0.2 (OG) [36], 
Model based Steganography [37] without and with deblocking (MB1 and MB2, respectively), and the proposed 
Perturbed Quantization [3] during double compression for different embedding rates expressed using bpc = bits per 
non-zero stego DCT coefficient (U = unachievable rate). All but the PQ algorithm, were tested with Q = 80. The PQ 
algorithm was tested with Q1 = 85 and Q2 = 70. 
 
Third, we illustrate how wet paper codes can be used to solve some fundamental problems of adaptive steganography and we 
briefly discuss a new approach to steganography for digital media called Perturbed Quantization [3]. In Perturbed 

uantization, the sender embeds a secret message while downgrading the cover object using some information-reducing 

 significantly less 
etectable than existing steganographic methods for JPEG images while providing a relatively large capacity. 

s the secret shared stego key, contain an element of true randomness and 
us cannot be subjected to brute force stego key searches [27]. As the last application, we mention data hiding in binary 

problem exactly corresponds to writing on wet paper, the capacity of this 
ata hiding method can be dramatically improved. 

 
 the future, we plan to investigate in more detail the steganographic security of Perturbed Quantization. In particular, it 

Q
operation, such as lossy compression, A/D conversion, downsampling, etc. The sender uses his knowledge of the 
unprocessed object and embeds data into those pixels/coefficients whose values are the most “uncertain” after the 
processing. We illustrate the methodology on the example of recompressing a JPEG image with a lower quality factor. Using 
heuristic arguments supported with blind steganalysis [4], it is shown that Perturbed Quantization is
d
 
We note that the writing on wet paper and the proposed wet paper code can be thought of as a generalization of the selection 
channel [10]. The wet paper is also a special case of the general problem of communication with informed sender [5]. While 
the Costa’s dirty paper code [6] is relevant for watermarking [7][8], the wet paper is a suitable model for steganography. 
Both channels are different special cases of the general problem of communication with informed sender. 
 
There are numerous applications of the wet paper code in steganography and general data embedding. For example, we name 
the removal of shrinkage in the F5 algorithm [25] and improving its embedding efficiency. Obviously, nullifying a DCT in 
F5 embedding coefficient will no longer be a problem for the decoder if the wet paper code is employed. Another application 
is constructing steganographic schemes that, beside
th
images proposed by Wu [38]. In this application, the sender first identifies the set of “flippable” pixels that can be modified 
for embedding. Because this set of pixels is not shared with the recipient, block embedding combined with random shuffling 
is proposed in her work [38]. The block embedding however, leaves most of the flippable pixels unused and only a fraction 
of the embedding capacity is used. Because this 
d

In
seems plausible to prove its ε-security in the Cachin’s sense [11] assuming an appropriate model of the cover object. Finally, 
we plan to further study methods for increasing the embedding efficiency (Section 3.1) and simplifying the coding process 
by imposing structure on matrix H (Section 3.2). 
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APPENDIX A (Calculating the average coding rate) 
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Adding all three sums together, we obtain qmax(k) = k +ρ4(k), where ρ4(k) < k228–k/4. � 
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