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1 Crandall’s problem - covering functions

Ron Crandall (xrc@aptix.com) posed a problem, which arose in a crypto-
graphic context (steganography). He suspected a link to coding theory. Such
a link does indeed exist. It will turn out to be a version of the covering radius
problem. I start with the original problem, the way I understand it.

We want to device methods to hide a certain small picture inside a given
big picture. The aim of the design is to arrange things such that the existence
of the hidden image will never be suspected. The big picture is given to us.
It consists of a lot of pixels. One bit is extracted from each pixel. We use
a natural method, block coding. The pixels are divided into blocks of N.
Let x = (x1, x2, . . . , xN) ∈ IFN

2 be the N -tuple of bits extracted from the
given block of N pixels. We want to use this block to build n bits of the
hidden image. Let y = (y1, y2, . . . , yn) be the part of the hidden image to be
constructed from x. We have no control on x. The tuple y is given to us. We
have to construct a function f : IFN

2 −→ IF n
2 . Assume f is given. The ideal

situation is when f(x) = y. Imagine this is not the case. We have to change
x, that is to replace x by x′ such that f(x′) = y. This means that we have
to change the pixels. As the changes made within the picture should not
be evident we are interested in changing a minimal amount of pixels. The
number of pixels that have to be changed is the Hamming distance d(x, x′).
This leads to the following conflicting aims in the construction of f : when
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N is given, then we want n to be big (our block of pixels should give a non
negligible part of the hidden image) and we want the maximum possible
d(x, x′) to be small (the number of pixels that have to be changed within
each block should be small), say d(x, x′) ≤ ρ

2 Translation in coding terms

The discussion in the preceding section leads us to the binary case of the
following definition. There is no reason not to consider arbitrary finite fields
as ground fields.

Definition 1 A function f : IFN
q −→ IF n

q is a covering function COV (ρ,N, n)q

if for every y ∈ IF n
q and x ∈ IFN

q there is some x′ ∈ IFN
q such that f(x′) = y

and d(x, x′) ≤ ρ.

For the application sketched in Section 1 we are interested in constructing
binary covering functions (ρ, N, n) = (ρ,N, n)2 such that the change rate
ρ/N is small and the rate n/N is large. Clearly, both rates are bounded by 1
and the aims are in conflict. Fix y ∈ IF n

q . The defining property of Definition 1
says that every vector x ∈ IFN

q is at Hamming distance at most ρ from some
word from f−1(y). In other words f−1(y) is a code with covering radius
≤ ρ for every y ∈ IF n

q . Equivalently we may say that IFN
q is partitioned into

qn codes, where each of these codes has covering radius ≤ ρ.

Definition 2 A large set of m covering codes LCOV [m](N, ρ)q is a parti-
tion of IFN

q into m subcodes, where each subcode has covering radius ≤ ρ.

Theorem 1 The following are equivalent:

• A covering function COV (ρ,N, n)q.

• A large set LCOV [qn](N, ρ)q.

We see that the idea of using large sets emerges once again. This idea
of partitioning the universe (in our case IFN

q ) into parts all of which have
the same structure was popularized in design theory by the work of Teir-
linck. Stinson proved in [26] that resilient functions may equivalently be
described as large sets of orthogonal arrays (see also [3]). In our context we
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have shown that the structures meeting the requirements of Section 1 are
equivalent with large sets of covering codes.

It is natural to consider the special case of linear covering functions. In
that case f−1(0) will be a linear space, and hence a linear covering code.
As f−1(y) is a coset of f−1(0) for every y and these cosets have the same
properties as the linear code we see that the large set will exist automatically.

Theorem 2 The following are equivalent:

• A linear covering function COV (ρ,N, n)q.

• A linear code [N,N−n]q (q-ary, length N, codimension n) with covering
radius ≤ ρ.

Let H be a check matrix of the linear code in Theorem 2. Then H is an
(n,N)−matrix. We may describe the corresponding linear covering function
f by f(x) = Hx. Here we write our vectors as column vectors. The function
l(n, ρ; q) is defined as the smallest number N such that there exists a linear
q-ary code C of length N, dimension N − n and covering radius ≤ ρ. This
function has been studied by coding theorists for a long time, especially in
the binary case q = 2. Theorem 2 shows that l(n, ρ; q) is the smallest N
such that a linear covering function COV (ρ,N, n)q exists. Let us denote by
l∗(n, ρ; q) the smallest N such that a covering function COV (ρ,N, n)q exists.

