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ABSTRACT 
 
In this paper, we present a new steganographic paradigm for digital images in raster formats. Message bits are 
embedded in the cover image by adding a weak noise signal with a specified but arbitrary probabilistic distribution. 
This embedding mechanism provides the user with the flexibility to mask the embedding distortion as noise 
generated by a particular image acquisition device. This type of embedding will lead to more secure schemes 
because now the attacker must distinguish statistical anomalies that might be created by the embedding process from 
those introduced during the image acquisition itself. Unlike previously proposed schemes, this new approach, that 
we call stochastic modulation, achieves oblivious data transfer without using noise extraction algorithms or error 
correction. This leads to higher capacity (up to 0.8 bits per pixel) and a convenient and simple implementation with 
low embedding and extraction complexity. But most importantly, because the embedding noise can have arbitrary 
properties that approximate a given device noise, the new method offers better security than existing methods. At the 
end of this paper, we extend stochastic modulation to a content-dependent device noise and we also discuss possible 
attacks on this scheme based on the most recent advances in steganalysis. 
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1. INTRODUCTION 
 
The purpose of steganography is to hide the very presence of communication by embedding messages into 
innocuous-looking cover objects, such as digital images. To accommodate a secret message, the original cover 
image is slightly modified by the embedding algorithm to obtain the stego image. The embedding process usually 
incorporates a secret stego-key that governs the embedding process and it is also needed for the extraction of the 
hidden message. 
 
In contrast to watermarking when the embedded message has a close relationship to the cover image supplying data, 
such as sender or receiver information, authentications codes, etc., in steganography, the cover image is a mere 
decoy and has no relationship to the hidden data. The most important requirement for a steganographic system is 
undetectability: stego images should be statistically indistinguishable from cover images. In other words, there 
should be no artifacts in the stego image that could be detected by an attacker with probability better than random 
guessing, given the full knowledge of the embedding algorithm except for the stego-key (Kerckhoff’s principle). 
 
The early steganographic schemes focused on introducing as little distortion in the cover image as possible utilizing 
the seemingly intuitive heuristics that the smaller the embedding distortion is, the more secure the steganographic 
scheme becomes. However, recent advances in steganalysis clearly showed that this is not the case. The Least 
Significant Bit embedding (LSB) with sequential or random message spread has been successfully attacked even for 
very short messages2,3,11. In essence, the LSB embedding is so easily detectable because it introduces distortion that 
never naturally occurs to images and creates an imbalance between appropriately defined statistical quantities. A 
better approach is to replace the operation of flipping the LSBs by randomly adding 1 or –1 to pixels (+–1 
embedding) and extracting the message bits from LSBs as in the classical LSB embedding. This is the embedding 
algorithm of Hide8 and it has also been accepted (in a slightly different version) for steganography in the JPEG 
format10. It turns out that this simple modification of the LSB embedding paradigm is, in fact, much more difficult to 
detect4,11. 
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The +–1 embedding is a special case of our stochastic modulation when the noise η added to the cover image has the 
following probability distribution P: P(η = –1) = p/2, P(η = 1) = p/2, P(η = 0) = 1−p (assuming the message is a 
random bit-stream and 100p % of pixels were used for embedding). Notice that in +–1 embedding, the message bits 
are still encoded and extracted as LSBs of pixels. In this paper, we show how to extend this embedding archetype to 
a noise with an arbitrary probabilistic distribution P defined on an arbitrary set of integers. The algorithm that 
achieves this is called stochastic modulation. 
 
The embedding party (Alice) can use stochastic modulation, for example, in the following way. Alice will carry out 
experiments on her source of cover images and estimate the properties of the noise present in them. If Alice’s 
acquisition device is a digital camera, the noise depends on the exposition time, the amount and type of ambient light 
at the scene, usage of a flash, the specific CCD sensor and camera circuitry, interpolation algorithms in camera’s 
hardware, etc. The sensor and hardware noise are known to be well modeled by an i.i.d. Gaussian noise5. Because 
there is in general a great variation in the amount of noise in the images due to the multitude of contributing effects 
mentioned above, one could slightly increase the amount of noise without introducing any easily detectable 
statistical artifacts. This idea is at the base of our stochastic modulation presented in this paper. 
 
