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Abstract. Application of covering codes to data embedding improves
embedding efficiency and security of steganographic schemes. In this pa-
per, we describe several familes of covering codes constructed using the
blockwise direct sum of factorizations. We show that non-linear construc-
tions offer better performance compared to simple linear covering codes
currently used by steganographers. Implementation details are given for
a selected code family.

1 Introduction

Steganography is the art of stealth communication. Its purpose is to make com-
munication undetectable. The steganography problem is also known as the pris-
oners’ dilemma formulated by Simmons [28]. Alice and Bob are imprisoned and
want to hatch an escape plan. They are allowed to communicate via a channel
monitored by a warden. If the warden finds out that they are communicating
secretly, he throws them into solitary confinement. Thus, the prisoners need to
design a method to exchange messages without raising the warden’s suspicion.

The prisoners hide their messages in innocuous-looking cover objects by
slightly modifying them (obtaining stego objects). The embedding process is
usually driven by a stego key, which is a secret shared between Alice and Bob.
It is typically used to select a subset of the cover object and the order in which
the cover object elements are visited during embedding.

The most important property of any steganographic communication is sta-
tistical undetectability. In other words, the warden should not be able to distin-
guish between cover and stego objects. Formal description of this requirement
in information-theoretic terms was given by Cachin [4]. If the communication
channel that Alice and Bob use is distortion-free, we speak about the passive
warden scenario.

Digital multimedia files, such as digital images, audio, or video, are conve-
niently used in steganography today because they are digitized forms of physical
quantities, such as photon counts or voltages, and thus contain certain small level



of noise. Because of the presence of this indeterministic component, steganog-
raphers hope that part of this component can be replaced with pseudo-random
(e.g., encrypted) message bits, thus obtaining a secure steganographic method.

Intuitively, the fewer changes the embedding process incurs, the smaller the
chance that the embedding modifications will be statistically detectable. We
acknowledge, though, that the number of changes is not the only important
factor influencing the security of the steganographic scheme. The choice of the
cover object and the character of modifications play an equally important role.
For example, it is known that embedding in spatial domain of a decompressed
JPEG image can be easily detectable even when only one embedding change
is carried out [15]. Furthermore, the impact of embedding realized by flipping
LSBs of pixels (Least Significant Bit) is relatively easy to detect even at very
low embedding rates [22]. Nevertheless, it is true that for two steganographic
schemes with the same embedding mechanism, the one that introduces fewer
embedding changes will be more secure.

Steganographers use the concept of embedding efficiency to quantify how ef-
fectively a given algorithm embeds data. The embedding efficiency is defined [32]
as the average number of random message bits embedded using one embed-
ding change. There is evidence that schemes with low embedding efficiency offer
worse security than schemes with higher efficiency. For example, the popular
JPEG steganography program OutGuess [26] embeds messages in DCT coef-
ficients (Discrete Cosine Transform) in two passes. In the first pass, it embeds
with efficiency 2 by matching the LSBs of DCT coefficients with message bits. In
the second pass, more changes are imposed on the previously non-visited DCT
coefficients. While this has the benefit of preserving the global DCT histogram,
the embedding efficiency decreases significantly. On the other hand, the Model
based Steganography (MBS) [27] without deblocking preserves even more statis-
tics than OutGuess and does so at a higher embedding efficiency. Steganalysis
of both schemes [14] indicates that MBS is significantly harder to detect than
OutGuess.

The importance of high embedding efficiency for steganography and the rel-
evance of covering codes to this problem were recognized for the first time by
Crandall [7], who showed that linear codes can markedly improve the embed-
ding efficiency. He called this type of embedding ”matrix embedding”, which was
made popular in the stego community by Westfeld in his F5 algorithm [32].

Crandall refers to an unpublished article by Bierbrauer [2] that provides
deeper insight into this problem from the point of view of a coding theorist. The
connection between linear covering codes and steganography has also appeared
in the paper by Galand and Kabatiansky [17] who addressed both the passive
and active warden scenarios.

In this paper, we describe and extend the original Bierbrauer’s work. We
believe that the steganographic community will benefit from this work as it
formulates the problem of embedding efficiency in coding-theoretic language
and makes a connection with a large body of work in coding. Moreover, we
point out the importance of certain families of codes to steganography and show



that non-linear codes have better performance than known linear constructions,
e.g., matrix embedding.

In Section 2, the connection between covering functions and steganography
is formally established. In Sections 3, we show how coding-theoretic bounds
translate to bounds on basic descriptors of steganographic schemes. Section 4
contains basic methods for constructing good covering codes (good in the sense
of providing high steganographic embedding efficiency). In Section 5, we study
some good families of non-linear codes. Section 6 lists the best currently known
covering functions that we expect to find applications in steganography. The em-
bedding efficiency of steganographic schemes that use these covering functions is
compared and contrasted to theoretical bounds in Section 7. To enable practical
implementation of steganographic schemes that use the proposed constructions,
in Section 8 we describe the details of the non-linear Nordstrom-Robinson code
and some covering functions related to it. While the description is more involved
than in the linear case, the resulting algorithm is very efficient. The paper is
concluded in Section 9.

2 The link to coding theory

For concreteness, we assume that the cover object used for communication is a
grayscale digital image whose pixels are integers between 0 and 255. We assign a
bit to each pixel value (the LSB of the grayscale value). We will further assume
that the embedding mechanism is flipping the LSB, while stressing that other
embedding operations or bit assignments are certainly possible. We also assume
that the sender can use all pixels for embedding, i.e., the embedding is not
constrained to any selection channel [13]. Possible directions one can take for
application of covering codes to non-trivial selection channels (wet paper codes)
were briefly discussed in [13].