3 Bounds

We start from a trivial bound, the sphere packing bound.

Definition 3 The number of q-ary n-tupels of weight (= number of nonzero
entries) at most i is

Vq(i, n) =
i∑

j=0

(
n

j

)
(q − 1)j (1)

Let C ⊆ IF n
q be a (not necessarily linear) code of covering radius ρ. The

union of the balls of radius ρ centered at the codewords must be the whole
space. This leads to the following lower bound on the number of codewords:
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Theorem 3 (sphere packing bound) Let C ⊆ IF n
q be a (not necessarily

linear) code of covering radius ρ. Then

| C |≥ qN

Vq(ρ,N)

When will the bound of Theorem 3 be achieved with equality? This
means that the balls of radius ρ centered at the codewords partition IFN

q .
Such codes are known as perfect codes. The minimum distance of such a
perfect code is 2ρ+1. The parameters of perfect codes have been completely
determined. In each case there are linear codes with these parameters. The
Hamming codes have parameters [ qk−1

q−1
, qk−1

q−1
− k, 3]q and covering radius 1.

Aside of this infinite family only two more linear perfect codes exist: the
binary Golay code [23, 11, 7] with ρ = 3 and the ternary Golay code [11, 6, 5]3
with ρ = 2. This yields the following precise values of our l-functions:

Theorem 4

l∗(k, 1; q) = l(k, 1; q) =
qk − 1

q − 1

l∗(11, 3; 2) = l(11, 3; 2) = 23 and l∗(5, 2; 3) = l(5, 2; 3) = 11.

The situation is easy for large ρ. Recall that l(n, ρ; q) is the minimum N
such that a q-linear code of length N and codimension n exists, which has
covering radius ≤ ρ. Clearly N ≥ n, and N = n means that the code is the
0-code, of covering radius n. Let ρ < n. Then N > n.

Lemma 1 The repetition code [N, 1, N ]q has covering radius N − dN/qe.

Proof: Let x ∈ IFN
q and λi the frequency of entry i ∈ IFq as an entry of

x. There is an i ∈ IFq such that λi ≥ dN/qe. It follows that the distance of x
from the repetition code is leqN − dN/qe. Clearly we have equality.
We see that the repetition code is optimal as long as n + 1− d(n + 1)/qe ≤
ρ < n.

Theorem 5 We have l(n, n; q) = n and l(n, ρ; q) = n + 1 if n + 1 − d(n +
1)/qe ≤ ρ < n.
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4 Asymptotics

Let f be a covering function (ρ,N, n)q. The steganographic application mo-
tivates the following asymptotic question: Let ρ = ρ/N (the change rate or
relative covering radius) and R = n/N (the information rate). ρ is an
upper bound (worst case) on the fraction of the number of pixels that have
to be changed. We want ρ to be small and we want the rate to be as big as
possible. It may be expected that we can achieve better values by admitting
codes of larger length, in analogy with the case of the (relative) minimum
distance.

Let α(x) be the limsup (for N −→ ∞) of the rate of covering functions
(ρ,N, n) having ρ ≤ x. It is obvious (using the direct sum) that whenever a
covering function (ρ, N, n) exists, then for every natural number c there is a
covering function COV (cρ, cN, cn). Because of the results of the preceding
section we have α(x) = 1 if ρ ≥ (q − 1)/q. We can therefore restrict to
ρ < (q − 1)/q. The sphere packing bound Theorem 3 says

ρ∑

i=0

(
N

i

)
(q − 1)i ≥ qn.

Take base 2 logarithms and divide by N. It is an often used fact in coding
theory that for ρ ≤ (q− 1)/q the asymptotically dominating term on the left

is i = ρ. Moreover
(

N
ρ

)
goes to infinity like 2N ·H(ρ). Here H(x) is the entropy

function:
H(x) = −xlog2(x)− (1− x)log2(1− x).