Determining the actual security of stochastic modulation, however, is not an easy task due to the fact that we are 
adding a quantized noise to an already quantized (and processed) signal rather than at the point of acquisition when 
the light hits the CCD sensor. This issue is also discussed in the paper. 
 
Before we close this introduction, we note that, similar to stochastic modulation, DSSS (Direct Sequence Spread 
Spectrum) embedding, that is widely used for robust watermarking, also superimposes message-modulated noise on 
the image. However, DSSS cannot be simply turned into a high-capacity non-robust embedding needed for 
steganography due to the correlation-based message extraction. 
 
The paper is organized as follows. In the next section, we give a brief overview of related methods proposed in the 
past. Then, in Section 3, we describe the main ideas behind stochastic modulation and in Section 4 we discuss some 
important implementation issues that need to be considered to establish practical communication. In Section 5, we 
investigate the security of the proposed algorithm from the point of view of recent advances in steganalysis. 
Stochastic modulation is extended to a content-dependent noise in Section 6. Finally, in Section 7 we conclude the 
paper and outline possible future research directions. 
 

2. RELATED METHODS 
 
In the past, several researchers attempted to design steganographic schemes that embed messages by adding 
Gaussian noise to the image. Marvel et al.7 describe a high-capacity method for embedding message bits in 
uncompressed raw image formats. A special non-linear transformation together with the message bits is used to 
generate a Gaussian signal that is added to the cover image. The purpose of the transformation is to maximize the 
separation between two samples of a random Gaussian variable that encode a 0 and a 1. The message detector first 
applies an adaptive Wiener filter to the image to estimate the noise component. The noise component then 
determines the embedded bit via the inverse embedding function. The amplitude of the added Gaussian signal, 
however, must be large enough to minimize the errors during bit extraction. This forces the user to increase the 
amplitude of the added noise, which in turn decreases the security of the steganographic method. Error correction is 
also a necessity to guarantee error-free bit extraction even when no distortion is present. This further decreases the 
capacity of the method. We acknowledge that this work was focused on the capacity-robustness issue rather than 
security. 
 
Alturki’s1 approach is a simple bit-replacement of quantized DCT coefficients calculated from a randomly permuted 
image. The key-dependent permutation serves as a pre-whitening and distributes the image energy evenly over the 
whole spectrum. Consequently, the quantization noise appears to be Gaussian although no formal proof of this is 
given. In Alturki’s method, truncation of grayscales at 0 or 255 may introduce read-out errors during the decoding. 
The author mentions that the problem can be dealt with by applying error-correction to his scheme. However, the 
error-correcting scheme will further decrease the capacity of the method. Because the maximal bit error rate highly 
depends on the image, it is not easy to find fixed error bounds. Also, the method cannot be easily generalized to 
make the distortion follow an arbitrary probability distribution that would approximate a non-Gaussian device noise. 
 



According to the best knowledge of the authors of this paper, no steganographic method has so far been proposed 
that would provide a high embedding rate (e.g., above 0.5 bpp) and could be interpreted as adding noise of 
predefined properties, including the proof that the distortion really has the required statistical properties. In the next 
section, we describe a simple high-capacity steganographic method that embeds message bits by adding a noise 
signal with an arbitrary distribution or even a content-dependent noise. The method does not need any error-
correction scheme or any computationally expensive image processing or transformations.  
 

3. STOCHASTIC MODULATION 
 
In Subsection 3.1, we describe a high-capacity steganographic method that embeds message bits into individual 
pixels by adding to the cover image a noise signal with a probabilistic distribution that is symmetrical about zero. 
Generalization to an arbitrary noise distribution is presented in Subsection 3.3. Throughout this text, we assume that 
the cover image is an 8-bit grayscale image.  
 
First, note that if {si} is a normally distributed Gaussian sequence N(0,σ) and if zi is a random variable uniformly 
distributed in {–1, 1}, then {zisi} is also N(0,σ). In other words, a Gaussian sequence with randomized signs stays 
Gaussian. This statement is true for any random variable with a distribution symmetrical about zero. 
 
Suppose the message mi consists of a random sequence of 1's and –1's (mi has zero mean). Consider a naïve 
steganographic scheme in which we add the signal {misi} to the image. Unfortunately, in order to recover the 
message, the original image or at least its approximation (e.g., using low-pass filtering) is necessary. Errors in 
estimating the original image necessitate employment of error-correction schemes, which in turn may dramatically 
decrease the steganographic capacity. Below, we show a simple idea how a class of parametrized parity functions 
can be used to make this scheme oblivious. 
 