Let us assume that the embedding proceeds by blocks. The cover image
is divided into disjoint segments of N pixels. Let x = (x1, x2, . . . , xN ) be the
bitstring formed by their least significant bits. Here we view the entries, the
bits, as elements of the field F2 = {0, 1}. Formally we can write x ∈ F

N
2 . Assume

the secret message has been encoded as a bitstring. We scan this bitstring and
divide it into segments of length n, for some number n < N. What we want to
construct is a suitable function f, which maps bitstrings of length N to bitstrings
of length n, formally

f : F
N
2 −→ F

n
2 ,

which allows us to extract n bits of the secret message. This means that for
given x ∈ F

N
2 (the LSBs of the corresponding segment of the cover image) and

y ∈ F
n
2 (a segment of the secret message) we want to replace x by x′ such that

f(x′) = y. An important question is the relation between x and x′. If x and
x′ differ in 3 of their N coordinates, then that means that 3 of our segment of
N pixels need to be changed. Our goal is to keep that number of changes to a
minimum. The number of coordinates where the entries of two strings x, x′ differ
is a basic notion of coding theory. It is the Hamming distance d(x, x′). If we



want to control the worst case, then we fix an upper bound ρ on the embedding
distortion d(x, x′). This leads to the following notion:

Definition 1 A covering function COV (ρ,N, n) is a mapping

f : F
N
2 −→ F

n
2

which satisfies the following: for every x ∈ F
N
2 , y ∈ F

n
2 there is some x′ ∈ F

N
2

such that d(x, x′) ≤ ρ and f(x′) = y.

A covering function COV (ρ,N, n) enables construction of a steganographic
scheme that can embed n bits in N pixels using at most ρ embedding changes.
We say that the scheme has relative capacity α = n/N , change rate ρ/N ,
and embedding efficiency e = α/(ρ/N) = n/ρ. We remark here that the
embedding efficiency in steganography is typically defined in a slightly different
manner as the expected number of bits embedded per one embedding change,
where the expectation is taken over all possible covers x ∈ F

N
2 and messages.

More on this difference is included in Section 7.
We now switch to terminology more commonly used in coding. For readers

not familiar with coding theory, we recommend the introductory text [1]. Calling
N the length, n the redundancy, and ρ the covering radius, the following
design problems arise:

– We want n/N, the relative redundancy, to be large
(large relative capacity).

– We want ρ/N, the relative covering radius, to be small to have good
embedding efficiency.

– Finally, there should be an effective algorithm that calculates x′.

In coding theory, a code is defined simply as a subset of the space of all tuples
of a certain length N over some alphabet, where N is the length of the code.
We speak of a binary code if the alphabet has two elements. Historically, coding
theory developed in the context of information transmission over noisy channels.
Typically in these applications the most important parameter is the minimum
distance d : any two different elements of the code should be at Hamming
distance ≥ d. In other words, if two elements of the code (codewords) are
different, then they are very different. In our context, the basic parameter is the
covering radius:

Definition 2 Let C ⊂ F
N
2 . The covering radius of the code C is the small-

est number ρ such that any N -tuple is at Hamming distance ≤ ρ from some

codeword.

Informally, one speaks of error-correcting codes if the minimum distance is
the important parameter, of covering codes if one is more interested in the cov-
ering radius. While the minimum distance concerns only the distances between
codewords (in a way it ignores the ambient space F

N
2 ), the covering radius is

defined in terms of the embedding of the code in its ambient space.



Definition 1 demands that the inverse image f−1(y) be a covering code of
radius ρ for every choice of y ∈ F

n
2 . It follows that F

N
2 is the disjoint union of

2n such covering codes. Clearly, this is an equivalent description of a covering
function:

Theorem 1 The following are equivalent:

– A covering function COV (ρ,N, n).
– A partition of F

N
2 into 2n covering codes of covering radius ρ.

We now give an example of a covering function constructed from a linear
code. This was also discussed, for example, in [32]. Start from the matrix

H =





1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1





whose entries are elements of F2. Consider the linear mapping f : F
7
2 −→ F

3
2

defined by f(x1, x2, x3, x4, x5, x6, x7) = (y1, y2, y3), where

y1 = x1 + x4 + x5 + x7, y2 = x2 + x4 + x6 + x7, y3 = x3 + x5 + x6 + x7.

This function can be described in terms of matrix H. In fact, yi is the dot product
of x and the i-th row of H. We claim that f is a COV (1, 7, 3).

For example, f(0011010) = 100. Assume y = 111. We claim that it is possible
to replace x = 0011010 by x′ such that f(x′) = 111 and d(x, x′) = 1. In fact, we
claim more: the coordinate where x has to be changed is uniquely determined.
In our case, this is coordinate number 6, so x′ = 0011000. Here is the general
embedding rule: form f(x) + y (in the example this is 011). Find the column of
H which has these entries (in our example, this is the sixth column). This marks
the coordinate where x needs to be changed to embed payload y. This procedure
indicates how H and f were constructed and how this can be generalized: the
columns of H are simply all nonzero 3-tuples in some order.

In general, we start from our choice of n and write a matrix H whose columns
consist of all nonzero n-tuples. Then H has N = 2n − 1 columns. The covering
function f : F

N
2 −→ F

n
2 is defined by way of the dot products with the rows of

H, just as in the example n = 3. Then f is a covering function of radius 1 giving
us the following theorem.