We obtain the following asymptotic bound:

Theorem 6 Let α(x) be the limsup (for N −→ ∞) of the rate of covering
functions COV (ρ,N, n) having ρ ≤ x. Then α(x) = 1 for x ≥ (q − 1)/q. If
x ≤ (q − 1)/q, then

α(x) ≤ Hq(x) =
1

log2(q)
{H(x) + log2(q − 1) · x}

Hq(x) is known as the q-ary entropy function. In particular we see that
for every covering function COV (ρ,N, n)q we must have n/N ≤ α(ρ/N) ≤
Hq(x). It follows from a probability argument based on linear codes that we
have in fact equality in Theorem 6 (see [29]). This answers the question
what is asymptotically possible. Remains the problem to describe covering
functions of small length with a good rate.
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5 Code extensions, complete caps and cover-

ing codes

Let C be a code [n + 1, k + 1, d]q. It is easy to construct a code [n, k, d]q out
of C. In fact, choose a coordinate and consider the subcode of C consisting
of the codewords that vanish at that coordinate. This subcode does the job.
The other way around is much harder. Let D be a code [n, k, d]q. If there is
a code C with parameters [n + 1, k + 1, d]q such that D can be obtained from
C in the way described above, then C is called an extension of D and we
say that D can be extended.

Back to our problem. Let H be a q-ary (n,N)−matrix of strength
s + 1 (meaning that any s + 1 columns of H are linearly independent). In
particular H is a check matrix of a code C with parameters [N,N−n, s+2]q.
Assume there is some vector in x ∈ IF n

q , which cannot be written as a linear
combination of s columns of H. This is equivalent with the statement that
the lengthening of H obtained by adding vector x still has strength s+1 and
is a check matrix of a code [N + 1, N −n + 1, s + 2], which is an extension of
C. Observe in particular that we really have equivalence. We have seen the
following:

Theorem 7 Let C be a code [n, k, d]q, which cannot be extended to a code
[n+1, k+1, d]q. Then there is a linear covering function COV (d−2, n, n−k)q,
in other words l(n− k, d− 2; q) ≤ n.

This theorem provides a first link between error-correcting codes (and
hence the minimum distance) and covering codes. A relatively brutal way
of making sure that a certain code [n, k, d]q cannot be extended is to prove
there is no code [n + 1, k + 1, d]q at all. We can bring the known bounds
on codes in play. Assume we know for some reason that there is no code
[n + 1, k + 1, d]q. Let j be minimal such that [n− j, k − j, d]q exists. Clearly
such a j exists (j = k, for example) and therefore also a minimal such j.
We have j ≥ 0. As code [n − j, k − j, d]q is not extendable we conclude
l(n− k, d− 2; q) ≤ n− j ≤ n.

Theorem 8 If a linear code [n + 1, k + 1, d]q does not exist, then

l(n− k, d− 2; q) ≤ n.
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In case ρ = 2 Theorem 7 can naturally be formulated in a geometrical set-
ting. Let H be a q-ary (n,N)−matrix of strength 3. Consider the columns
of H as points of PG(n− 1, q) (recall that the points of the projective geom-
etry PG(n− 1, q) are the 1-dimensional subspaces of IF n

q ). Strength 3 means
that no three of our points are on a line (lines correspond to 2-dimensional
subspaces). Sets of points no three of which are on a line are called caps.
We see that our matrix H describes precisely a cap of n points (an n-cap) in
PG(n− 1, q). Also, the code C whose check matrix is H will be extendable if
and only if the cap can be embedded in an (n+1)−cap. Caps, which cannot
be embedded in larger caps, are known as complete caps. This shows that
Theorem 7 can be written as follows in case s = 2 :

Theorem 9 If there is a complete N-cap in projective geometry PG(n−1, q),
then

l(n, 2; q) ≤ N.

This raises the problem of determining the smallest cardinality of com-
plete caps. Fortunately this problem has been studied by geometers for a
long time.

6 Binary linear covering codes

We collect what is known about the function l(n, ρ) = l(n, ρ; 2). The straight-
forward lower bound given in Section ?? can be marginally improved. This
improvement is known as the van Wee bound. In the binary case it is as
follows:

M{
ρ∑

i=0

(
N

ρ

)
−

(
N
ρ

)

d(N − ρ)/(ρ + 1)e(d(N +1)/(ρ+1)e− (N +1)/(ρ+1)} ≥ 2N .

