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ImagesTomá² Filler and Jessica FridrichDepartment of Electrical and Computer EngineeringSUNY Binghamton, Binghamton, NY 13902-6000, USAABSTRACTMost steganographic schemes for real digital media embed messages by minimizing a suitably de�ned distortionfunction. In practice, this is often realized by syndrome codes which o�er near-optimal rate�distortion perfor-mance. However, the distortion functions are designed heuristically and the resulting steganographic algorithmsare thus suboptimal. In this paper, we present a practical framework for optimizing the parameters of additivedistortion functions to minimize statistical detectability. We apply the framework to digital images in both spa-tial and DCT domain by �rst de�ning a rich parametric model which assigns a cost of making a change at everycover element based on its neighborhood. Then, we present a practical method for optimizing the parameterswith respect to a chosen detection metric and feature space. We show that the size of the margin between sup-port vectors in soft-margin SVMs leads to a fast detection metric and that methods minimizing the margin tendto be more secure w.r.t. blind steganalysis. The parameters obtained by the Nelder�Mead simplex-re�ectionalgorithm for spatial and DCT-domain images are presented and the new embedding methods are tested by blindsteganalyzers utilizing various feature sets. Experimental results show that as few as 80 images are su�cient forobtaining good candidates for parameters of the cost model, which allows us to speed up the parameter search.Keywords: Steganography, minimal-distortion embedding, steganography design.1. INTRODUCTIONMost steganographic schemes10 for real digital media embed messages by small perturbations of the original coverobject. This form of steganography allows utilizing highly complex cover sources without knowing their exactprobability distributions. If precise knowledge of the underlying probability distribution is available, perfectlysecure4 stegosystems can be implemented by merely sampling from the cover source.1, 26, 30 Unfortunately, suchknowledge is often available only for arti�cial cover sources and not for real digital media, which is an example ofan �empirical source.� Böhme even argues that the distribution of real digital media is incognizable [3, Chapter3]. Thus, we study steganographic schemes that embed by minimizing a given distortion function instead ofpreserving the ever elusive cover distribution. Of course, such schemes are not perfectly secure and fall under thesquare root law of steganography,9 which means that the statistical detectability of embedding changes increaseswith the payload. Thus, by optimizing the embedding we understand minimizing the detectability for a givenpayload size and for as wide a cover source as possible. The object of optimization is the choice of the distortionfunction and its parameters and not the actual embedding itself because the problem of embedding with minimaldistortion has been already resolved elsewhere for almost arbitrary distortion functions.7, 8To better explain our objective in a precise manner, we now introduce a few technical concepts. In this paper,we use terms �image� and �pixel� mainly to keep the description speci�c. Applications to other forms of digitalmedia than digital images are certainly possible. We denote by x = (x1, . . . , xn) ∈ X = {I}n a cover imagecomposed of n pixels with values from the dynamic range I. For example, I = {0, . . . , 255} for 8-bit grayscaleimages. Before embedding into x, the sender �rst de�nes the range Ii ⊂ I into which each cover pixel xi canbe changed. We call Ii the support of the embedding operation. An embedding algorithm is called binary andternary if |Ii| = 2 and |Ii| = 3 for all i, respectively. Given a speci�c message, the sender strives to �nd a stegoimage y = (y1, . . . , yn) ∈ Y , I1×· · ·×In carrying the message with the least possible cost (distortion) D(x,y).E-mail: tomas.�ller@gmail.com, fridrich@binghamton.edu; T.F.: http://dde.binghamton.edu/�ller



For a �xed cover x, the relationship between the minimum expected∗ distortion needed to embed a payload ofa �xed size will be referred to as the rate�distortion bound.Minimal-distortion steganography is often implemented in practice with an additive cost function
D(x,y) =