We define a parity function P on pixel values, P(x, s) ∈ {–1,1}, for x∈{0, …, 255} and s > 0, where s is an integer 
parameter, and P(x, s) = 0 for s = 0. This function applied to the stego image pixel values will produce message bits. 
The parity function is required to satisfy the following “anti-symmetric” property for all x 

 
 P(x+s, s) = – P(x–s, s) for s ≠ 0 .      (1) 

 
For example, for s = 1, we can define P(x, 1), x = 0, 1, 2, … as P(x, 1) = 1, 1, –1, –1, 1, 1, –1, –1, …. In general, for 
s > 0, the first segment of 2s parities can be arbitrary, but every next segment of 2s values must be the negative copy 
of the previous segment. Thus, it is enough to define P on the set [1, 2s]. A good choice for the parity function is 
 

P(x, s) = (–1)x+s, x∈[1, 2s] . 
 

This parity function ensures that P changes its sign as often as possible. We will find this property useful when x+s 
or x–s should get outside of their dynamic range during embedding. 
 
Notice that besides the pixel value x, the parity function depends on the second parameter s. This is important 
because otherwise we could not find a function P(x) satisfying P(x+s) = – P(x–s) for all pixel values x and all 
positive integers s. 
 
3.1 Embedding method 
Having defined the parity function, we can now continue with the description of the embedding method. The image 
pixels can be visited either sequentially or along a pseudo-random walk generated from the stego-key. A pseudo-
random number generator (PRNG) is seeded with a secret seed derived from the stego-key. The PRNG should 
produce numbers with a distribution that matches the distribution of the noise that will be superimposed on the cover 
image during embedding. We will call the noise generated by the PRNG the stego noise. 
 
For each pixel x along the random walk, we generate one sample of the stego noise rounded to an integer s. If s = 0, 
we do not modify x and move to the next pixel. If s ≠ 0, we check if P(x+s, s) = m, where m is the message bit to be 
embedded. In this case, we modify x to x + s and move to the next pixel and embed the next message bit. If P(x+s, s) 
= –m, we modify x to x – s. Denoting the pixel values of the stego image as xi’, the embedding process can be 
expressed using the formula 

xi’ = xi + miP(xi + si , si) si . 



 
In this formula, the message bits mi are duplicated as necessary to account for the cases when si = 0. We can say that 
instead of adding the signal {misi} to the cover image as we did in the beginning of this section, we add {visi}, where 
vi = miP(xi + si, si). According to our assumption, the message bits mi form a pseudo-random sequence of 1’s and –
1’s. Because the image and the stego noise sequence si are independent of the message, the variable vi is also a 
pseudo-random sequence of 1’s and –1’s. Thus, the signal vi has the same statistical properties as the stego noise. 
 
There is a slight complication at the boundaries of the pixels’ dynamic range at 0 and 255. The amplitude of the 
noise that is added to the image should be truncated as it would happen during the image acquisition process. 
Whenever xi + si > 255 the xi’ will be the nearest value less or equal to 255 with the desired parity mi. A similar 
measure is applied when xi + si < 0. 
 
3.2 Message extraction 
In the decoding process, we generate the same stego noise sequence {si} from the stego-key as was done during 
message embedding, follow the same pseudo-random path in the stego image, and apply the parity function P to the 
pixel values. The non-zero parity values form the secret message 
 

mi = P(xi, si). 
 

We note that the stego-key can determine both the random embedding walk and the sequence si. 
 
If the device noise is Gaussian, the embedding distortion can be expressed using the Peak-Signal-to-Noise-Ratio 
(PSNR) as 
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To obtain the expected capacity C measured as the number of bits-per-pixel, bpp, we have to subtract the probability 
of occurrence of ‘0’ in the stego noise sequence si from the maximum bit rate of 1 bit per pixel (bpp): 
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On the other hand, if the user specifies the capacity C in bpp, the standard deviation σ of the noise that needs to be 
added to the image to carry such payload must be greater than 
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where erf -1 is the inverse error function. 
 