René Struik succeeded in improving on the van Wee bound [27, 28]. This
led to improved lower bounds, which have been incorporated in the following
table. We mention here

l(2m− 1, 2) ≥ 2m + 1 for m ≥ 3

[14] contains a list of the best known upper bounds for small values of ρ and
n. Whenever I know a lower bound I include it. If the value is known to
equal l(n, ρ) I write an equality sign.
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n\ρ 1 2 3 4 5
2 =3 =2
3 =7 =4 =3
4 =15 =5 =5 =4
5 =31 =9 6 6
6 =63 =13 7 7
7 =127 =19 11 8
8 25-26 14 9
9 34-39 17-18 13
10 53 21-22 16
11 65-79 =23 20 15
12 92-107 31-38 24 18
13 129-159 38-53 25 20
14 182-215 63 29 26
15 257-319 75 32-37 28
16 363-431 75-95 49 27-31
17 513-639 126 44-62
18 725-863 153 53-77
19 1025-1279 148-205 62-84
20 1449-1727 187-255 73-93
21 2049-2559 235-308 86-125 51-75
22 2897-3455 295-383 103-150 88
23 98
24 76-107
25 123
26 147
27 173
28 204

7 The output

Crandall believes the range from .05 to .10 is most likely to be generally use-
ful. Let us see how close the entries of the table bring us to the asymptotically
optimal values

α(.1) = H(.1) = 0.468995 and α(.05) = H(.05) = 0.286396
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Here we use the trivial fact that the existence of a linear covering function
COV (ρ,N, n) implies the existence of a linear COV (ρ, N ′, n) for every N ′ ≥
N. Let us first consider relative covering radius .1 The first column (Hamming
codes) yields a rate of .3 The second column (ρ = 2) gives us COV (2, 20, 7)
implying a rate of 7/20 = .35 The third column improves this (via the Golay
code) to 11/30, and column ρ = 4 yields a rate of 15/40 = .375 This system
is already in the old table of [18]. An entry of the table in [9] shows that a
linear COV (5, 47, 19) exists, and hence COV (5, 50, 19), of rate 0.38 Finally
there is a linear COV (6, 59, 23) in [9], implying COV (6, 60, 23) of rate 0.383
In the case of ρ = 0.05 the situation is similar. The best rate visible from
the table is given by the (ρ = 5)−column. Covering function COV (5, 98, 23)
implies COV (5, 100, 23), of rate .23

8 The football pool problem

The football pool problem is the problem of finding the best possible betting
system. As there are three possible results for each game (win-loss-draw) the
problem is ternary. If n games are involved, then σn is the minimum size of a
code in IF n

3 of covering radius 1. Most of thw work has indeed been done in
this setting: ternary, covering radius 1. There is however a nice construction,
which works over arbitrary finite fields. It was restricted to covering radius 1
in its original formulation in [5]. The obvious generalization is given in [28].

Theorem 10 Let M = {m1,m2, . . . ,mN} be a set of N elements in IF n
q .

Let S ⊂ IF n
q be such that every element of IF n

q can be written as a sum of
some element of S and a linear combination of at most ρ elements of M. Let
W = {(w1, w2, . . . , wN) ∈ IFN

q | ∑N
i=1 wimi ∈ S}.

Then W ⊂ IFN
q has covering radius ≤ ρ. If M generates the whole space IF n

q ,
then | W |=| S | qN−n.

Proof: This is almost trivial. Let x = (x1, x2, . . . , xN) ∈ IFN
q be given. Con-

sider λ =
∑N

i=1 ximi ∈ IF n
q . We can write λ as a sum of some s ∈ S and a

linear combination of most ρ elements of M. This means that we can change
x in at most ρ coordinates and obtain an element of W. The statement con-
cerning the cardinality of W is a trivial fact from linear algebra.
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Let us check what this does. Let H be the (n,N)-matrix whose columns
are the elements of M. Assume also that H has maximum rank n. Let L be
the set of elements in IF n

q which can be written as linear combinations of ≤ ρ
columns of H. We know from Section 1 that a linear COV (ρ,N, n)q exists
if and only if H can be chosen such that L = IF n

q . In that case we obtain a
linear covering code of length N and dimension N − n. Assume this is not
the case or we cannot find the corresponding matrix. Choose H such that
| L | is as big as possible. Let S be such that S + L = IF n

q . Theorem 10 gives
us a covering code (same length, same covering radius) of size | S | qN−n.
We see that this is interesting only if COV (ρ,N, n)q cannot be constructed.
Moreover the covering code is by construction a union of | S | cosets of the
code C whose check matrix is H. So here is what Theorem 10 says: even
if C is not a covering code, then the union of certain cosets of C is. Most
importantly we get a recipe which cosets to choose. Let | S |≥ qi. Then
the parameters of the resulting covering code are not better than those of a
linear COV (ρ,N, n−i)q. The construction is of interest only when this linear
function cannot be constructed. Our real aim are systems (large sets), not
individual covering codes. When will Theorem 10 yield a (nonlinear) system?
Observe that when S satisfies the requirements of the theorem, then every
coset S + x also does. We need that there are a certain number of mutually
exclusive cosets of S. The most natural choice is to use a linear subspace as
S.