Theorem 2 For every n there is a COV (1, 2n − 1, n).

These covering functions are well-known not only in coding theory but also
in the steganographic community [32]. They are equivalent to the binary Ham-
ming codes and are by definition linear (over F2). Every linear covering func-
tion can of course be described in terms of an (n,N)-matrix H. Obviously the
covering radius will be ≤ ρ if and only if every vector from F

n
2 can be written

as a linear combination of at most ρ columns of H. As 0-columns and repeated
columns are not helpful for this purpose, we may as well assume that the columns



of H are distinct and nonzero. The code f−1(0) is a linear covering code of radius
ρ. Vice versa, it is also clear that the existence of such a covering code can be
used to construct H and f. The matrix H is known as a check matrix of the
code. We have just proved the following theorem:

Theorem 3 The following are equivalent:

– A linear COV (ρ,N, n).
– A binary linear code of length N and dimension N −n of covering radius ρ.
– A collection of N nonzero bitstrings of length n with the property that every

element of F
n
2 can be written as a sum of at most ρ bitstrings from the

collection.

The description of covering functions in terms of covering codes was first
given by Crandall [7] who references [2]. The textbook [1] contains a descrip-
tion, which is more general in that it considers arbitrary alphabets. Here we
concentrate on the binary case as it is by far the most interesting. Galand and
Kabatiansky [17] treat the case of the description corresponding to linear cover-
ing codes. In Section 4, we are going to see that non-linear constructions can in
fact be very powerful.

For readers who are interested in more technical material on covering codes
and wider connections to other mathematical disciplines, we now include a brief
discussion supplied with appropriate references.

The notion of covering functions was introduced in [2, 1] in a slightly more
general form, using arbitrary alphabets. Definition 1 is the binary case. Covering
codes are classical objects in coding theory. A recent book on the subject is
Covering codes by Cohen, Honkala, Litsyn and Lobstein [6]. By Theorem 1 a
covering function is equivalent with a partition of the ambient space into covering
codes. These partitions have been studied by the coding community. In Etzion-
Greenberg [11], they appear under the name covering by coverings.

There is also a graph-theoretic link. In fact, the graph-theoretic problem
is more general. It applies to any graph G. The problem we are interested in
arises as the special case when G is a Hamming graph (the vertices are the
bitstrings of length N, two bitstrings form an edge if their distance is 1). A
ρ-dominating set D of graph G is defined as a set of vertices, such that each
vertex of G has distance ≤ ρ from a vertex of D. The ρ-domatic number of
graph G is the smallest number of subsets when the vertices are partitioned into
ρ-dominating sets. This notion seems to go back to Zelinka [33] and Carnielli [5].
More information on the subject is in Österg̊ard [24].

3 Coding-theoretic bounds and linear constructions

As explained in the introduction, to minimize the statistical impact of embed-
ding, the steganographic scheme should have high embedding efficiency. In terms
of covering functions COV (ρ,N, n), we would like to know for what values of
the three parameters covering functions exist and which functions allow high



embedding efficiency n/ρ. In this section, we first establish a useful inequality
that will give us bounds on the maximal achievable embedding efficiency. Then,
we give examples of linear covering functions that can be used in steganography
directly or as ingredients in more advanced constructions described in Section 5.
We start with some simple recursive constructions.

Proposition 1 If COV (ρi, Ni, ni) exist for i = 1, 2, . . . , then

COV (
∑

ρi,
∑

Ni,
∑

ni) exists.

The existence of COV (ρ,N, n) implies the existence of

COV (ρ + 1, N, n), COV (ρ,N + 1, n), COV (ρ,N, n − 1)

and of COV (c · ρ, c · N, c · n) for every natural number c.

This hardly needs a proof. For the first property simply write your bitstring
of length

∑

Ni as a concatenation of strings of length Ni each and apply the
COV (ρi, Ni, ni) to the corresponding segment. The rest is equally obvious and
follows immediately from the definition. For example, using the stego terminol-
ogy, if we can embed n bits using at most ρ changes in N pixels, it is certainly
true that we can embed the same payload in the same pixels using at most ρ+1
changes, etc.

In order to obtain a bound connecting the three parameters of a covering
function, observe that the existence of a COV (ρ,N, n) implies the existence of a
covering code with at most 2N−n codewords. This is because the sets f−1(y), y ∈
F

n
2 partition the ambient space F

N
2 . Each codeword thus determines

∑ρ

i=0

(

N
i

)

vectors at Hamming distance at most ρ. Adding up all those numbers must give
us at least 2N , the number of all vectors in our space:

Theorem 4 (sphere covering bound) If COV (ρ,N, n) exists, then

ρ
∑

i=0

(

N

i

)

≥ 2n.

As a trivial example, Theorem 4 tells us that COV (1, N, n) can exist only if
N ≥ 2n−1. This shows that covering functions constructed from Hamming codes
(Theorem 2) reach this bound. Thus, the associated steganographic schemes are
optimal in the following sense. Given ρ = 1 and n, the covering function realized
using the Hamming code embeds the largest possible relative payload α = n/N
(because it has the smallest possible N). The embedding efficiency is n/ρ = n.
A less trivial example is COV (3, N, 11), where Theorem 4 tells us

1 + N +

(

N

2

)

+

(

N

3

)

≥ 211 = 2048.

For N = 23 we have equality. The corresponding code exists. It is the single most
famous code, the binary Golay code. We see that it defines a COV (3, 23, 11),
which can embed 11 bits in 23 pixels by at most 3 changes with embedding effi-
ciency e = 11/3. The cases when Theorem 4 is satisfied with equality correspond



to perfect codes. We conclude that the Hamming codes and the binary Golay
code are perfect. Unfortunately, the binary Golay code is the only non-trivial
binary perfect code with covering radius > 1, so the situation will never be quite
as nice again.