n
∑

i=1

ρi(x, yi), (1)where ρi(x, yi) ∈ R is the cost of changing the ith cover pixel xi to yi. This cost depends only on the originalcover image x and yi, but not on the other values yj , j 6= i. This choice makes the embedding changes mutuallyindependent.For example, embedding algorithms may minimize the number of changed cover elements, such as in the nsF5algorithm,12 or costs related to the quantization error as in MMx18, 27 or Perturbed Quantization.11 In spatialdomain, the embedding operation can be ternary, such as in LSB matching, where the color is changed by ±1randomly. In some algorithms,24, 29 only the embedding change leading to the smaller distortion is chosen tomodify a pixel's LSB. This choice allows the receiver to extract the message from LSBs, but e�ectively reducesthe embedding operation to binary, which limits the maximum possible per-pixel payload to 1 bit instead of
log2(3) ≈ 1.56 bits.In Ref. 8, the authors provide a practical framework allowing the steganographer to minimize an additivedistortion function (1) while embedding a near-maximal payload even for embedding operations with a largersupport. The framework allows the sender to minimize an additive distortion described by the set of local costs
ρi(x, yi), i ∈ {1, . . . , n}, without having to share them with the receiver. In order to read the message, the onlyinformation the receiver needs is the size of the message to be extracted. This freedom opens up the possibilityof learning ρi from the cover source. By letting ρi(x, yi) → ∞, the framework can prohibit modi�cations ofthe ith pixel � an option often used with zero AC DCT coe�cients in JPEG images.12 It is our belief thatfurther substantial increase in secure payload can be achieved by properly designing the cost function instead ofimproving the coding algorithm.The key question is how to derive the cost function D so that minimizing D corresponds to more securealgorithms. In practice, most distortion functions are obtained heuristically and do not generalize well to othercover sources. Even though in this article we limit ourselves to independent embedding changes, the design ofsingle-pixel cost functions ρi for an additive D is an important problem. It is the �rst step leading towardsmore general solutions, such as the Gibbs construction,7 that work with non-additive distortion functions thatare additive over larger (and possibly overlapping) groups of cover elements of which (1) is a special case. TheGibbs construction generalizes the above framework by minimizing cost functions that can model dependenciesamong embedding changes.Our motivation for solving the problem of the cost-function design comes from the HUGO algorithm24 thatassigns the costs of individual changes based on the pixel neighborhood. Unfortunately, this approach does noteasily generalize to other cover sources, such as JPEG or color bitmap images, neither is it clear how to optimizethe design. In this paper, we open the question of the cost-function design and propose a practical methodologyfor learning the costs from a set of training cover images using a set of steganalytic features. We also strivefor a robust approach that generalizes well to unseen cover images and unseen steganalytic features to avoidover�tting to a particular cover source and feature space. For example, the Feature Correction Method,19 whichis a heuristic approach to embed while approximately preserving the cover-image feature vector, is known to beoverly sensitive to the chosen feature set and does not generalize or scale well.The rest of this paper is organized as follows. In Section 2, we introduce the minimal-distortion embeddingframework and its practical implementation. All embedding algorithms introduced in this paper will followthis framework. Section 3 casts the cost-design problem into function optimization and introduces two newdesign criteria and a methodology for learning the costs from training images. The methodology developed inSection 3 is then applied to grayscale spatial-domain images in Section 4. Application to grayscale JPEG imagesis considered in Section 5. The paper concludes in Section 6 with a discussion of possible future directions onhow to apply and improve the proposed methodology for designing adaptive embedding schemes.

∗The expectation is over di�erent messages.



2. MINIMAL-DISTORTION EMBEDDING FRAMEWORKThis section summarizes the minimal-distortion embedding framework as described in Ref 8†. All quantitiesderived in this section depend on the chosen cover object x. Let Ii ⊂ I be (possibly di�erent) embeddingoperations de�ned for every i ∈ {1, . . . , n}. The sender will embed a message by minimizing the introducedcost (distortion), which we assume to be additive over individual pixels (1). We remind that the distortion isdescribed by the set of local cost functions ρi.We assume that the stego image is a random variable over I1 × · · · × In with distribution πx, i.e., theprobability of sending the stego object y is Pr(Y = y|x) = πx(y). Without having to share the cover x or πxwith the receiver, the sender can send up to H(πx) bits while introducing expected distortion Eπx
[D], where

H(πx) = −
∑

y∈Y

πx(y) log2 πx(y) and Eπx
[D] =

∑

y∈Y

πx(y)D(x,y).One possible formulation of the embedding problem called the payload-limited sender calls for �nding πx thatachieves the smallest Eπx
[D] while sending m bits, i.e.,minimize

πx

Eπx
[D] subject to H(πx) = m. (2)The solution of this embedding problem is in the form of a Gibbs distribution

πx(y) =
exp(−λD(x,y))

