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Abstract—We analyze asymptotic behavior of the embedding average number of embedding changes of this scheme is equal

construction for steganography proposed by Zhang, Zhang,ed  to the average weight of a coset leader or the average déstanc

Wang (ZZW) at 10th Information Hiding by deriving a closed- _ 1
form expression for the limit between embedding efficiency fothe to code defined ag, = ZXEF" d(x,C). Here,d(x,C) =

ZZW construction and the theoretical upper bound as a func- Mineec d(X, c), Wh_ered( ) is the Hamming distance. Thus,
tion of relative payload. This result confirms the experimetial the embedding efficiency is= "Ra’“ lg g. As shown in [5], for

observation made in the Original publication. a fixed relative message |engﬂm’: nT_k lg q, the embedd|ng
efficiency is bounded from above by the rate-distortion lwbun
I. MOTIVATION AND BACKGROUND e(a) < %, (1)
Hy (a)

Steganography deals with secret communication by hiding
messages in innocuous-looking objects, such as digitajésia WhereH, '(x) is the inverse of thg-ary entropy function on
by slightly modifying the colors of their pixels. The goall0,1—1/q], Hy(z) = —zlgz—(1—2)lg(1—z)+zlg(¢—1),
is to make the stego images, which carry secret messag#derelg is logarithm at the base 2. Alternatively, the bound
statistically indistinguishable from the original unmfed Can gew?tated in terms of the change rate= R,/n,
(cover) images [2]. Statistical detectability of most steg- ¢ < —%—, because the largest relative payload that can be
graphic schemes increases with embedding distortion (se&bedded using change ratés H, (/). As a special case, we
e.g., [10]). This is why most stegosystems limit the amplitu point out that the bound on embedding efficiency for ternary
of embedding changes to the smallest possible value. In thigdes is byl larger than the bound for binary codes because
case, the distortion is often measured with the number u.ﬁ(ﬁ) = Hz(ﬁHB Hzéﬁ) + L
embedding changes. The average number of bits embeddedarious embeddlng methods were proposed based on both
per one embedding change is called embedding efficierlgjear and non-linear codes (see, e.g., the references])in [6
and it constitutes an important numerical characteristia o Arguably, the simplest binary matrix embedding method uses
steganographic scheme. binary Hamming codesk;, with codimension. Such codes

By mapping the individual pixels of the cover to elementéan be used to embed— k = [ bits in n = 2! — 1 pixels
of a finite field, for example, by associating a bit (@ary by making on averag&k, = 1 — 27! embedding changes,
symbol from finite fieldF,) with each pixel valug one can Which corresponds to embeddmg efficiengy = —5— at
formulate the problem of maximizing embedding efficiencyelative payload;L = 21 7~ The recent construct|on proposed
within the framework of coding theory [3], [8]. In particwla by Zhang et al. [11] (referred to as the ZZW construction
it is known that ag-ary linear cod€ with lengthn, dimension in this paper) allows construction of new families of codes
k, parity check matrixH, and covering radiu® can be used with very high embedding efficiency from existing codes. An
to communicaten — k g-ary symbols (or(n — k)lgq bits) interesting and important property of this constructiorthiat
in a cover consisting of. elements by making at modt the embedding efficiency of the new codes seem to follow
changes in the following manner. Let € [, be the vector the upper bound (1) as decreases to zero. In this paper, we
of symbols assigned to elements of the cover. Then,— k  prove this experimental observation and derive a closemwh for
message symbolﬁ?,g*k, can be embedded i by modifying expression for the value of the limit. The performance of a
the symbols of pixels ty = x + e(m — Hx), wheree(s) steganographic scheme in the zero-payload limit is impaorta
is a coset leader of the coset corresponding to syndremefor example, to avoid detection over multiple uses of thgaste
The recipient can read the message from the stego objecichannel [9].
its syndromem = Hy, becausédy = Hx + m — Hx. The In the rest of this paper, we constrain ourselves to binary

_ _ _ ~codes. In Section II, we first briefly describe the ZZW con-

e e e s Sk, Structon. The main resut is stated, proved, and analyaed
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1A popular way is to use the least significant bit of the pixeleaor, in LetCy be a code (n0t necessar”y “near) of Iengtthat can

general, the modulg operation. embedm bits in n pixels using on averag®, changes. We



will say thatCy is (R,, n, m). The following construction leads
to a family of code<,, p > 1, that are(R,,n2P, m + pR,).