We now list several other known families of linear covering functions that
provide high embedding efficiency and are thus of interest to the steganographic
community. Linear covering functions can be considered from a geometric point
of view as well. Consider the linear covering function defined by the check matrix

H =





1 0 0 1
0 1 0 1
0 0 1 1





Recalling Theorem 3, since any three-bit message can be obtained by adding at
most 2 columns, this check matrix defines a COV (2, 4, 3). This code is graphically
represented in Figure 1 by viewing the black dots as pixels and the attached
labels as messages. Notice that any three-bit message can be obtained by adding
at most 2 labels of the two black dots. The quadrangle consisting of black dots has
the property that each of the remaining 3 points is on some line through two of
the quadrangle points. Readers familiar with projective geometry may recognize
Figure 1 as the Fano plane PG(2, 2). This special case can be generalized by
looking at nonzero bitstrings of length n as points of a (n − 1)-dimensional
projective geometry PG(n − 1, 2) defined over F2. In this language, a linear
COV (2, N, n) is equivalent with a set K of N points in PG(n− 1, 2) having the
property that each point of PG(n − 1, 2) is on a line containing 2 points of K.
The family of linear covering functions COV (2, N, n) for n ≤ 7 and minimal N
has been completely classified in Davydov-Marcugini-Pambianco [10].

A family of linear covering functions with covering radius 2, which often yields
the best known values, was constructed in Gabidulin-Davydov-Tombak [16]
(GDT):

COV (2, 5 · 2a−1 − 1, 2a + 1) for a ≥ 1. (1)

The smallest member of the family is the COV (2, 4, 3), which we just constructed
in the Fano plane. The next parameters are

COV (2, 9, 5), COV (2, 19, 7), COV (2, 39, 9), COV (2, 79, 11).

The Hamming code Hm (m ≥ 3) is known to have a subcode Bm of codimension
m within Hm (a primitive BCH-code), which has covering radius 3. The
corresponding parameters as a covering function are therefore

COV (3, 2m − 1, 2m) for m ≥ 3. (2)

The comparison of embedding efficiency of steganographic schemes based on
the linear coverings is compared to best non-linear constructions in Section 7.
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Fig. 1. Fano plane and COV (2, 4, 3)

4 The blockwise direct sum

In this section, we introduce a recursive procedure called the blockwise direct
sum BDS of non-linear codes. This very useful tool for constructing coverings
is of great interest to us because it can give us covering functions leading to
steganographic schemes with higher embedding efficiency than linear covering
functions. In fact, virtually all known interesting constructions of coverings make
use of it. Although the material in this and the next section is mathematically
rather involved, it is mostly self-contained and accessible with only elementary
knowledge of coding theory.

In order to apply the BDS, we need a refinement of the concept of a partition
of the ambient space into subcodes:

Definition 3 Let D ⊂ C ⊂ F
N
2 . We say that C/D is a factorization if C can be

written as the disjoint union of cosets of D and F
N
2 is a disjoint union of cosets

of C.

Here a coset of D is a set of the form D + x, in other words a translate. The
number of participating cosets of D in C is of course |C|/|D|, the index of D in
C. In all cases that we consider, the index will have the form 2n. We define n
to be the dimension of C/D (or codimension of D in C) in these cases. The
redundancy k of C/D is defined as the redundancy of C, its codimension in the
ambient space. We will write U for the ambient space. Observe that whenever
two linear codes form a chain, e.g., D ⊂ C, then they form a factorization. The
length is the dimension of ambient space.



As an example, consider the factorization U/Hm, where Hm is the Hamming
code. The length is 2m − 1, we have dim(U/Hm) = m and the redundancy is 0
because the larger of the chain of codes is the ambient space. In general, factor-
izations of redundancy 0 are precisely covering functions. We need a notion which
applies to factorizations and generalizes the covering radius (see Honkala [20]):

Definition 4 Let C/D be a factorization. For every x in the ambient space let

m(x) be the minimum of the distances from x to one of the cosets and M(x)
the maximum. The norm ν = ν(C/D) is the maximum, taken over all x, of

m(x) + M(x).

In order to get a feeling for this notion, consider the case when C = U. Then
each x ∈ U is contained in one of the cosets defining the factorization. It follows
m(x) = 0. The norm is therefore the maximum of the M(x). As all cosets of D
have the same structure, in particular the same covering radius, it follows that
the norm simply equals the covering radius ρ of D. To sum this up: a factorization
U/D is nothing but a COV (ρ,N, n), where N is the length, n = dim(U/D) and
ρ = ν(U/D) is the norm.

The BDS is a simple and effective construction which uses as input two
factorizations of equal dimension and outputs a factorization of larger length.
This is relevant to our problem as we can control the covering radius of the
output factorization in terms of the norms of the input.

Definition 5 Let C1/D1 and C2/D2 be factorizations of lengths Ni and equal

dimension n. Number the participating cosets D1(i) and D2(i) for i = 1, . . . , 2n.
The blockwise direct sum (C1/D1) ∨ (C2/D2) is defined by

C = ∪2
n

i=1D1(i) ×D2(i).