Z(λ)

(a)
=

n
∏

i=1

exp(−λρi(x, yi))

Zi(λ)
,

n
∏

i=1

πx,i(yi), (3)where the parameter λ ≥ 0 is obtained by solving the payload constraint in (2),‡ and Z(λ) =
∑

y∈Y exp(−λD(x,y)),
Zi(λ) =

∑

yi∈Ii
exp(−λρi(x, yi)) are the corresponding partition functions. Step (a) follows from the additivityof D, which also leads to mutual independence of individual stego pixels yi given x. The best possible embeddingalgorithm implementing the payload-limited sender can be simulated in practice by �rst solving (2) for λ andthen by sampling the ith stego pixel independently from πx,i(yi). This method is particularly useful for testingthe algorithm since it allows us to simulate the statistical impact of embedding a random message. The resultingstego objects can then be subjected to steganalysis.The relationship between the costs, ρi(x, yi), and the probabilities, πx,i(yi), yi ∈ Ii, given by (3) can beinverted so that a given set of probabilities πx,i(yi), yi ∈ Ii, leads to costs ρi(x, yi) unique up to an a�netransformation.§ Using this equivalence, minimal-distortion embedding can be interpreted as a particular caseof model-based steganography28 with one important di�erence � in our case the model (the cost functions) doesnot need to be shared with the receiver.The performance of practical embedding algorithms will be evaluated using the coding loss de�ned as therelative decrease in payload due to practical coding:

l(Dε) =
mMAX −m

mMAX . (4)In (4), m is the payload embedded by a given algorithm and mMAX is the maximal payload embeddable withdistortion not exceeding Dε. The payload-limited sender can be realized in practice using Syndrome-TrellisCodes (STCs),8 for which the loss l is typically between 7% to 14% depending on the complexity parameter (theconstraint height).
†For C++ and Matlab implementation, see http://dde.binghamton.edu/download/syndrome/.
‡A simple binary search is su�cient since H(πx) is monotone w.r.t. λ.
§Costs for the same i can be multiplied and/or shifted by a common constant without changing the solution of (2).



3. EMPIRICAL DESIGN OF COST FUNCTIONSIn this section, we focus on designing adaptive embedding schemes for the payload-limited sender subjected tosequential steganalysis. In this regime, the sender decides on the number of bits he wants to hide in a given coverobject, embeds his payload, and sends the stego object through a passively monitored channel. In sequentialsteganalysis,17 the Warden has to decide whether a given image is cover or stego solely based on a single object.We deliberately omit the possibility of intentionally spreading the payload into a group of cover images � atechnique known as the batch steganography. This mode can improve the security of the scheme, however, itshould no longer be tested with sequential steganalysis. The Warden should use pooled steganalysis17 that allowsher to pool the results over a larger group of objects. We leave this direction open for a future research.A common way of testing steganographic schemes is to report a chosen detection metric (ROC curve, accuracy,minimum error probability under equal priors PE, etc.) empirically estimated from a database of cover and stegoimages where each stego image carries a �xed relative payload. Whenever possible, we report results obtainedfrom cover images of roughly the same size to reduce the e�ect of the square root law.9Our goal is to design a set of functions ρi, i ∈ {1, . . . , n}, which, given the original cover image, assign thecost of changing individual cover elements to their new values. For digital images, the dependence between twocover pixels rapidly decreases with their distance. In case of grayscale spatial-domain digital images, the costof changing a single pixel should mainly depend on its immediate neighborhood. For this reason, we constrain
ρi to be a real-valued function Θ with small support, ρi(x, yi) = Θ(xσ(i), yi), where xσ(i) denotes cover pixelsspatially close to pixel i.From practical experiments, it is possible to identify the quantity that should drive the costs. For example,pixels in busy regions can be changed more frequently (and by a larger amount) than those in smooth regionsbecause they are generally harder to predict (model). On the other hand, pixels in saturated areas should notbe modi�ed at all. However, giving exact relationship between predictability of a pixel change given a smallneighborhood, i.e., �nding a good Θ is not an easy task. For simplicity, we allow Θ to depend on a vector-valued parameter θ ∈ Rk and use our prior knowledge about the cover source to suitably parametrize Θ. Witha real-valued measure of statistical detectability (such as the PE error), the problem of �nding the best ρi'sis transformed to an optimization problem over the parameter space of θ � a problem which can be solved bynumerical methods.In the rest of this section, we review several detectability metrics and discuss their suitability for designing thecost function based on the dimensionality of θ. We will illustrate each optimization criterion on a simple problemof designing an adaptive embedding scheme for grayscale spatial-domain digital images with a single-parametersearch space. All experiments described in this section were carried out with 10800 512× 512 grayscale imagesfrom the BOWS2 database2 described in Section 4.Inverse single-di�erence cost model: Let θ ≥ 0 and Ni = {xi,→, xi,↗, xi,↑, . . . , xi,↘} be a set of eight pixelsfrom the 3× 3 neighborhood of the ith pixel. We use the ±1 embedding operation, Ii = {xi − 1, xi, xi + 1} ∩ I,and de�ne