Theorem 11 Let H be a q-ary (n,N)−matrix of rank n and L the set of
elements from IF n

q , which can be written as linear combinations of at most ρ
columns of H. Let S be a linear subspace of dimension i such that S+L = IF n

q

(equivalently: every coset of S contains an element of L). Then we can
construct a COV (ρ,N, n− i)q, equivalently a family of qn−i pairwise disjoint
covering codes (length N, covering radius ρ). Each member of the family is
a union of cosets of the code C whose check matrix is H.

This has a big disadvantage. If S is a linear space of dimension i, then
the union of the cosets of the linear code whose check matrix is H with S
as set of representatives is itself a linear code. In order to get a nonlinear
construction we need to partition IF n

q into cosets of sets S, where S is not
a linear subspace. The following example shows, that this can happen. We
work in IF 8

2 . Let S consist of the 0-vector and the seven words of weight 2,
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which have a 1 in the first coordinate. We have | S |= 8. Every coset S + x
consists of 8 elements. When will two different cosets S + x and S + y have
a vector in common? This means s1 + x = s2 + y or x + y = s1 + s2 ∈ S + S.
As S + S consists of the 0-vector and of all vectors of weight 2 we need to
choose representatives xi such that xi + xj(i 6= j) never has weight 2. Here
are examples for such representatives:

i xi

1 00000000
2 11111111
3 11110000
4 00001111
5 11001100
6 00110011
7 10101010
8 01010101
9 01100110
10 10011001
11 10010110
12 01101001
13 11000011
14 00111100
15 10100101
16 01011010

The union of these cosets is the set of all codewords of even weight, the
all-even code [8, 7, 2].

Large sets of covering codes have appeared in the literature already. A
name that appeared in the literature is covering by coverings CBC (see
[16]).

Here is the first part of a table from [16] with bounds on the number
K(n, ρ), the minimum number of binary words of length n, such that the
balls of radius ρ covers the space. Intervals are supplied. If only one value is
given this is the minimum
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n\ρ 2 3
3 2 1
4 2 2
5 2 2
6 4 2
7 7 2
8 11-12 4
9 14-16 7
10 23-30 9-12
11 36-44 12-16
12 61-80 18-28
13 97-128 27-42
14 157-256 43-64
15 308-480 69-112
16 512-896 114-224
17 859-1536 186-352
18 1702-3056 316-640
19 2897-212 511-1024
20 5328-213 889-211

21 9893-7 · 211 1475-212

22 17,316-3 · 213 2536-212

23 30,667-215 212

24 60,350-216 8123-213

25 107,203-217 13,896-214

26 190,765-218 23,718-215

9 Factors and the Preparata codes

A large set of codes is a partition of the space of all tuples into codes, where
all the participating codes have the same parameters. Such partitions are
often used in many mathematical disciplines. A natural refinement of this
idea applies to pairs of codes contained in each other, as follows:

Definition 4 Let C ⊃ D be a chain of (not necessarily linear) q-ary codes.
We say that C/D is a factorization if C can be written as the disjoint union
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of cosets of D. The number of participating cosets is of course

[C : D] =
| C |
| D | ,

the index of D in C. In most cases the index will be a power of q. We define
the codimension of D in C as

dim(C/D) = logq([C : D]) in these cases

We will also use the term dimension in this sense.

Observe that if vi, i = 1, 2, . . . , [C : D] is a system of representatives of D
in C, then it is also a system of representatives with respect to D + vj for
any fixed j. If C and D are linear codes, then clearly C/D will always be a
factorization and the codimension has its usual meaning. For instance, the
binary Hamming code H(n) of length 2n−1 has codimension n in the ambient
space IF 2n−1

2 and the extended Hamming code H(n) has codimension n + 1
in its ambient space IF 2n

2 and codimension n in the all-even code 1⊥. The
reason for not restricting the definition of a factorization to linear codes is
the fact that an important class of nonlinear codes, the Preparata codes,
lead to good factorizations. We collect the most important properties of the
Preparata codes here.