The length of the BDS is the sum N1 + N2 of the lengths and (C1 × C2)/C
is a factorization, again of dimension n. The BDS is well-known in the theory
of error-correcting codes. It can be used to construct codes with large minimum
distance. For the theory of covering codes, it seems to be indispensible. We just
convinced ourselves that it works well on the level of factorizations. The main
point is that we can control the covering radius:

Theorem 5 Let C be the blockwise direct sum of two factorizations with identical

dimension n, lengths Ni, norms νi and redundancies ki, as in Definition 5. Then

C has length N1+N2 and redundancy k1+k2+n. The covering radius of C satisfies

ρ(C) ≤ b(ν1 + ν2)/2c.

Proof. The number of elements of C is obvious. Let (x, y) in the ambient space.
Choose j, k such that d(x,D1(j)) and d(y,D2(k)) are minimal. It follows from the
definition of the norm that the sum of the distances from (x, y) to D1(j)×D2(j)
and to D1(k) × D2(k) is at most ν1 + ν2. One of the two distances must be
≤ (ν1 + ν2)/2.



Let us express the concepts of a factorization and of the BDS in terms of
covering functions. The factorization in the terminology of Definition 3 is equiv-
alently described by a mapping f = (fl, fr) : F

N
2 −→ F

k+n
2 where fl(x) ∈

F
k
2 , fr(x) ∈ F

n
2 , f−1(0, 0) = D, each f−1(a, b) is a coset of D and C is the union

of the f−1(0, b).
If f1 = (f1,l, f1,r) and f2 = (f2,l, f2,r) describe the factorizations C1/D1 and

C2/D2 in Definition 5, then the BDS is defined by

(f1 ∨ f2)(x, y) = (f1,l(x), f2,l(y), f1,r(x) + f2,r(y)) ∈ F
k1+k2+n
2 . (3)

All we need in order to put the BDS to work are good factorizations to use
as inputs. It turns out that a famous family of non-linear codes, the Preparata
codes, are extremely valuable ingredients for this machinery.

5 Some families of good factorizations

We know that each COV (ρ,N, n) is nothing but a factorization of redundancy
0, length N and dimension n. It can therefore itself be used as ingredient in
the BDS. A factorization we know from Section 3 is Hm/Bm, of length 2m − 1,
dimension m and redundancy m. The norm is clearly ≤ 4 as Hm has covering
radius 1 and Bm has covering radius 3.

An important non-linear factorization is furnished by a famous family of
non-linear codes, the Preparata codes. Codes with their parameters were first
constructed by Preparata [25], where the reader can find the proof of the follow-
ing theorem:

Theorem 6 For every even m ≥ 4 there is a subcode Pm ⊂ Hm such that

Hm/Pm is a factorization of dimension m − 1 and norm 3. More precisely we

have that the covering radius of Pm is 3 and that every vector x /∈ Hm has

distance at most 2 from Pm.

The factorization of Theorem 6 is the most important non-linear ingredi-
ent in constructions of covering codes and covering functions [19]. The smallest
member P4 of the Preparata family was constructed in 1967 [23]. We denote
its extension P 4 by NR (for the notion of an extension see the paragraph pre-
ceding Table 5 below where some elementary facts are explained). This is the
famous Nordstrom-Robinson code. It is also the smallest member of the Ker-
dock codes, a family of non-linear codes closely related to the Preparata codes.
The Nordstrom-Robinson code has an unusually large group of automorphisms
(of order 8! = 40, 320) and is optimal in many respects. It can be found inside
the binary Golay code. No linear codes with similar properties as NR can exist.
There are numerous links from the Preparata and Kerdock codes to other math-
ematical areas, such as finite geometries and group theory. It had been observed
early on that the Preparata and Kerdock codes behave like pairs of binary lin-
ear codes related by duality, which sounds strange as they are not linear. An
explanation for this phenomenon was given in [19]. There are families of linear



codes defined over the alphabet Z4 = Z/4Z, the integers mod 4, which map to
the Preparata and Kerdock codes under the Gray map γ. The Gray map takes
0 ∈ Z4 to 00, the zero-divisor 2 to the pair 11 and the units 1, 3 ∈ Z4 to the pairs
of weight 1. It is the only non-linear element in the construction. The original
observation that the Preparata and Kerdock codes behave almost as if they were
dual linear codes is explained by the fact that their preimages under γ are in fact
dual Z4-linear codes. The same feature explains why Hm/Pm is a factorization.
An explicit proof is in Wan’s book Quaternary codes [31].

In order to understand the factorizations given in the following table, we
recall some elementary facts and constructions. The sum zero code consists of
the bitstrings of even weight. It has codimension 1 in ambient space, being the
dual of the repetition code. We denote it by A. In algebra it is also known as the
augmentation ideal. If C is a code of length N then its extension C has length
N + 1. It has the same number of codewords as C and is defined such that it
is contained in the sum zero code A of length N + 1. If C/D is a factorization,
then C/D is a factorization as well. Let ν be the norm of C/D. The norm of
C/D is then the even number among {ν + 1, ν + 2}. We arrive at the following
list of factorizations.

Some factorizations
factorization length dim red norm
U/Hm 2m − 1 m 0 1

U/Hm 2m m + 1 0 2

A/Hm 2m m 1 2
Hm/Bm 2m − 1 m m 4
U/GDTm 5 · 2m−1 − 1 2m + 1 0 2

Hm/Pm 2m − 1 m − 1 m 3
U/Pm 2m − 1 2m − 1 0 3

Hm/Pm 2m m − 1 m + 1 4
U/Pm 2m 2m 0 4

A/Pm 2m 2m − 1 1 4

Here m has to be even and ≥ 4 whenever Pm is involved. Recall that Hm are
the Hamming codes, Bm is the BCH-code introduced in Section 3, and GDTm

is the code from [16] mentioned in the same section.