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
(1 + θ|z − xi|)−1 + (1 + θ|z − yi|)−1 otherwise. (5)At the image boundary, the set of neighboring pixels Ni is reduced accordingly. This cost assignment penalizeschanges in textured areas less than those in smooth regions depending on the di�erences between neighboringpixels.3.1 Blind steganalysisThe only way of evaluating the security of steganographic schemes for empirical covers is to subject themto a steganalysis test. According to Kerckho�s' principle, we allow the Warden to know all elements of thestegosystem (the cover source, the embedding algorithm and the size of the possible payload) except for the(possibly encrypted) message. Given a single image, the Warden has to decide whether it is cover or stego. Inthis simple binary hypothesis test, the Warden can make two types of errors � either detect the cover image asstego (false alarm) or recognize the stego image as cover (missed detection). The corresponding probabilities



are denoted PFA and PMD, respectively. The relationship between these two errors is completely described bythe ROC curve obtained by plotting 1− PMD(PFA) as a function of PFA. Unfortunately, ROC curves cannot bedirectly used for evaluating steganalyzers (embedding algorithms) as they cannot be ordered (they may overlap).Thus, we reduce the ROC curve into a scalar detection measure called the minimum error probability under equalpriors:
PE = min

PFA 1

2

(

PFA + PMD(PFA)). (6)Due to the lack of exact probability distributions for real digital media covers, practical steganalyzers forsuch empirical cover sources are constructed by training a binary classi�er on a set of cover and stego imagesobtained by embedding a pseudo-random message. Prior to training, the dimensionality of cover objects isreduced by extracting a feature vector from them. The �nal steganalyzer can be implemented, for example,using Support Vector Machines5, 6 (SVM). The features serve here as a lower-dimensional model for the objectunder study and often capture the dependencies between individual cover pixels (DCT coe�cients). Manyfeature sets were proposed in the literature for grayscale digital images represented either in the DCT or thespatial domain (see Ref. 21 and the references therein). In this paper, we use the second-order SPAM features23with T = 3 for spatial-domain images, while JPEG images will be represented using the Cartesian-CalibratedPevný features (CC-PEV) with calibration implemented via cropping by 4 × 4 pixels.20 The merger of bothsets is called the Cross-Domain Feature set21 (CDF) and we will use it in both domains.¶ With regards tomachine learning, we use soft-margin SVMs with a Gaussian kernel of width γ implemented using LIBSVM.5The database of cover images was randomly divided into two halves � one for training and one for testing.The SVM hyper-parameters C and γ were found using a grid-search with �ve-fold cross-validation over the set
(C, γ) ∈