3.3 Improved stochastic modulation 
The steganographic method as described in the previous subsection works with one stego noise sequence si that is 
either added or subtracted from the pixel value based on the match between the message bit and the parity function. 
It is possible to obtain a higher embedding capacity with the same distortion by considering two stego noise 
sequences rather than one and always add one or the other, again based on the match between the message bit and a 
parity function. Furthermore, the improved technique works for stego noise with an arbitrary probability distribution. 
In particular, the distribution now does not have to be symmetrical about zero. 
 
First, we generate two independent stego noise sequences rounded to integers ri, si (for example, we can seed the 
PRNG with two different seeds derived from the stego-key). For each pixel xi, if ri − si = 0, we do not embed a 
message bit but we do modify xi to xi+ri and embed the same message bit in the next pixel. If ri − si ≠ 0, we verify 
whether P2(xi+si, ri−si) = mi, where mi is the message bit to be embedded, and P2 is a parity function defined so that 
P2(x+k, k) = −P2(x, k) for all x∈[0, 255] and k≠0 (see the definition below). In this case, we modify xi to xi+si and 



move to the next pixel. If P2(xi+si, ri−si) ≠ mi, we modify xi to xi+ri. According to the definition of P2, we now have 
to obtain a match because  
 

P2(x+r, r−s) = – P2(x+r–(r−s), r−s) = – P2(x+s, r−s) ≠ 0, whenever r−s ≠ 0. 
 
Denoting the pixel values of the stego image as xi’, the embedding process can be expressed using the formula 
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Thus, the pixel value is modified by adding the value of one of the stego noise sequences to it. Because the selection 
of the values ri vs. si is governed by the match between two uncorrelated quantities – the parity function P2(xi+si, 
ri−si) and the message bit mi – the noise added to the image has the same characteristics as the stego noise. 
 
The parity function P2: ([0, 255], Z) → {–1,1} is periodic with the period 2|k| and is defined similarly to the previous 
parity function P requiring  
 

P2(x+k, k) = –P2(x, k), for all x∈[0, 255] and k≠0.  
 
Again, it will become advantageous to define P2 so that it frequently changes sign to minimize deviations from the 
stego noise signal at 255 and 0: 
 

    P2(x, k) = (–1)x+k, x∈[1, k], k≠0 is an integer, 
                                P2(x, 0) = 0. 

 
The embedding distortion for the new method is still the same as when just one stego noise sequence was used 
because we are adding a signal selected at random from two stego noise sequences of the same distribution. But now 
the probability of not embedding a message, which occurs when r − s = 0, is smaller. This is because in general the 
distribution of the sum of two random variables is the convolution of both and is thus “flatter” than for a single 
variable. In the case of a Gaussian stego noise, the probability that r − s = 0 can be calculated as follows. The 
random variables r and s are quantized Gaussian variables with the distribution Ps=Pr:  
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Thus the probability that r − s = 0 is (Pr∗Ps)(0), where ∗ denotes the convolution. Finally, the capacity of the 
modified stochastic modulation algorithm is  
 

C = 1 – (Pr∗Ps)(0).       (3) 
 
The improvement in capacity is quite obvious from Figures 1 and 2 (the broken line corresponds to the embedding 
method with one Gaussian sequence and the continuous line to the new two-sequence method). 



 
Figure 1: Capacity as a function of the PSNR. 

 
Figure 2: Capacity as a function of the Gaussian variance σ  2. 

 
4. PRACTICAL IMPLEMENTATION ISSUES 

 
In this section, we want to address two important implementation issues that must be considered in any practical 
communication scheme that uses the paradigm of stochastic modulation: 
 

(1) Communication of the stego noise parameters (e.g., the variance σ for Gaussian noise) to the receiver, 
(2) The stego noise sequences ri and si should be independent for different images, i.e., it is not sufficient if 

they only depend on the stego-key. 
 
