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Asymptotic Behavior of the ZZW Embedding
Construction

Jessica Fridrich,Member IEEE

Abstract—We analyze asymptotic behavior of the embedding
construction for steganography proposed by Zhang, Zhang, and
Wang (ZZW) at 10th Information Hiding by deriving a closed-
form expression for the limit between embedding efficiency of the
ZZW construction and the theoretical upper bound as a func-
tion of relative payload. This result confirms the experimental
observation made in the original publication.

I. M OTIVATION AND BACKGROUND

Steganography deals with secret communication by hiding
messages in innocuous-looking objects, such as digital images,
by slightly modifying the colors of their pixels. The goal
is to make the stego images, which carry secret messages,
statistically indistinguishable from the original unmodified
(cover) images [2]. Statistical detectability of most stegano-
graphic schemes increases with embedding distortion (see,
e.g., [10]). This is why most stegosystems limit the amplitude
of embedding changes to the smallest possible value. In this
case, the distortion is often measured with the number of
embedding changes. The average number of bits embedded
per one embedding change is called embedding efficiency
and it constitutes an important numerical characteristic of a
steganographic scheme.

By mapping the individual pixels of the cover to elements
of a finite field, for example, by associating a bit (orq-ary
symbol from finite fieldFq) with each pixel value1, one can
formulate the problem of maximizing embedding efficiency
within the framework of coding theory [3], [8]. In particular,
it is known that aq-ary linear codeC with lengthn, dimension
k, parity check matrixH, and covering radiusR can be used
to communicaten − k q-ary symbols (or(n − k) lg q bits)
in a cover consisting ofn elements by making at mostR
changes in the following manner. Letx ∈ F

n
q be the vector

of symbols assigned ton elements of the cover. Then,n − k
message symbols,F

n−k
q , can be embedded inx by modifying

the symbols of pixels toy = x + e(m − Hx), wheree(s)
is a coset leader of the coset corresponding to syndromes.
The recipient can read the message from the stego object as
its syndrome,m = Hy, becauseHy = Hx + m − Hx. The
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1A popular way is to use the least significant bit of the pixel value or, in
general, the moduloq operation.

average number of embedding changes of this scheme is equal
to the average weight of a coset leader or the average distance
to code defined asRa = 1

qn

∑

x∈Fn
q

d(x, C). Here,d(x, C) =

minc∈C d(x, c), whered(., .) is the Hamming distance. Thus,
the embedding efficiency ise = n−k

Ra
lg q. As shown in [5], for

a fixed relative message length,α = n−k
n lg q, the embedding

efficiency is bounded from above by the rate-distortion bound

e(α) ≤
α

H−1
q (α)

, (1)

whereH−1
q (x) is the inverse of theq-ary entropy function on

[0, 1−1/q], Hq(x) = −x lg x−(1−x) lg(1−x)+x lg(q−1),
wherelg is logarithm at the base 2. Alternatively, the bound
can be stated in terms of the change rateβ = Ra/n,
e ≤

Hq(β)
β , because the largest relative payload that can be

embedded using change rateβ is Hq(β). As a special case, we
point out that the bound on embedding efficiency for ternary
codes is by1 larger than the bound for binary codes because
H3(β)

β = H2(β)+β
β = H2(β)

β + 1.
Various embedding methods were proposed based on both

linear and non-linear codes (see, e.g., the references in [6]).
Arguably, the simplest binary matrix embedding method uses
binary Hamming codes,Hl, with codimensionl. Such codes
can be used to embedn − k = l bits in n = 2l − 1 pixels
by making on averageRa = 1 − 2−l embedding changes,
which corresponds to embedding efficiencylRa

= l
1−2−l at

relative payloadl
n = l

2l−1
. The recent construction proposed

by Zhang et al. [11] (referred to as the ZZW construction
in this paper) allows construction of new families of codes
with very high embedding efficiency from existing codes. An
interesting and important property of this construction isthat
the embedding efficiency of the new codes seem to follow
the upper bound (1) asα decreases to zero. In this paper, we
prove this experimental observation and derive a closed form
expression for the value of the limit. The performance of a
steganographic scheme in the zero-payload limit is important,
for example, to avoid detection over multiple uses of the stego
channel [9].