{

(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−L− 3, . . . ,−L+ 3}
}, where L = log2 d is the binary logarithm of thefeature dimensionality.Even though blind steganalysis provides the most trustworthy measure of detectability in practice, it requiresa large number of images for training and a separate set of images for testing. In practice, many thousands ofimages are usually processed by the embedding algorithm to create the stego images and extract the features.Since the training can also be very time consuming, evaluating detectability of a speci�c embedding algorithmat a given payload using machine learning can be prohibitively expensive. For this reason, only a small numberof parameters θ can be evaluated and thus this method is impractical for optimizing a high dimensional θ. Thiscomplexity issue is the main motivation for developing alternative and much faster optimization criteria. Weused the error PE estimated using an SVM-based classi�er mainly for validating the results obtained from otheroptimization criteria or for performing the grid search over a small region of the search space.3.2 L2R_L2LOSS - soft-margin optimization criterionAlthough there exist many algorithms for binary classi�cation, SVMs are popular for their good ability togeneralize to unseen data samples. The success of SVMs lies in the optimization criterion which, for the caseof a linear classi�er, looks for the separating hyperplane maximizing the distance (often called margin) betweenitself and the closest data points. Intuitively, the larger the margin between two classes, the better they canbe separated and the smaller the PE error becomes. We use the size of the margin for a linear SVM as theoptimization criterion. It is described and studied below.Let C be the set of N cover images and S the set of N stego images obtained from C by embedding apseudo-random message into each image. By extracting a d-dimensional feature from each image, we obtain aset of 2N vectors {fi ∈ Rd|i ∈ {1, . . . , 2N}}. We also de�ne the labels gi, i ∈ {1, . . . , 2N}, as gi = −1 if fi wasobtained from a cover image and gi = +1 otherwise. Furthermore, we normalize all cover feature vectors fi sothat the sample variance of each element is 1. This scaling is then applied to stego features as well. SVMs witha linear kernel16 classify a new sample f as cover if wT f < 0, where w ∈ Rd is the normal vector of the decisionhyperplane obtained by solving the optimization problem:

min
w∈Rd

1

2
wTw + C

2N
∑

i=1

ξ(w; fi, gi). (7)
¶Spatial-domain images are JPEG compressed with quality factor 100 before CC-PEV features are extracted.
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Figure 1. Comparison of di�erent cost assignments in the inverse single-di�erence cost model (5) with a payload-limitedsender embedding 0.5 bpp using the L2R_L2LOSS (left) and MMD2 (right) optimization criteria. The results are comparedwith the PE error obtained from an SVM-based classi�er. All results were produced using the CDF set and the BOWS2database of 512× 512 grayscale images.Here, ξ(w; fi, gi) is a loss function and C > 0 is a penalty parameter. By minimizing (7), we maximize the marginwhile penalizing the misclassi�ed samples. We focus on the so-called L2-SVM penalty function ξ(w; fi, gi) =
max(1− giw

T fi, 0)
2. The optimization problem (7) can also be formulated in its dual form:16

min
α∈R2N

h(α) =
1

2
α

T Q̄α−
2N
∑

i=1

αi (8)subject to 0 ≤ αi, ∀i ∈ {1, . . . , 2N},where Q̄ = Q+D, D being a diagonal matrix with Dii = (2C)−1, and Qij = gigjf
T
i fj , i, j ∈ {1, . . . , 2N}. Given

α, the solution to (7) is w =
∑2N

i=1 giαifi. From the duality, the value −h(α), for any α with αi ≥ 0, bounds theoptimal solution to the primal problem from below. We call the optimal value of h(α) from (8), the L2R_L2LOSS(L2-regularized L2-loss) criterion. The smaller the value of this criterion, the larger the optimal value of (7)is, and the smaller the possible margin between cover and stego samples becomes. Therefore, steganographersshould be interested in minimizing L2R_L2LOSS.We used a dual coordinate descent method16 with 104 iterations, C = 0.1, and ε = 0.1 as implemented inthe LIBLINEAR6 package to calculate L2R_L2LOSS. Evaluating L2R_L2LOSS with second-order SPAM featurestook 1�2 seconds for N = 80 512× 512 cover images on a cluster of 40 CPUs when the message-embedding andfeature-extraction parts were distributed using OpenMPI.When optimizing θ using L2R_L2LOSS, we �x the set of cover images C and the set of pseudo-random messageswe will be embedding. We did this by �xing the seeds used for choosing the cover images and the seed usedby the embedding simulator. Although L2R_L2LOSS may have di�erent values when evaluated across di�erentsets C, the minimum w.r.t. θ stays approximately the same. Figure 1(left) shows the value of the L2R_L2LOSScriterion based on the CDF set when evaluated for di�erent values of θ ≥ 0 in (5) and the number of images in C.We can see that even with 40 images, the optimal value of θ is close to the value obtained from the SVM-basedclassi�er.Because the L2R_L2LOSS criterion can be evaluated quickly, it can be minimized using numerical methodseven for a high dimensional θ. Unfortunately, for higher dimensional θ, the surface obtained by this criterionw.r.t. θ is not smooth enough for gradient-based optimization methods to be used e�ciently. Instead, we usedthe Nelder�Mead simplex-re�ection method (exactly as described in [22, Chapter 9.5]) with elements of the initialsimplex generated uniformly at random in [0, 1]. Due to the non-smooth nature of the optimization criterion, wecannot guarantee that we reached a global minimum (in fact, the solution will be most likely a local minimum).