For a positive integep, we describe the construction of the 8t
pth member of the code familg,. Divide the cover intoL
disjoint groups ofn2? pixels. Furthermore, divide each group T

into n disjoint subsets, each consisting &f pixels. Denote
by x[i,s,9], i =1,...,2°, s =1,...,n, g = 1,...,L, the

ith element in thesth subset from thgth group. First, embed ¢l o + Bound |
m bits b € {0,1}™ in each group (this means L bits are . ‘j Eam”ﬂlfz-zs:l*w?)
embedded in the whole image) by applying the embeddir ar e
code(C, to the binary vectowv obtained by XOR-ing alb?
bits from each subset 3
2P 2k i
vlis) = Pxli 5.9l s=1...om. @) I T S T
=1 -1

a
Mark down the indices of subsets whose XOR needs to )
be changed to embed the messdgesay j1. j..... 7. € Figure 1. Embedding efficiency of codes from the fanﬁl ,2P 1+ 9)

1 9 o th 'I]igbeR y ﬁ’ﬁ’ b’]Tt . forp=0,...,6, e(p) = p+2, as a function of relative payload. The bold
{ Yo ,n}. n average, there wi a SUC S_u SELS N jing is the upper bound (1) fay = 2. The embedding efficiency#, of
each group, oE[r] = R,. To change the XOR in (2), onepinary Hamming codesH;, for i = 1, ..., 7 is shown for comparison .
pixel must be changed in each marked subset. We will let this

one change communicate additionabits through a binary
Hamming code of codimensiop, which will give us the change in the syndrome&l+9) is needed, all bitsx[., j;, g]
expected payloaeh + pR, per each group (or per2? cover must stay unchanged. But because we still need to change

elements) for the cod@,. However, because the receiver wiltthe XOR of all elementx[1, j;, g], ..., x[27, j;, g] in (2), we
not know which subsets communicate this additional payloainply flip the 2Pth bit x[2”, j;, g] because this bit was put
(the receiver will not know the indiceg, . .., j.), the sender aside and does not participate in the syndrome calculation.

must use codes for memory with defective cells (also calledTo summarize, we embed per each group, or p2f

wet paper codes [7]), which is the step described next.  elements,m + pR, bits using on averagé, changes. We
Let H be thep x (27 — 1) parity check matrix of a can also say that the relative payload

binary Hamming code. Compute the syndrome of each sub-

+pR,

set ass*9) = Hx[.,s,g] € {0,1}?, wherex[.,s,g] = a(p) = % 4)
(x[1,s,9],...,x[2P — 1,s,g]) written as a column vectér . n. o
Concatenate all these syndromes to one column vectep of ¢@n be embedded with embedding efficiency
bits m +pRa m

s(19) §(2:9)  g(mg), 3) e(p) = —R. Ptg TP e(0). (6)
Now realize that due to the property of Hamming codelere, we abbreviate(a(p)) as simplye(p).
for eachj; we can arrange that each syndrosié&:?) i = By inspecting this construction for the Hamming code
1,...,r, can be changed to an arbitrary syndrome by makirdg:, which corresponds to the trivial embedding method that
at most one change t9[., 5;, g]. embeds one bit in one pixel using on averagehange, or

Label all p bits of syndromes coming from subset$he (3,1,1) code, we discover something truly remarkable.
1,42, -, 4 as dry (which makes total- dry elements per The ZZW family of codes if},2?,1 + §) and its embedding
group) and all remaining elements in (3) as wet (in the defeefficiency for various values of, e(p) = “{5’2/2 =p+2,is
tive memory scenario, wet bits correspond to stuck celldavhishown in Figure 1. This family outperforms all known embed-
dry bits correspond to correctly functioning cells). Camecete ding schemes constructed from structured covering codeh (b
the vectors (3) from all groups to form one long vectoioefp linear and non-linear [1]) designed to have a small covering
elements. This vector will havg(r; +---+r) dry elements radius to bound the worst case of the number of embedding
or on averageE[p(r; + --- + rr)] = LR,p dry elements. changes. Code families of sparse random constructions [4]
Now, form a random sparse mati with Lnp columns and follow the bound even closer. This surprisingly good perfor
p(r1 + -+ r) rows so that its columns follow the robustmance is due to the fact that the codes were designed to have
soliton distribution as described in [7]. Thus, using wep@a small average distance to code,, even though their covering
codes, we can communicate on averdge?, message bits. radius (the worst number of embedding changes) may be quite
If the wet paper code dictates that a syndrasrige changed large.
to s’ # s, we can arrange for this by modifying exactly one

element in the corresponding vector of bit§, ji,g]. If N0 ||| A sYyMPTOTIC BEHAVIOR OF THEZZW CONSTRUCTION

°Note that we are reserving the last element from each suljgét s, g] An Observf'ﬂion WaS made in [11] that the difference between
to be used later. the embedding efficiency (5) of the codés and the upper




bound (1) approaches a finite limit as— co. We now prove

this fact and derive a closed form expression for the limit ¢
a function of the code parameters. o
Theorem 1: Under the notation established in Section II, &
55
) a(p) 1 m n
lim —————— = ———+lg— = A(Rs,n,m). I
M g P Wz ®, TR, ~Afemm) 5 bound
(6) o M5 o A=UIn@)-1| -
Proof: From (4) and (5), we need the asymptotic behavic at : i:gz
of o(2) - 35| ® 1=008
—_—t— —r - —, 7 I
Hy ' (a(z)) R, () :
25F
asx — oo, wherea(z) = (a +bx)27%, a,b > 0,a = 2, b = L
% (Note thata(z) — 0 asz — o0). Here, we user instead ‘ ‘ ‘ ‘ ‘ ‘
of p because we allow attain real values as opposedip YT 2 3 4 5 6