Let n ≥ 4 be even. The Preparata code Pr(n) has length 2n − 1 and
dimension 2n− 2n (although it is not linear). Its minimum distance is 5. We
have Pr(n) ⊂ H(n). The number of vectors at distance 1 or 2 from Pr(n) is

| Pr(n) | (2n − 1 +
(

2n−1
2

)
) =| IF 2n−1

2 | − | Pr(n) | . As no word from H(n)

has this property it follows that we have counted every vector outside H(n)
precisely once. It is also known that H(n) can be written as a disjoint union
of cosets of Pr(n). As Pr(n) has minimum distance 5 and is not perfect it
has ρ ≥ 3. We have seen that equality holds.

Theorem 12 Let n ≥ 4 be even. We have dimH(n) = 2n − (n + 1). The
Preparata code Pr(n) has codimension n− 1 in H(n) and H(n)/Pr(n) is a
factorization. Moreover every vector x /∈ H(n) has distance either 1 or 2
from precisely one word of Pr(n). ρ(Pr(n)) = 3.

The same kind of counting can be applied to the lengthened codes (after
adding a parity check bit) of length 2n.
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Theorem 13 Let n ≥ 4 be even. We have dim(1⊥)/H(n)) = n and dim(H(n)/Pr(n)) =
n−1. Here Pr(n) has minimum distance 6 and H(n) has minimum distance
4. Moreover every vector of even weight outside H(n) is at distance 2 from
precisely one word of Pr(n) and every vector outside H(n) is at distance ≤ 3
from Pr(n). ρ(Pr(n)) = 4. Observe dim(H(n)/Pr(n)) = n− 1.

An important parameter of a factorization C/D is its norm.

Definition 5 Let C/D be a factorization of the q-ary code C into cosets Di

of its subcode D = D1. The norm N(C/D) is the maximum over all vectors
x in the ambient space of

Mini{d(x,Di)}+ Maxj{d(x,Dj)}

The norm will be used in the blockwise direct sum construction of cov-
ering codes. Consider the special case when C = U is the ambient space.
The factorization is then a large set consisting of cosets of D and we have
N(U/D) = ρ(D). An obvious general bound is N(C/D) ≤ ρ(C) + ρ(D.

Theorem 14
N(IF (qn−1)/(q−1)

q /H(n)) = 1.

N(IF 2n

2 /H(n)) = 2

Let n ≥ 4 be even. Then

N(H(n)/Pr(n)) = 3 and N(H(n)/Pr(n)) = 4.

Proof: The first two statements are clear as H(n) has covering radius 1. Let
q = 2, x /∈ H(n). The minimum in Definition 5 is 1, the maximum is 2 as
we see from Theorem 12. Let x ∈ H(n). This time the minimum is 0, the
maximum is 3.

10 The blockwise direct sum

We start from construction X4 for linear codes.
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Theorem 15 (blockwise direct sum, linear case) Let C1 ⊃ D1 be codes
[n1, k1, d1] ⊃ [n1, l1, D1] and C2 ⊃ D2 codes with parameters [n2, k2, d2] ⊃
[n2, l2, D2], where k1 − l1 = k2 − l2 = κ. Fix complements Ui of Di in Ci and
an isomorphism α : U1 −→ U2. We construct a code C of length n1 + n2 and
dimension l1 + l2 + κ as the image of

φ : D1 ⊕D2 ⊕ U1 −→ IF n1+n2
q .

Here φ is defined by φ(x, 0, 0) = (x, 0n2), φ(0, y, 0) = (0n1 , y) and
φ(0, 0, z) = (z, α(z)). Then C = φ(D1 ⊕ D2 ⊕ U1) has minimum distance
≥ min{D1, D2, d1 + d2}.