3.3 Other optimization criteria and their relevance to cost designDue to the non-smooth optimization surface, we may be interested in other metrics. Metrics leading to asmooth optimization surface may produce an embedding algorithm whose cost assignments may be easier tointerpret. Here, we present one such metric � the MaximumMean Discrepancy (MMD).14, 25 MMD has been usedfor comparison of steganographic methods25 and other machine learning problems, such as feature selection.13Originally, MMD was designed as a statistical test for the two-sample problem � to decide whether two data setswere obtained from the same distribution. The theoretical derivation of MMD appears in Ref. 25. Here, we onlyreview the connection between MMD and binary hypothesis testing.Let C′ and S ′ be the sets of N ′ cover and stego images, respectively. We require the set of cover images usedfor creating S ′ to be disjoint with C′. Let ci, si ∈ Rd, i ∈ {1, . . . , N ′}, be the feature vectors representing the ithcover and stego image, respectively. As in Section 3.2, we normalize ci and si to unit variance obtained from thecover features. An unbiased estimate of MMD2 isMMD(C′,S ′)2 =
1

N ′(N ′ − 1)

∑

i6=j

kλ(ci, cj)− kλ(ci, sj) + kλ(si, sj)− kλ(si, cj), (9)where kλ(c, s) = exp(−γ ‖c− s‖22) is the Gaussian kernel with parameter γ ≥ 0. We set the width of theGaussian kernel to λ = 10−3, which closely corresponds to the �median rule�.14 In practice, we used the set of
N ≥ 2N ′ cover images from which C′ and S ′ were derived using a pseudo-random permutation. For a givenset of N cover images, we de�ne the MMD2 criterion as the sample mean of MMD(C′,S ′)2 calculated over Mpseudo-random partitions. For the 1234-dimensional CDF set, evaluating MMD2 using N = 80 512 × 512 coverimages with N ′ = 40 and M = 105 took 4 seconds on a 40-CPU computer cluster when all operations wereparallelized using OpenMPI.The MMD2 criterion is related to binary classi�cation using Parzen windows [15, Chapt. 6.6]. A simple binaryhypothesis testing problem (deciding whether a given image is cover or stego) can be solved optimally using theLikelihood Ratio Test (LRT) once the exact probability distributions of cover, PC , and stego feature vectors, PS ,are available. Given an unknown feature vector f , the LRT calls f cover if PC(f) > PS(f) and stego otherwise.Because neither PC or PS are available, one may want to estimate them from a set of N cover and N stegotraining samples fi ∈ Rd with labels gi, i ∈ {1, . . . , 2N}. The Parzen estimate of PC(f) de�ned as

P̂C(f) =
1

N

∑

gi=−1

Kλ(fi, f) (10)�counts� the number of training vectors that are close to f . Here, Kλ(fi, f) is a kernel giving larger weights tovectors closer to f . A popular choice for Kλ is the Gaussian kernel Kλ(fi, f) = kλ(fi, f) = exp(−γ ‖fi − f‖22). TheParzen estimate of PS(f), denoted P̂S(f), is de�ned in a similar way. When we substitute P̂C(f) and P̂S(f) intothe LRT, we obtain the Parzen window classi�er. Therefore, MMD(C′,S ′)2 calculates a �nite-sample estimateof the average detection criterion with equal-priors:MMD(PC , PS)
2 = Ef ,f

−1∼PC ,f+1∼PS

[

kλ(f , f−1)− kλ(f , f+1)
]

+ Ef
−1∼PC ,f ,f+1∼PS

[

kλ(f , f+1)− kλ(f , f−1)
] (11)obtained using the leave-one-out cross-validation [15, Chapt. 7.10]. Due to the Gaussian kernel kλ, MMD(PC , PS)

2 ≥
0 and MMD(PC , PS)

2 = 0 if and only if PC = PS . For this reason, the steganographer should minimize theMMD2 criterion, which is a bootstrapped version of (9).Figure 1(right) compares the MMD2 criterion when calculated from N = 80 and N = 40 cover images using
N ′ = N/2 and M = 105 over di�erent values of θ ≥ 0. The results obtained from the SVM-based classi�er areplotted for reference. Due to bootstrapping, the MMD2 criterion results in a smooth optimization surface even fora high-dimensional θ. We used a simple gradient descent-based optimization technique to minimize MMD2.