In the rest of this paper, we constrain ourselves to binary
codes. In Section II, we first briefly describe the ZZW con-
struction. The main result is stated, proved, and analyzed in
Section III. The correspondence is concluded in Section IV.
Caligraphic font will be used for codes and sets, matrices and
vectors are boldface. The symbol⊕ is reserved for bit-wise
eXcluded OR (XOR).

II. T HE ZZW EMBEDDING CONSTRUCTION

Let C0 be a code (not necessarily linear) of lengthn that can
embedm bits in n pixels using on averageRa changes. We
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will say thatC0 is (Ra, n, m). The following construction leads
to a family of codesCp, p ≥ 1, that are(Ra, n2p, m + pRa).

For a positive integerp, we describe the construction of the
pth member of the code familyCp. Divide the cover intoL
disjoint groups ofn2p pixels. Furthermore, divide each group
into n disjoint subsets, each consisting of2p pixels. Denote
by x[i, s, g], i = 1, . . . , 2p, s = 1, . . . , n, g = 1, . . . , L, the
ith element in thesth subset from thegth group. First, embed
m bits b ∈ {0, 1}m in each group (this meansmL bits are
embedded in the whole image) by applying the embedding
codeC0 to the binary vectorv obtained by XOR-ing all2p

bits from each subset

v[s] =

2p

⊕

i=1

x[i, s, g], s = 1, . . . , n. (2)

Mark down the indices of subsets whose XOR needs to
be changed to embed the messageb, say j1, j2, . . . , jr ∈
{1, . . . , n}. On average, there will beRa such subsets in
each group, orE[r] = Ra. To change the XOR in (2), one
pixel must be changed in each marked subset. We will let this
one change communicate additionalp bits through a binary
Hamming code of codimensionp, which will give us the
expected payloadm + pRa per each group (or pern2p cover
elements) for the codeCp. However, because the receiver will
not know which subsets communicate this additional payload
(the receiver will not know the indicesj1, . . . , jr), the sender
must use codes for memory with defective cells (also called
wet paper codes [7]), which is the step described next.

Let H be the p × (2p − 1) parity check matrix of a
binary Hamming code. Compute the syndrome of each sub-
set ass(s,g) = Hx[., s, g] ∈ {0, 1}p, where x[., s, g] =
(x[1, s, g], . . . ,x[2p − 1, s, g]) written as a column vector2.
Concatenate all these syndromes to one column vector ofnp
bits

s(1,g), s(2,g), . . . , s(n,g). (3)

Now realize that due to the property of Hamming codes,
for eachji we can arrange that each syndromes(ji,g), i =
1, . . . , r, can be changed to an arbitrary syndrome by making
at most one change tox[., ji, g].

Label all p bits of syndromes coming from subsets
j1, j2, . . . , jr as dry (which makes totalpr dry elements per
group) and all remaining elements in (3) as wet (in the defec-
tive memory scenario, wet bits correspond to stuck cells while
dry bits correspond to correctly functioning cells). Concatenate
the vectors (3) from all groups to form one long vector ofLnp
elements. This vector will havep(r1 + · · ·+ rL) dry elements
or on averageE[p(r1 + · · · + rL)] = LRap dry elements.
Now, form a random sparse matrixD with Lnp columns and
p(r1 + · · · + rL) rows so that its columns follow the robust
soliton distribution as described in [7]. Thus, using wet paper
codes, we can communicate on averageLpRa message bits.
If the wet paper code dictates that a syndromes be changed
to s′ 6= s, we can arrange for this by modifying exactly one
element in the corresponding vector of bitsx[., ji, g]. If no

2Note that we are reserving the last element from each subsetx[2p, s, g]
to be used later.
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for p = 0, . . . , 6, e(p) = p + 2, as a function of relative payload. The bold
line is the upper bound (1) forq = 2. The embedding efficiency, l

1−2−l , of
binary Hamming codes,Hl, for l = 1, . . . , 7 is shown for comparison .

change in the syndromes(ji,g) is needed, all bitsx[., ji, g]
must stay unchanged. But because we still need to change
the XOR of all elementsx[1, ji, g], . . . ,x[2p, ji, g] in (2), we
simply flip the 2pth bit x[2p, ji, g] because this bit was put
aside and does not participate in the syndrome calculation.