Let us first inspect the issue of the stego noise parameters. Because stochastic modulation masks embedding by 
adding stego noise to the cover image, it is important to always add the noise signal to all image pixels rather than a 
proper subset of pixels. However, the embedding capacity is a function of the stego noise probability distribution. 
Thus, either we choose one fixed probability distribution (i.e., a fixed variance sigma for Gaussian noise) and pad 
the messages with dummy bits in order to cover the whole image or we adjust the noise parameters according to the 
message length. The second alternative does not introduce unnecessary distortion and is thus preferable. However, in 
this case we need to communicate the stego noise parameters. It is not clear how to achieve this because one needs 
the parameters in order to begin with the extraction. As one possible choice, one could choose a small set of pixels 



and encode the stego noise parameters, for example, into their LSBs. Although this set of pixels can be generated 
from the stego-key, for cover images of the same size the pixels carrying the stego noise parameters will be the same 
unless one changes the stego-key. Why this arrangement can introduce a weakness and a possible place to attack the 
scheme, will become apparent in the paragraph below where we discuss the second implementation issue. 
 
Let us assume that an attacker obtains N different stego images that are of the same size and were embedded with 
different messages of the same length with one fixed stego-key. Each pixel xi(t) in the t-th cover image can be 
modified during embedding either to xi(t)+ri or to xi(t)+si, where ri and si are two stego-noise sequences generated 
from the secret stego-key. An attacker could apply denoising algorithms to each stego image and extract the noise 
signal η(t). The extracted noise can be decomposed into three components η(t) = ηnoise(t)+ηcontent(t)+ηstego-noise(t), 
where ηnoise is the component due to noise already present in the image, ηcontent depends on image content, and ηstego 

noise is either ri or si. Because the first two components are independent from image to image, the expected value 
E(η(t)) = riP(η = ri)+siP(η = si) ≠ 0 in general. This observation could be used to collect enough statistical evidence 
to distinguish stego and cover images, given sufficiently large N. Also, for the same reason, we might identify the set 
of pixels that encode the parameters (see the previous paragraph) unless we change the stego-key sufficiently often. 
This attack is similar in principle to the idea proposed by Memon et al.6 for attacking image-independent robust 
spread-spectrum watermarking schemes. 
 
The second issue could be solved by changing the stego key sufficiently often, for example, by communicating it 
using a side channel or by sending future keys as part of the messages. However, sending the next key as part of the 
message brings up synchronization issues, should some of the images get corrupted or lost on their way to the 
recipient. Ideally, we would like to have a scheme that avoids any potentially complicated issues with key 
management and does not rely on any side channel. As a result of these requirements, we propose the following 
system for embedding and extraction that uses a session key and a clever communication of the stego noise 
parameters. 
 
Emb 0: In the beginning, both communicating parties agree on the stego-key K. This key will be kept secret and will 

not be changed during the course of communication. Alice and Bob will also agree on how many bits they 
will be using to code the stego noise parameters (np bits) and on the length ls of the session key S, |S| = s.  

Emb 1: To embed m bits in the cover image, Alice first calculates the values of the stego noise parameters that will 
enable her to embed with high probability at least m bits in the cover image. 

Emb 2: As the next step, she uses the stego-key K to divide the pixels of the cover image I into np + ls random subsets 
I1, I2, …, 

sp lnI + ,  I1∪I2∪ … ∪
sp lnI + = I. The algorithm for this part of the stego system is public and will be 

known to the opponent.  
Emb 3: Then, she generates a random session key S. She uses both the stego key K and the session key S to generate 

the random stego noise sequences ri and si with parameters determined in step Emb 1 and uses them as in 
Subsection 3.3 to embed the message (she can embed the bits sequentially in the cover image, for example). 

Emb 4: After the message is embedded (she may need to pad the message to make sure that the whole image has 
been affected), Alice encodes the np + ls bits (the stego noise parameters and the session key) as parities of 
subsets Ik defined in step Emb 2. Alice can, for example, encode one bit per each Ik as the XOR the LSBs of 
all pixels in Ik. If she needs to modify this XOR, she can randomly choose one pixel yk in Ik that was not used 
for embedding in step Emb 3 due to the fact that r = s (see Subsection 3.3) and add or subtract 1 from it. 

      
The extraction of the secret message proceeds as follows. 
 
Ext 0: Bob uses his stego key K and divides the stego image into np + ls subsets Ik.  
Ext 1: Then, he calculates the XOR of all LSBs in each Ik and recovers the stego noise parameters and the session 

key S. 
Ext 2: Bob then uses K and S to generate the same stego noise sequences ri and si as Alice. 
Ext 2: Bob reads the header and then m message bits using the algorithm of Subsection 3.3. 
 