4. APPLICATION TO SPATIAL-DOMAIN DIGITAL IMAGESIn this section, we apply the proposed optimization criteria to the problem of optimizing the cost models forgrayscale spatial-domain digital images. We �rst compare the L2R_L2LOSS and the MMD2 criteria on a high-dimensional cost model and validate the results using an SVM-based steganalyzer. L2R_L2LOSS is then used foroptimizing models similar in nature to those used in the HUGO algorithm.24We use the BOWS2 image database2 containing approximately 10800 grayscale images of size 512 × 512.Images in this database were obtained by rescaling high-resolution photographs of di�erent scenes originallystored as JPEGs and then converted to grayscale. The database was not processed to remove images containingareas with saturated pixels. For comparison, we also use the BOSSBase‖ image database with 9074 grayscaleimages originally taken by seven di�erent camera models in a RAW format (CR2 or DNG) and converted/resizedto grayscale images of size 512× 512. This database was intentionally formed to not contain images with largeregions of saturated pixels.4.1 Comparing the L2R_L2LOSS and MMD2 criteria for high-dimensional search spaceIn the single-di�erence cost model (5), the cost of changing the ith pixel was forced to follow the inverse modeldriven by the scalar parameter θ. We now generalize this and associate one parameter with each value of a pixeldi�erence.Generalized single-di�erence cost model: Since most pixel di�erences are concentrated around zero, wede�ne θ = (θ−∆, θ−∆+1, . . . , θ∆−1, θ∆, θ•) ∈ R2∆+2 to be a 2∆+ 2-dimensional vector, for some �xed parameter
∆ ∈ N. Again, let Ni = {xi,→, xi,↗, xi,↑, . . . , xi,↘} be a set of eight pixels in the 3 × 3 neighborhood of the ithpixel. Given θ, the cost of changing the ith pixel by ±1, Ii = {xi − 1, xi, xi + 1} ∩ I, is

ρi(x, yi) = Θ(Ni, yi) =











0 if yi = xi,

∞ if yi /∈ Ii,
∑

z∈Ni
θ2z−xi

+ θ2z−yi
otherwise, (12)where θj = θ• when |j| > ∆. We require ρi(x, yi) ≥ 0 and enforce this by squaring. Allowing ρi(x, yi) < ρi(x, xi)would lead to cases where it is actually bene�cial to make the change instead of keeping the original value. Wedo not consider such a case here.Figure 2 shows the progress of optimizing the generalized single-di�erence cost model (12) using the MMD2(left) and L2R_L2LOSS (right) criteria when embedding a �xed relative payload of 0.5 bpp. We used a simplegradient-descent and the Nelder�Mead simplex-re�ection algorithms utilizing the CDF set to minimize MMD2 andL2R_L2LOSS over a �xed set of 80 images, respectively. Selected values of the parameter θ were also tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set. For the �nal solution, the L2R_L2LOSS criterionprovides a more secure embedding algorithm (a higher PE error) than those obtained from MMD2. As can be seenfrom the left �gure, optimizing the cost assignments w.r.t. the MMD2 criterion does not lead to increasing the PEerror of the SVM-based steganalyzer. Although the �nal solution obtained from the L2R_L2LOSS criterion doesnot achieve the best known result (see the leftmost point achieving PE = 26% in the left graph), we consider itto be better connected to the PE error and use it for all experiments in this paper. The discrepancy betweenthe PE error and the MMD2 criterion may be due to the strong relationship between MMD2 and the non-parametricParzen window classi�er, which is believed to be worse than a Gaussian SVM-based steganalyzer. The fact thatL2R_L2LOSS does not achieve the maximal known PE is because solution was a local minimum. Restarting theNelder�Mead algorithm with a di�erent initial simplex lead to di�erent solutions achieving di�erent L2R_L2LOSSvalues. The gap between the current and optimal solution may be closed in the future using other optimizingcriteria or more involved optimization methods.