To summarize, we embed per each group, or pern2p

elements,m + pRa bits using on averageRa changes. We
can also say that the relative payload

α(p) =
m + pRa

n2p
(4)

can be embedded with embedding efficiency

e(p) =
m + pRa

Ra
= p +

m

Ra
= p + e(0). (5)

Here, we abbreviatee(α(p)) as simplye(p).
By inspecting this construction for the Hamming code

H1, which corresponds to the trivial embedding method that
embeds one bit in one pixel using on average1

2 change, or
the (1

2 , 1, 1) code, we discover something truly remarkable.
The ZZW family of codes is

(

1
2 , 2p, 1 + p

2

)

and its embedding
efficiency for various values ofp, e(p) = 1+p/2

1/2 = p + 2, is
shown in Figure 1. This family outperforms all known embed-
ding schemes constructed from structured covering codes (both
linear and non-linear [1]) designed to have a small covering
radius to bound the worst case of the number of embedding
changes. Code families of sparse random constructions [4]
follow the bound even closer. This surprisingly good perfor-
mance is due to the fact that the codes were designed to have
small average distance to code,Ra, even though their covering
radius (the worst number of embedding changes) may be quite
large.

III. A SYMPTOTIC BEHAVIOR OF THEZZW CONSTRUCTION

An observation was made in [11] that the difference between
the embedding efficiency (5) of the codesCp and the upper
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bound (1) approaches a finite limit asp → ∞. We now prove
this fact and derive a closed form expression for the limit as
a function of the code parameters.

Theorem 1: Under the notation established in Section II,

lim
p→∞

α(p)

H−1
2 (α(p))

−e(p) =
1

ln 2
−

m

Ra
+lg

n

Ra
= λ(Ra, n, m).

(6)
Proof: From (4) and (5), we need the asymptotic behavior

of
α(x)

H−1
2 (α(x))

− x −
m

Ra
, (7)

asx → ∞, whereα(x) = (a + bx)2−x, a, b > 0, a = m
n , b =

Ra

n (Note thatα(x) → 0 asx → ∞). Here, we usex instead
of p because we allowx attain real values as opposed top,
which is an integer. First, we derive an asymptotic expansion
of the inversex(α) asα → 0. By taking the logarithm,

x = − lg α + lg(a + bx).

The first order approximation tox(α) is x(α) = − lg α. It
turns out, we will need the second order approximation

x = − lg α + lg(a − b lg α) + r, (8)

wherer is the remainder

r = lg(a + bx) − lg(a − b lg α). (9)

The remainder tends to zero forx → ∞, which can be seen as
follows. From the expression forα(x), for any 0 < ε < 1/2
there existsx0, such that∀x ≥ x0

2−x ≤ α(x) ≤ 2−x+εx, (10)

or

− lg α ≤ x ≤
− lg α

1 − ε
. (11)

Using this bound, we can write for the remainder (9)

0 ≤ r ≤ lg
a − b 1

1−ε lg α

a − b lg α
= (12)

= lg

(

1 +
ε

1 − ε

−b lgα

a − b lg α

)

<
2ε

ln 2

for sufficiently smallα or, equivalently, sufficiently largex.
This is because ε

1−ε < 2ε for ε < 1/2 and lg(1 + δ) =
1

ln 2 ln(1 + δ) < 1
ln 2δ for all δ 6= 0 (note that −b lg α

a−b lg α tends
to one asα → 0). Thus, we just established thatr → 0 as
x → ∞.

To obtain the asymptotic behavior of (7), we use the variable

z = H−1
2 (α(x)).