First of all, notice that this communication system solves the problem of having to communicate the stego noise 
parameters before Bob can apply the extraction algorithm of stochastic modulation. The session key also brings 
enough diversity to the stego noise, so that the attack mentioned above is no longer plausible.  
 



In practice, if we used Gaussian noise as the stego noise, we would need, say, 10 bits to represent the variance σ 2 
and, say, 10 bits for the session key. This length of the session key may seem too short, but will likely be sufficient 
for any practical purposes. Even if the attacker had 1 million of stego images, there would be about 1000 images 
with the same stego noise but with different modulation (assuming all messages have the same length) that he would 
have to somehow find among the 1 million of images. Considering the fact that the stego noise variance is less than 
1.38 (for less than 0.8 bpp messages), which is far below typical noise levels in images, this task does not seem 
plausible. In any case, paranoid users could reserve 20 or more bits for the session key to obtain their peace of mind.  
 
Because the stego noise sequence depends on both the stego and session keys, a brute force search for the message 
presence will not be feasible. We reiterate that the purpose of the stego key is just to create sufficient variety among 
the noise sequences to prevent the attack mentioned above.  
  
The only deviation from the desired statistics of the stego noise occurs in step Emb 4 when we modify on average 
(np+ ls)/2 pixels by 1 (10 pixels if we use the parameters from the previous paragraph). However, because now those 
pixels are selected at random and are different for each image (due to the session key), the attacker cannot identify 
them by averaging the stego images.  
 
In step Emb 4, it could theoretically happen that all pixels in one set Ik have been modified in Step 3 and Alice 
would not be able to embed any bit in that group. For a small 128×128 image and np + ls = 20, on average |Ik| = 
1282/20 = 819. The number of zeros in the stego sequence decreases with message length. In the least favorable case 
for us, when the message is large, such as 0.8 bpp, the probability that all pixels in Ik will be used for embedding is 
0.8819 ≅ 10−80, which is already astronomically small. In either case, to make the embedding 100% reliable, the 
embedder could go back to Emb 3 and generate a new session key S. Embedding rates higher than 0.8 bpp are not 
recommended for this steganographic method due to a sharp increase in distortion above this rate and a negligible 
gain in capacity (see Figure 2). 
 

5. SECURITY CONSIDERATIONS 
 
In this section, we try to answer the following question: “How detectable is the act of adding stego noise to the cover 
image?” Westfeld11 recently described an attack on Hide8. The +–1 embedding mechanism of Hide creates a large 
(and anomalous) number of close colors (i.e., colors that differ by at most 1 in each channel). There are between 0 
and 26 close neighbors for each color in the RGB cube. The attack starts by calculating for each color present in the 
image the number of its closest neighbors. Then, we calculate the histogram hi, i = 0, 1, …, 26, hi standing for the 
number of colors with exactly i closest neighbors. Non-embedded cover images typically have hi = 0 for i > 10, 
while images embedded using Hide show a tail of gradually falling non-zero values hi for i > 10 even for relatively 
small messages. This difference could be used to identify stego images created by Hide and the method would also 
work for detection of stochastic modulation because most of the changes in stochastic modulation are also –1, 0, and 
1. However, this attack appears to work for a relatively narrow class of images that include cover images that are 
decompressed JPEGs or, in general, images that do not have a large number of unique colors, such as JPEGs due to 
the low-pass character of JPEG compression, or filtered images with a high SNR. However, there is a large class of 
naturally occurring images that exhibit a non-zero tail in hi reminiscent of the one caused by embedding. This class 
includes scans of photographs or decompressed JPEG images resampled to a smaller size. The scanning process or 
the resampling algorithm often introduce many new close colors in the image and thus appear as stego images 
produced by Hide or the stochastic modulation algorithm. Such images would be incorrectly identified as false 
positives. 
 
Westfeld11 mentions in his paper that his technique could in principle be extended to grayscale images after 
transforming them to color images by constructing colors from three neighboring pixels. However, the attack is not 
further explored and is quite likely to encounter similar problems for scans and resampled images. 
 