which is an integer. First, we derive an asymptotic expansi a

of the inverser(a) asa — 0. By taking the logarithm,
Figure 2. The lines correspond to codéB,,m,n) whose embedding

r=—lga+Ilg(a+ bx). efficiencye = m/Rq and relative payload: = m/n satisfy \(Rq, m, n) =
const. The black dots mark the intersection of the line with the tbom
The first order approximation te(a) is z(a) = —lga. It ~embedding efficiency (1).
turns out, we will need the second order approximation
z=—-lga+lgla—blga)+r, (8) = A(z)+1g (2) e
) ) z(a—blg Ha(z2)) R,
wherer is the remainder 1
= A(z)+1 lsz +A(z) -
r=lg(a+bzx) —lgla — blga). (9) N ga—blg (z1g L+ 2A(2)) R,
The remainder tends to zero for— oo, which can be seen asnote that A(z) = =5 4+ O(z) asz — 0. We continue by
follows. From the expression fae(z), for any0 < e <1/2  yewriting the last expression
there existseg, such thatve > zg .
lg = + A(z) m
—z —z+ex A +1 z —r - —. 14
277 <afz) <2 ’ (10) (2) ga—i—blg%—blg(lg%—i—A(z)) " R, (14)
or —lga The leading term in both the numerator and denominator is
—lga<z< ¢ (1) the samelg <, which means that the Ig term tends-tdg b =

lg z-. Combining this with the fact thati(z) — = and

Using this bound, we can write for the remainder (9) 20 asz — 0, (14) tends to In2

0 < <1 a—blielga 12 1 n m
= T8 T  higa (12) _1n2+1gR_a_R_a:)\(R“’n’m)' (15)
e —blga 2¢
= Ilg|1 —_— —
g( +1—ea—blga)<ln2 u

for sufficiently smalla or, equivalently, sufficiently large:.
This is becauser™ < 2¢ for e < 1/2 andlg(l +0) =

w5 In(1 4 6) < 56 for all § # 0 (note that—5£% tends
to one asa — 0). Thus, we just established that— 0 as
xr — OQ.

u
To obtain the asymptotic behavior of (7), we use the variabi%

n’ Rg
= A(Rg4,n,m). From (15), such pairs must satisty =
ﬁ +1g £ — e, which defines the embedding effieneyas a
function of o for each value of\. A few examples of such
rves,e(a; A), are shown in Figure 2. Note that the black
ts that mark the intersection efa; \) with the bound on

the pairs(o, e) = (m m) for all codes with the same limit

Another way to represent the asymptotic behavior is to draw

z= Hy'(a(z)). embedding efficiency do not correspond to any known codes

) ) ) with the exception of the case= 2 anda = 1.
Note thatz — 0 is equivalent withz — oo. We now  The zZW construction inherits its asymptotic behavior from

rewrite (7) using the variable as Hamming codes, which form the familgt — 2~ 2! — 1,1).
l

Hs(2) 1 m This means that they can embed relative payload= 5—
2 (Ha(2)) - R,’ (13)  with embedding efficiency; = # Using an approach
: _ . 1 similar to the above one can prove that Hamming codes also
which can be written usingd(z) = —"==1g(1 — 2) and 5\ the bound with the following limit
using (8) as
1 m fim — = L
lg;—l—A(z)—[—lgHg(z)—i—lg(a—blgHg(z))—|—7°] ~B o0 H L(ay) In2



A. Comparing codes

The value of the limitA(R,,n,m) = A(C) could be used
for comparing codes in the zero-payload limit. This limit
is important for steganography since a necessary conditi%}
to avoid being detected by an adversary over multiple use
of the steganographic channel is that the embedded payload
approaches zero. Thus, it seems natural to define: C, if (el
and only if \(C1) < A(C2).

Under this ordering, it is rather surprising that among all
Hamming codesH;, the code with the smallest value afis

(7]

10
the trivial H; because (ol
1 l 2l —1 1 l
)\ = — — 1 _- — -
M) =g T P 8T i "o -7
and thus forl > 1
1 1 l

This result is perhaps less surprising if we realize tHatis
the only Hamming code directly on the bound.

We close this paper with a note that under this ordering, the
best known codes today originate from low density generator
matrix codes [6].

IV. CONCLUSIONS

The embedding efficiency of codes from the ZZW embed-
ding construction [11] follows the upper bound on embedding
efficiency. The distance to the bound in the zero-payload lim
can be expressed in a closed form using the code parameters.
The limit could be used to order codes by their asymptotic
performance. We note that the embedding construction for
+1 embedding also proposed in [11] approaches the bound on
embedding efficiency of ternary codes with the same limit (6)
This is because the ternary bound increase$ bympared to
the binary bound (as explained in Section I) and, as shown
in [11], the embedding efficiency af1 ZZW code families
is also larger byl.
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