6 The best known covering functions

We now give examples of some of the best known covering functions based on
the factorizations given in the table at the end of the preceding section. They are
included here as a concise summary of the best tools the coding theory currently
provides to steganographers for construction of embedding schemes with high
embedding efficiency. Their performance is displayed graphically in Section 7.
For practitioners, we give a detailed description of the embedding and extraction
algorithm for one selected non-linear covering function in Section 8.



The examples below are from Etzion-Greenberg [11] and from Struik’s dis-
sertation [30]. Observe that the BDS can be constructed whenever we have fac-
torizations of equal dimension.

Application to Hm/Pm and A/Hm−1 (both of dimension m− 1) yields, with
m = 2a,

COV (2, 6 · 4a−1 − 1, 4a), a ≥ 2. (4)

The first members of this family are

COV (2, 23, 8), COV (2, 95, 12), COV (2, 383, 16), COV (2, 1535, 20).

The pair U/GDTm and H2m+2/P2m+2 yields

COV (2, 4m+1 + 5 · 2m−1 − 2, 4m + 3) for m ≥ 1. (5)

The first members of this family are

COV (2, 19, 7), COV (2, 72, 11), COV (2, 274, 15), COV (2, 1062, 19).

As both Hm/Pm and Hm/Pm have dimension m − 1, we can form the BDS. It
has length 2m − 1 + 2m, redundancy m + (m− 1) + (m + 1) = 3m and covering
radius 3. Let m = 2a. This yields

COV (3, 2 · 4a − 1, 6a), a ≥ 2. (6)

The smallest examples are

COV (3, 31, 12), COV (3, 127, 18) and COV (3, 511, 24).

These BDS can also be used as ingredients. In fact,

(Hm/Pm) ∨ (Hm/Pm) ⊂ Hm × (Hm × F2),

and this pair forms a factorization of dimension m and norm 3 + 2 = 5. This
gives us the following two additional factorizations to complement Table 5 where
m = 2a ≥ 4 :

factorization length dim red norm
above 2m+1 − 1 m 2m 5
extension 2m+1 m 2m + 1 6

Using as second ingredient A/Hm and forming the BDS, we obtain, with
m = 2a, the family

COV (3, 3 · 4a − 1, 6a + 1) for a ≥ 2, (7)

whose smallest members are

COV (3, 47, 13), COV (3, 191, 19), COV (3, 767, 25).



Forming the BDS of both table entries instead yields, with m = 2a,

COV (5, 4a+1 − 1, 10a + 1) for a ≥ 2, (8)

with the following smallest members

COV (5, 63, 21) and COV (5, 255, 31).

The BDS of Hm/Pm and Hm−1/Bm−1 yields a covering function of length 2m −
1 + 2m−1 − 1, covering radius 3 and redundancy 3m − 1. Letting m = 2(a + 1),
this becomes

COV (3, 6 · 4a − 2, 6a + 4) for a ≥ 1, (9)

with the smallest members

COV (3, 22, 10), COV (3, 94, 16), COV (3, 382, 22).

Finally, we use the direct sum construction of Proposition 1. As an exam-
ple, the direct sum of the binary Golay code COV (3, 23, 11) and the non-linear
COV (2, 23, 8) yields

COV (5, 46, 19). (10)

7 Performance

Having derived some families of good covering codes, we now study the em-
bedding efficiency that these codes offer to steganographers. As explained in
the introduction, an important concept in steganography is the embedding effi-
ciency, which is defined as the ratio between the number of embedded bits and
the number of embedding changes. Using the notation COV (ρ,N, n) for the cov-
ering function, we remind the terminology from Section 2 where we called the
ratio α = n/N the relative capacity and e = n/ρ the embedding efficiency
(in bits per embedding change).

In Figure 2, we show the embedding efficiency as a function of 1/α for the
binary Hamming code, the binary Golay code, and the families (1)–(10). The
upper bound on e for a fixed α can be obtained from the sphere-covering bound
(see, e.g., [13])

e ≤
α

H−1(α)
, (11)

where H−1(α) is the inverse of the binary entropy function H(x) = −x log2 x−
(1 − x) log2(1 − x) on the interval [0, 1/2]. Observe that the recursive construc-
tions of Proposition 1 imply that each COV (ρ,N, n) gives us constructions not
only of its asymptotic parameters (N/n, n/ρ) but of an infinite set of such pa-
rameter pairs that is dense in the region to the right and down of (N/n, n/ρ).
This observation is important for practical applications in steganography – the
sender should choose the covering code with relative capacity α slightly above
the relative message length that he wants to communicate to the recipient.

Members of the family (6) and (8) lead to the highest embedding efficiency,
providing significant improvement over the simple binary Hamming codes.
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Fig. 2. Embedding efficiency n/ρ as a function of 1/α for various covering functions
COV (ρ, N, n).



Observe that since the covering radius ρ gives a bound on the average num-
ber of embedding changes ρa, the embedding efficiency as defined in this paper
is a lower bound on the embedding effiency n/ρa as typically defined in stegano-
graphic literature. From our perspective, it is preferable to work with a simple
invariant like ρ. The situation is analogous to the classical coding theory scenario
where in most situations the minimum distance d, rather than the average dis-
tance, is used to obtain bounds on the error probability. Actually, the difference
n/ρa − e is small and goes to 0 with increasing length.

The last issue that needs to be addressed for practical applications is the
implementation complexity. This is the topic of the next section where we discuss
implementation details for the family of codes (4), as an example.