Another related, but different attack has been proposed by Harmsen4. Harmsen based his attack on the fact that noise 
adding in the spatial domain corresponds to low-pass filtering of the histogram. Thus, the histogram of stego images 
has less power in high frequencies than the same histogram for cover images. The attack starts with calculating the 
3D histogram of color images h(r, g, b) standing for the number of pixels with the color (r, g, b). Then, h is 
transformed using the 3D Fourier transform to obtain F(h). Finally, he calculates the center of gravity (which is a 3D 
vector for color images and a scalar for grayscale images) of |F(h)| and uses this quantity as the distinguishing 
statistics to differentiate between cover and stego images. As reported by Harmsen, it is indeed possible to find a 



fixed threshold (!) that will distinguish between cover images and embedded stego images for the Greenspun 
database (www.greenspun.com). The attack also works for images with a low number of colors, such as 
decompressed JPEGs or in general images with high SNR.  
 
Our experiments indicate that, similar to the method by Westfeld, images with a high number of unique colors, such 
as scans, cannot be thresholded using this method. Equivalently, such images will introduce many false positives. 
One possibility to fix this problem would be to use an image adaptive threshold, but at this point, it is not clear how 
to choose such a threshold. Also, in our tests, Harmsen’s method could not distinguish between cover and stego 
grayscale images produced by stochastic modulation. 
 
To summarize this section, we point out that we are currently unaware of any reliable method for detection of 
stochastic modulation. Partial success has been reported for detection of noise adding in color images, but the 
detection appears to be unreliable for scans and resampled images. Stochastic modulation for grayscale images 
appears as a relatively safe method and is also recommended as the method of choice by the authors.  
 

6. CONTENT-DEPENDENT STOCHASTIC MODULATION 
 
Some digital image acquisition devices may generate noise that depends on the image content. For example, the raw 
image data obtained from an image sensor is usually post-processed using filters that may introduce a noise 
component that is spatially non-uniform. The question that naturally arises is whether it is possible to develop 
stochastic modulation steganography for some sufficiently general content-dependent device noise model. Indeed, 
this topic is the subject of this section.  
 
In what follows, we will assume the following model for a content-dependent device noise: 
 

x’ = x + η fa(H(x)) , 
  
where x is the original pixel value without noise, x’ is the noisy pixel value, H(x) is a small neighborhood of x (such 
as 3×3 or 5×5 neighborhood), η is a random variable, and |fa(H(x))| ≤ 1 is a scaling factor capturing the dependence 
of the noise amplitude on the image content. The scaling factor may depend on a parameter a that indicates the 
“degree of content-dependency”. Note that fa(H(xi)) ≡ 1 for a device noise that is independent of the image content. 
Before we proceed further, we would like to stress that the device noise is a quite different concept from the concept 
of just-noticeable noise that is related to perception rather than the acquisition device. 

 
Figure 3: Scaling function fa(x) as a function of the standard deviation σ of the neighborhood H(x). 

 
To follow the logic of stochastic modulation, the stego noise should be modulated as  
 

 ri’ = [Ri fa(H(xi)] , si’ = [Si fa(H(xi)],           (3) 
 

where [x] is the rounding operation and Ri, Si are two independent random sequences with the same distribution as η. 
Because the noise is now modulated by the cover image values, that will not be available to the recipient, during 
embedding we have to calculate the content-dependent component only from those pixels that will not be modified 
by the steganographic process. Thus, the message embedding proceeds as follows: 
 



1. Follow either a sequential, i = 1, …, M×N, or a pseudo-random path, i = P(1), …, P(M×N), through the image, 
where P is a pseudo-random permutation of the set {1, …, M×N} 

2. Initialize ri’= [Ri], si’=[Si] for all i 
3. If X is the set of all pixels in the image, we identify the set Z of pixels that is guaranteed to not be modified 

independently of the message: Z = {xi∈X | ri’= si’= 0}−{yk| k=1, …, np+ ls}. We will use the pixels from the set 
Z for calculating the actual scaling factor fa during message embedding. Let us further denote HZ(x) = H(x) ∩ Z 
for all pixels x. Let us note that the location of pixels yk must be known to the decoder and thus cannot be 
completely random as originally proposed in Section 4, but they can depend on the session key S and the stego 
key K. 