Proof: As φ is an injective mapping the dimension is obvious. In the
determination of the minimum distance we distinguish two cases: if z = 0,
then wt(φ(x, y, 0)) = wt(x) + wt(y) ≥ min{D1, D2} provided (x, y) 6= (0, 0).
If z 6= 0, then wt(φ(x, y, z)) = wt(x + z) + wt(y + α(z)) ≥ d1 + d2.
What does this mean from a combinatorial point of view? The mapping
α is a bijection between the cosets of D1 in C1 and the cosets of D2 in C2.
Pair (a, b) is in the blockwise direct sum if and only if a ∈ C1, b ∈ C2 and
α(a+D1) = b+D2. We see how this can be generalized to cover also nonlinear
codes:

Definition 6 (blockwise direct sum) Let C1/D1 (q-ary, of length n1) and
C2/D2 (q-ary, of length n2) be factorizations with the same index [C1 : D1] =
[C2 : D2]. Choose a bijection between the cosets of the two factorizations. The
blockwise direct sum has length n1 + n2. It is defined by

C = ∪k
r=1D1(r)×D2(r),

where D1(r) and D2(r) are the cosets of the factorizations.

The number of codewords is

| C |=| C1 | · | D2 |=| C2 | · | D1 |
Theorem 16 Let C be the blockwise direct sum of two factorizations with
identical index, as in Definition 6. The minimum distance of C is min{d(D1), d(D2), d(C1)+
d(C2)}. The covering radius of C satisfies

ρ(C) ≤ b(N(C1/D1) + N(C2/D2))/2c.
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Proof: The minimum distance is obvious. Let (x, y) ∈ C, where x ∈ D1(i), y ∈
D2(i). Let Nj = N(Cj/Dj), j = 1, 2. Choose j, k such that d(x,D1(j)) and
d(y,D2(k)) are minimal. It follows from the definition of the norm that the
sum of the distances from (x, y) to D1(j)×D2(j) and to D1(k)×D2(k) is it
most N1 + N2. One of the two distances must be ≤ (N1 + N2)/2.

Theorem 17 Let C/D a factorization of binary codes, with norm N(C/D) =
N. Then the lengthened codes C/D also form a factorization. Its norm is the
even number among {N + 1, N + 2}.

Proof : The first statement is clear. In fact, the indices are the same. The
norm of the lengthened codes is even. This follows from Definition 5. The
norm is defined as a sum of two numbers. If x is in the all even code,
then both these numbers are even, in the contrary case both are odd. If
x is in the ambient space of C, and v in the ambient space of the length-
ened code, then d((x, 0), v) + d((x, 1), v) = 2d(x, v) + 1. It follows that either
d((x, 0), v) = d(x, v)+1 or d((x, 1), v) = d(x, v)+1. It is clear that the norm
is bigger then N, but at most N + 2.

As we are primarily interested in large sets the following result is impor-
tant:

Theorem 18 Let C1/D1 and C2/D2 be factorizations (lengths n1 and n2,
respectively) of identical index, so that we can form the blockwise direct sum
C = C1/D1 × C2/D2. Then the following hold:

1. C1 × C2/C is a factorization, with index [Ci : Di], i = 1, 2 and norm
N ≤ ρ(C1) + ρ(C2) + ρ(C).

2. If IF n1
q /C1 and IF n2

q /C2 both are factorizations, then also IF n1+n2
q /C is a

factorization.

Proof: Statement 1. is easy to prove. Let wk be a system of represen-
tatives of D2 in C2. As the numbers are right it suffices to prove that the
corresponding cosets of C1 × C2 in C are disjoint. So assume wk + (x1, y1) =
wk′ + (x2, y2), where (x1, y1) ∈ D1(a) ×D2(a) and (x2, y2) ∈ D1(b) ×D2(b).
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The second coordinate shows k = k′. The statement concerning the norm is
obvious.

Consider 2. By assumption we have representatives ui, vj, wk such that
the ui +C1 partition IF n1

q , the vj +C1 partition IF n2
q and the wk +D2 partition

C2. As the numbers are right it remains to prove that the cosets C+(ui, vj+wk)
are pairwise disjoint. Assume there are elements (x1, y1) ∈ D1(a) × D2(a)
and (x2, y2) ∈ D1(b)×D2(b) such that

(x1, y1) + (ui, vj + wk) = (x2, y2) + (ui′ , vj′ + wk′).

The first coordinate shows i = i′, whence a = b. The second coordinate shows
y1 + vj +wk = y2 + vj′ +wk′ . As y1, y2 ∈ D2(a) and D2(a) is a coset of D2 we
can find z1, z2 ∈ D2 such that z1 + vj + wk = z2 + vj′ + wk′ . It follows from
our assumptions that j = j′, k = k′.