8 Implementation

In this section, we describe in detail the embedding algorithm and the algorithm
for extracting the secret message bits based on the covering codes (4) for m = 4
(the covering function COV (2, 23, 8)). We start by detailing the factorizations
Hm/Pm, A/Hm−1 and their covering functions.

8.1 The factorization H4/P4 and its covering function

Start with a description of the Nordstrom-Robinson code NR = P 4. This is a
binary code of length 16, with 28 codewords, minimum distance 6 and covering
radius 4. It is the smallest member of the Preparata family and the single most
famous non-linear code. Among its exceptional properties is the presence of a
huge group of symmetries, of order 8! For an introduction see [3]. As mentioned
earlier, the charm of the Preparata codes is that they are essentially linear over
Z4. This means that there is an underlying code, which is linear over Z4, and
the binary code in question is the image of this Z4-linear code under the Gray
map γ, where

γ : 0 7→ 00, 1 7→ 10, 3 7→ 01, 2 7→ 11.

In order to construct the Nordstrom-Robinson code start from the binary
matrix









1000 0111
0100 1011
0010 1101
0001 1110









, (12)

which generates the extended Hamming code [8, 4, 4]2 (length 8, dimension 4,
minimum distance 4). As this code is equal to its orthogonal with respect to the
ordinary dot product (it is self-dual) it is tempting to lift this matrix to a matrix



with entries in Z4. Observe that the factor ring of Z4 mod {0, 2} is the binary
field F2. Lifting means that each entry 0 ∈ F2 should become 0 or 2 in Z4 and
each 1 ∈ F2 should be replaced by 1 or 3 in Z4. We want the lift to have the
property that it is self-dual over Z4. After a moment’s thought this leads to the
matrix

G = (I|P ) =









1000 2333
0100 1231
0010 1123
0001 1312









.

The self-dual Z4-linear code generated by the rows of this matrix is known
as the octacode N . The Nordstrom-Robinson code is its image under the
Gray map: NR = P 4 = γ(N ). The length and number of codewords are as
promised and it is not hard to check that the minimum distance and cover-
ing radius are as claimed. The codewords of N are x(a, b, c, d) = (l|r) where
l = (a, b, c, d), a, b, c, d ∈ Z4. and

r = s(l) = (2a + b + c + d,−a + 2b + c − d,−a − b + 2c + d,−a + b − c + 2d).

The proof of the following lemma can be left as an easy exercise, using the
self-duality of N .

Lemma 1 Let x ∈ N and νi(x) for i ∈ Z4 the frequency of i as an entry of x.
Then the νi(x) have the same parity.

In order to see that U/NR is a factorization, observe that N is systematic:
in the projection on the left half of parameters each quaternary quadruple occurs
precisely once. It follows that the binary code NR is systematic as well: in the
projection on the left half of parameters each binary 8-tuple occurs precisely
once. Systematic codes can always be embedded in factorizations. In fact, the
(0, y), where y ∈ Z4

4 are representatives of pairwise disjoint cosets of N . The
union of those cosets is the ambient space U = Z8

4 . It follows that the same
is true for NR. The codewords of NR are (γ(l), γ(s(l)), where l ∈ Z4

4 . Write
(x, y) ∈ F

8+8
2 as

(x, y) = (γ(l), y) = (γ(l), γ(s(l))) + (0, y + γ(s(l))).

This decomposition enables us to formulate the following proposition.

Proposition 2 A COV (4, 16, 8) corresponding to the factorization F
16
2 /NR is

given by

f(x, y) = y + γ(s(γ−1(x))).

Here x, y ∈ F
8
2.

As an example, consider (x, y) = (00100111, 10011001). Then γ−1(x) =
0132, s(0132) = 2332, γ(2332) = 11010111 and

f(x, y) = 10011001 + 11010111 = 01001110.



The observation that systematic codes can be embedded in factorizations is from
Stinson [29], where a characterization of resilient functions is given in terms of
factorizations.

The factorization U/NR itself is not an interesting covering function. It
yields good results when used as an ingredient in the BDS. We mentioned and
used a factorization H4/NR of length 16, dimension 3 and redundancy 5. Here
H4 is the extended Hamming code, a linear [16, 11, 4]-code. At first we have to
see that NR is in fact contained in the Hamming code. Let

G =













11000000 00111111
00110000 11001111
00001100 11110011
00000011 11111100
01010101 01010101













.

This is a check matrix of the extended Hamming code H4 = [16, 11, 4]2
(equivalently: no 3 columns of G add to the 0-column). It is orthogonal to all
codewords of NR (for the first 4 rows of G this is obvious, for the last row use
Lemma 1). It follows NR ⊂ H4. Let

T = 〈γ(2200), γ(2020), γ(2002)〉.

Then (0, T ) ⊂ H4 as those vectors are orthogonal to the rows of G. The first half
of coordinates shows that the cosets NR + (0, t), t ∈ T are pairwise disjoint.
This defines a factorization H4/NR.

Let us calculate the covering function f = (f1, f2) : F
16
2 −→ F

8
2 which de-

scribes the factorization H4/NR. Let ri, i = 1, . . . , 5 be the rows and sj , j =
1, . . . , 16 the columns of G. Let z = (x|y) ∈ F

8+8
2 and denote by ei the elementary

vectors. The first section simply is the syndrome:

f1(z) = (z · r1, z · r2, z · r3, z · r4, z · r5) = (σ|z · r5) ∈ F
4+1
2 .