4. for i = 1, …, M×N  
if xi∈X−Z then 

ri’ = [Ri fa(HZ(xi))] 
si’ = [Si fa(HZ(xi))] 
if ri’ = si’ = 0 then update the set Z, Z=Z∪{xi} 

 end (if) 
    end (for) 

5. Use ri’ and si’ as in the content-independent version of stochastic modulation from Subsection 3.3. 
 

a=0.5,  bpp=0.46, PSNR=53.2dB, δ=0.015 a=1,  bpp=0.15, PSNR=58.2dB, δ=0.022 

a=0.5,  bpp=0.19, PSNR=57.9dB, δ=0.004 a=1,  bpp=0.06, PSNR=63.2dB, δ=0.004 
 
Figure 4: Examples of modified pixels for the test image “Peppers” and two different device noise types (a = 0.5 and a = 1). The 
message size is given in bits per pixel (bpp) and the embedding distortion is measured using the PSNR in dB. The quantity δ 
measures the discrepancy between the stego-noise and the actual noise added to the cover-image (see the explanation in the text). 
Black dots correspond to modified pixels. 
 
The message extraction proceeds in exactly the same way. First we generate the sequences Ri and Si , and the 
rounded sequences ri’ = [Ri] and si’ = [Si]. Then, we follow the Steps 3 and 4 from the previous paragraph. The final 



sequences ri’ and si’ obtained from the stego image will be the same as during embedding because they are 
modulated by those pixels in the image that do not change by message embedding. 
 
To test the plausibility of the approach and test its performance, we briefly present some results we obtained with the 
following device noise model (see Figure 3): 
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σσσ aaf a ,    where a∈[0,1],  x∈[0,255], σ = std(H(x)) . 

 
This model corresponds to an i.i.d. Gaussian noise of amplitude 1−a superimposed with another Gaussian 
component proportional to a that is modulated by the image content. 
 
Figure 4 shows the pixels that are modified in the test image “Peppers”. The results are for two different device 
noise types corresponding to a = 0.5 and a = 1 and two message sizes expressed in bpp. The noise is clearly 
concentrated in busy areas containing edges while the smooth areas contain noise of a smaller amplitude. 
 
The only issue that needs to be clarified is how much the stego noise of Equation (3) calculated from the 
neighborhood H is different from the stego noise calculated only from the subset HZ (see Step 4 above). In fact, if 
the discrepancy was too big, it would be a weakness that could possibly be exploited for steganalysis. Fortunately, 
our experiments indicate that at least for the device noise model from Figure 3, the number of stego noise samples δ 
that differ when calculated from H and HZ is less than 2.5%. 
 
In this section, we have shown that it is possible to use the concept of stochastic modulation for secure 
steganography even when the device noise contains a content-dependent component. This modification makes the 
new steganographic principle more flexible and increases its applicability in practice. 
 

7. CONCLUSIONS AND FUTURE DIRECTIONS 
 
In this paper, we describe a steganographic technique that embeds high payloads (up to 0.8 bpp for grayscale 
images) by adding a small-amplitude noise of specified properties to the image pixels. Because the probability 
distribution of the noise can be arbitrary, the communicating parties have the flexibility to mask the embedding 
distortion as superposition of a particular device noise. Thus, this embedding paradigm will provide better security 
than embedding that uses somewhat arbitrary operations, such as flipping the LSBs or adding a fixed-amplitude 
noise to the image (+–1 embedding).  
 
Compared to previously proposed methods that embed messages by adding Gaussian noise1,7, stochastic modulation 
can embed bigger payloads without using error correction schemes or denoising algorithms at the receiving end, 
which makes the algorithm significantly simpler and faster. Because the noise distribution can be arbitrarily 
adjusted, the new method provides much greater flexibility than previous methods. 
 
This paper also pays close attention to practical implementation issues, such as the issue of having to communicate 
the parameters of the added stego noise and the necessity to use different noise signals for each image due to 
security. In Section 6, we show that the concept of stochastic modulation can be extended to stego noise that 
depends on the image content.  
 
The security of data hiding by adding noise to the cover image has been recently addressed4,11. These attacks, 
however, do not work well for grayscale images and may produce a significant rate of false positives for color scans 
of natural photographs and resampled images (see Section 5). 
 
Future directions include steganalysis of the proposed steganographic paradigm. In particular, it appears that 
distinguishing stego images embedded using stochastic modulation from color scans or resampled images is of 
paramount importance. Analyzing the difference between these image classes appears to be the key part in building 
reliable detection algorithms. 
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