Armed with these basic structural facts it is easy now to apply the block-
wise direct sum in a variety of situations. Here is a list of factorizations. The
basic parameters are readily deduced from what has been said before. We
write U for the ambient space. Its dimension is the length. d is the minimum
distance of the larger of the codes, D the minmum distance of the smaller
code. Observe that all members of the factorization are cosets of D and
therefore have the same distance D. In column dim we note the dimension
of the larger code. 1⊥ is the all-even code.

factorization length dim codim (d,D) norm condition

U/H(n) qn−1
q−1

qn−1
q−1

n (1,3) 1

U/H(n) 2n 2n n + 1 (1,4) 2 q = 2
H(n)/Pr(n) 2n − 1 2n − 1− n n− 1 (3,5) 3 q = 2, n even
H(n)/Pr(n) 2n 2n − 1− n n− 1 (4,6) 4 q = 2, n even
1⊥/Pr(n) 2n 2n − 1 2n− 1 (2,6) 4 q = 2, n even
1⊥/H(n) 2n 2n − 1 n (2,4) 2 q = 2

For example, consider the factorization H(n)/Pr(n). We know the length,
the dimensions and the minimum distances d = 3, D = 5. Let x /∈ H(n). As
H(n) is a perfect code of covering radius 1 it follows that d(x,H(n)) = 1. It
was noted in Theorem 12 that d(x, Pr(n)) ≤ 2. Let x ∈ H(n). Clearly the
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first summand, the minimum of Definition 5, is 0, and the maximum is ≤ 3.
We conclude that the norm is 3.

All we need to do is to use two factorizations with the same index and
apply the blockwise direct sum. Minimum distance and covering radius of
the resulting code C can be read off from Theorem 16. If the corresponding
condition of Theorem 18 is met we obtain a large set and hence a covering
function. We collect some binary examples in the following table:

first fact. length second fact. length d ρ COV cond.

H(n)/Pr(n) 2n − 1 1⊥/Pr(n/2) 2n/2 5 3 (3, 2n + 2n/2 − 1, 2n + 1) 4 | n
H(n)/Pr(n) 2n − 1 1⊥/H(n− 1) 2n−1 4 2 (2, 3 · 2n−1 − 1, 2n) 2 | n
H(n)/Pr(n) 2n − 1 H(n)/Pr(n) 2n 5 3 (3, 2n+1 − 1, 3n) 2 | n

An example from the table is a (non-linear) COV (3, 31, 12). Its relative
covering radius is < 0.1 and it reaches a rate of 12/31 ∼ 0.387 This is better
than the linear functions from Section 7 and the length is only 31.

11 Covering codes of large radius

Rodemich [24] studies covering codes of large radius. His main result is that
a q-ary covering code of length n and radius n − 2 has ≥ q2/(n − 1) words,
and he characterizes the case of equality in terms of OA of index unity and
strength 2 (hence mutually orthogonal latin squares). Baartmans-Sane [1]
give a more accessible proof for a more complete result in this case. The cases
of equality are again characterized by the existence of mutually orthogonal
latin squares. They start from a somewhat different motivation: a q-ary
combination lock with n coordinates. The secret number therefore is a q-ary
n-tuple. The lock is defective. It is possible to open it when the word agrees
with the secret key in just 2 positions. It will suffice to try out the elements
of a covering code to open the lock.

The construction is easy to understand, whereas the bound requires some
work: Write q = l(n− 1) + r, 0 ≤ r < n− 1 and let Q = Q1 ∪ . . .∪Qn−1 be a
partition of the alphabet such that |Qi| ∈ {l, l+1} (if r = 0 we choose |Qi| = l
for all i). Assume an OA1(n, l) and an OA1(2, n, l + 1) exist, equivalently
n− 2 MOLs of orders l and l + 1 (the latter is not needed when r = 0). Let
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Oi be such an OA with Qi as alphabet. Then the union of the rows of all
the Oi, i = 1, . . . , n− 1 form a covering code of radius n− 2.

The proof is trivial: given an aribtrary n-tuple x = (x1, . . . , xn). There
must be two coordinates, say 1 and 2, such that x1, x2 ∈ Qi for the same i.
As Oi is an OA, x agrees with a row from Oi in coordinates 1 and 2.
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