Note that z → 0 is equivalent withx → ∞. We now
rewrite (7) using the variablez as

H2(z)

z
− α−1(H2(z)) −

m

Ra
, (13)

which can be written usingA(z) = − 1−z
z lg(1 − z) and

using (8) as

lg
1

z
+ A(z) − [− lg H2(z) + lg (a − b lg H2(z)) + r] −

m

Ra
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Figure 2. The lines correspond to codes(Ra, m, n) whose embedding
efficiencye = m/Ra and relative payloadα = m/n satisfyλ(Ra, m, n) =
const. The black dots mark the intersection of the line with the bound on
embedding efficiency (1).

= A(z) + lg
H2(z)

z (a − b lg H2(z))
− r −

m

Ra

= A(z) + lg
lg 1

z + A(z)

a − b lg
(

z lg 1
z + zA(z)

) − r −
m

Ra
.

Note thatA(z) = 1
ln 2 + O(z) as z → 0. We continue by

rewriting the last expression

A(z) + lg
lg 1

z + A(z)

a + b lg 1
z − b lg

(

lg 1
z + A(z)

) − r −
m

Ra
. (14)

The leading term in both the numerator and denominator is
the same,lg 1

z , which means that the lg term tends to− lg b =
lg n

Ra
. Combining this with the fact thatA(z) → 1

ln 2 and
r → 0 asz → 0, (14) tends to

1

ln 2
+ lg

n

Ra
−

m

Ra
= λ(Ra, n, m). (15)

Another way to represent the asymptotic behavior is to draw
the pairs(α, e) =

(

m
n , m

Ra

)

for all codes with the same limit

λ = λ(Ra, n, m). From (15), such pairs must satisfyλ =
1

ln 2 + lg e
α − e, which defines the embedding effiencye as a

function of α for each value ofλ. A few examples of such
curves,e(α; λ), are shown in Figure 2. Note that the black
dots that mark the intersection ofe(α; λ) with the bound on
embedding efficiency do not correspond to any known codes
with the exception of the casee = 2 andα = 1.

The ZZW construction inherits its asymptotic behavior from
Hamming codes, which form the family(1 − 2−l, 2l − 1, l).
This means that they can embed relative payloadαl = l

2l−1

with embedding efficiencyel = l
1−2−l . Using an approach

similar to the above one can prove that Hamming codes also
follow the bound with the following limit

lim
l→∞

αl

H−1(αl)
− el =

1

ln 2
.
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A. Comparing codes

The value of the limitλ(Ra, n, m) = λ(C) could be used
for comparing codes in the zero-payload limit. This limit
is important for steganography since a necessary condition
to avoid being detected by an adversary over multiple use
of the steganographic channel is that the embedded payload
approaches zero. Thus, it seems natural to defineC1 ≺ C2 if
and only if λ(C1) ≤ λ(C2).

Under this ordering, it is rather surprising that among all
Hamming codes,Hl, the code with the smallest value ofλ is
the trivial H1 because

λ(Hl) =
1

ln 2
−

l

1 − 2−l
+ lg

2l − 1

1 − 2−l
=

1

ln 2
−

l

2l − 1

and thus forl > 1

λ(H1) =
1

ln 2
− 1 <

1

ln 2
−

l

2l − 1
= λ(Hl).

This result is perhaps less surprising if we realize thatH1 is
the only Hamming code directly on the bound.

We close this paper with a note that under this ordering, the
best known codes today originate from low density generator
matrix codes [6].

IV. CONCLUSIONS

The embedding efficiency of codes from the ZZW embed-
ding construction [11] follows the upper bound on embedding
efficiency. The distance to the bound in the zero-payload limit
can be expressed in a closed form using the code parameters.
The limit could be used to order codes by their asymptotic
performance. We note that the embedding construction for
±1 embedding also proposed in [11] approaches the bound on
embedding efficiency of ternary codes with the same limit (6).
This is because the ternary bound increases by1 compared to
the binary bound (as explained in Section I) and, as shown
in [11], the embedding efficiency of±1 ZZW code families
is also larger by1.
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