Let the F2-linear mapping β : T −→ 〈e6, e7, e8〉 be defined by

β(γ(2200)) = e6, β(γ(2020)) = e7, β(γ(2002)) = e8.

In order to calculate f2, proceed as follows:

– If σ has odd weight, then f1(z) = sj is a column of G. Let z′ = z +
ej , γ

−1(z′) = (l, r). Then γ(r − s(l)) = (0, t) for t ∈ T. Let f2(z) = β(t).
– If σ has even weight, then f1(z) = s1 + sj for a uniquely determined column

sj of G. Let z′ = z + e1 + ej and continue as in the preceding case.

As an example, consider z = 11001001|00011001. The syndrome is the sum
of columns number 1, 2, 5, 8, 12, 13, 16 of G :

f1(z) = 10110.



As σ = 1011 has weight 3, we have that f1(z) = s11 is a column of G. It
follows z′ = 11001001|00111001 ∈ H4. Then

l = 2013, r = 0213, s(l) = 0033, r − s(l) = 0220 ∈ γ−1(0, T )

as promised. Applying γ and β yields f2(z) = e6 + e7 :

f(z) = (f1(z)|f2(z)) = 10110|110.

This can be adapted to obtain the covering function g describing the factor-
ization H4/P4 of the shortened codes: Let z ∈ F

15
2 . Add a parity check bit in the

beginning to obtain z′ ∈ F
16
2 of even weight. Then

g(z) = (g1(z)|g2(z)) = (z′ · r2, z
′ · r3, z

′ · r4, z
′ · r5|f2(z

′)) ∈ F
4+3
2 .

This function g = (g1, g2) is the covering function of the first factorization
H4/P4 and constitutes the first ingredient in the construction of COV (2, 23, 8)
(family (4) in the beginning of Section 6). To give an example of how the function
works, let z = 11000001|0001100. Then z′ = 11000001|00011001. Application of
f as before yields f(z′) = 10010|011. Now g(z) is obtained by removing the first
bit:

g(z) = 0010|011.

8.2 The factorization A/H3 and its covering function

This factorization has length 8 and dimension 3. Here H3 is the extended Ham-
ming code [8, 4, 4]2 again. Using its generator matrix as given in the begin-
ning of the present section, we can write the corresponding covering function as
h(y) = (h1(y), h2(y)), where y ∈ F

8
2 and

h1(y) = y1 + · · · + y8, h2(y) = (y1 + y6 + y7 + y8,

y2 + y5 + y7 + y8, y3 + y5 + y6 + y8).

8.3 Message extraction algorithm

We are now ready to describe the algorithm using which the recipient can extract
the secret message. Since we are using a covering COV (2, 23, 8), we extract 8
secret message bits from a block of 23 pixels.

Using (3), the covering function of a COV (2, 23, 8) is g ∨ h, concretely

(g ∨ h)(x, y) = (g1(x), h1(y), g2(x) + h2(y)) ∈ F
8
2,

where, of course, x ∈ F
15
2 , y ∈ F

8
2.

To complete the description of the steganographic scheme, we need to explain
the embedding mechanism.



8.4 Message embedding algorithm

Here, we describe the action of the embedder whose task is to hide 8 message
bits in a cover image block consisting of 23 pixels by modifying at most 2 LSBs.
Let (x, y) ∈ F

15+8
2 be given such that f(x, y) = (g ∨ h)(x, y) = (a, b, c) ∈ F

4+1+3
2

and let (A,B,C) ∈ F
4+1+3
2 be the section of the secret message that we wish to

embed. We need to describe how to change (x, y) in at most 2 coordinates such
that the resulting bitstring is mapped to (A,B,C). Naturally, we use matrix G
above and its submatrix G′ obtained by omitting the first row of G. The linear
mapping h is based on matrix

H =









11111111
10000111
01001011
00101101









.

Observe that the columns of G′ are all quadruples, starting with the 0 quadru-
ple and the columns of H are all quadruples that start with 1. We can describe
the embedding procedure. Number the columns of G′ from 0 to 15, those of H
from 1 to 8.

– Assume b + B = 1, A = a. Let (1, c + C) be column number j of H. Change
bit number j of y, leave x unchanged.

– Assume b + B = 1, A 6= a. Choose j as above and choose i ≤ 15 such that
a + A is column i of G′. Change the i-th bit of x and the j-th bit of y.

– Let B = b, A = a. Change y in two coordinates j1 and j2 such that the
corresponding columns of H add to (0, c + C).

– Let B = b, A 6= a. Consider the 8 pairs of columns of G′ that add to A + a.
This corresponds to 7 vectors x′

1, . . . , x
′

7 at distance 2 from x and one vector
x′

8 at distance 1 (the corresponding column of G′ being A = a). The values
g2(x

′

i) are all different. Choose i such that g2(x
′

i) + g2(x) = C + c.

This completes the description of a steganographic scheme based on fam-
ily (4) for m = 4, or COV (2, 23, 8).

9 Conclusion

In this paper, we show that certain families of non-linear codes can achieve
markedly better performance (higher embedding efficiency) for applications in
steganography than simple linear codes currently in use. We construct the codes
using the blockwise direct sum of code factorizations. For practitioners, we pro-
vide a detailed description of one selected family of covering functions.

The smallest open problem in constructing good families of coverings is the
existence of COV (2, 12, 6). A more general problem is to use the known families
of good Z4-linear codes for the construction of covering codes and covering func-
tions. An even more ambitious aim is to bring algebraic-geometric codes into
play. Finally, the theory of covering functions should not be restricted to the
binary case.
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