‖The latest version of the image database used in the BOSS contest http://boss.gipsa-lab.grenoble-inp.fr/.
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Figure 2. The value of the optimization criteria MMD2 (left) and L2R_L2LOSS (right) when optimized by their respectivealgorithms using the generalized single-di�erence cost model (12) embedding 0.5 bpp. Selected cost assignments arevalidated with the PE error obtained from the SVM-based classi�er. All results were produced using the CDF set andthe BOWS2 database of 512× 512 grayscale images. These results are explained in Section 4.1.4.2 Cost models based on pixel di�erencesWe further generalize the single-di�erence cost model by allowing the cost to depend on a larger neighborhoodvia two or three pixel di�erences. For better clarity, we represent the cover image x in a matrix form, where
xi,j ∈ I denotes the pixel in ith row and jth column.Two-di�erence cost model: LetD→

i,j(z) = {(xi,j−2−xi,j−1, xi,j−1−z), (xi,j−1−z, z−xi,j+1), (z−xi,j+1, xi,j+1−
xi,j+2)} be a set of two-element vectors describing the di�erences around the i, jth pixel in the horizontal directionwhen xi,j is replaced by z ∈ I. We de�ne Di,j(z) = D→

i,j(z)∪D↗
i,j(z)∪D↑

i,j(z)∪D↖
i,j(z), where the last three setsare de�ned similarly as D→

i,j(z) except with a di�erent orientation. The cost model is described by θ ∈ R(2∆+1)2+1consisting of θk,l ∈ R for −∆ ≤ k, l ≤ ∆ (this models the cost of disturbing the di�erence vector (k, l)) and θ• ∈ Rfor all other values outside∆. Given θ, the cost of changing the i, jth pixel by ±1, Ii,j = {xi,j−1, xi,j , xi,j+1}∩I,is
ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

d∈Di,j(xi,j)
θ2d +

∑

d∈Di,j(y)
θ2d otherwise, (13)where θd = θ• whenever any element of d ∈ N2 is larger than ∆. We reduce the sum in (13) accordingly whenthe i, jth pixel is close to the image boundary.Three-di�erence cost model: We extend D→

i,j(z) to include all three-element vectors one may obtain fromfour pixels in the horizontal direction containing xi,j , i.e., |D→
i,j(z)| = 4 and de�ne a (2∆ + 1)3 + 1-dimensionalcost model in the same fashion as above.Figure 3 compares the performance of algorithms based on two and three-di�erence cost models with ∆ = 4optimized using the L2R_L2LOSS criterion for payloads α′ = 0.2 and α′ = 0.5 bpp. Both algorithms weresimulated on their respective rate�distortion bounds. The performance of a practical implementation of thescheme for α′ = 0.5 is rather close to the simulated scheme when implemented using the multi-layered STCs.8The costs were minimized using the second-order SPAM features with T = 3 and tested with a Gaussian SVM-based steganalyzer with the CDF set. This shows the ability of the optimization procedure to produce costassignments that are not overtrained to a speci�c feature set despite the fact that the dimensionality of thesearch space for the three-di�erence cost model was (2∆ + 1)3 + 1 = 730. As can be seen from the �gure, the
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Figure 3. Performance of embedding algorithms optimized using the L2R_L2LOSS criterion with second-order SPAM fea-tures with T = 3, payload α
′ bpp, and 80 random images from the BOWS2 database. All algorithms were tested usinga Gaussian SVM-based steganalyzer utilizing the CDF set with training and testing images from BOWS2 (left) andBOSSBase (right). Results from the HUGO algorithm24 when simulated on the rate�distortion bound are shown forcomparison.algorithm designed for α′ = 0.5 bpp achieved better results for larger payloads. Increasing the design payloadabove 0.5 bpp did not bring any further improvement. All algorithms achieve better performance than HUGO,24because they better utilize the ternary embedding operation for large payloads.5. APPLICATION TO DIGITAL IMAGES IN DCT DOMAINMost adaptive embedding schemes for JPEG images8, 18, 27 embed message bits while quantizing the DCT coef-�cients during JPEG compression and minimize an additive distortion function (1) derived from the roundingerrors. This approach utilizes the side-information in the form of a never-compressed image, which may notalways be available. In this section, we focus on designing adaptive embedding schemes that start directly froma JPEG image and derive the costs of changing a single DCT coe�cient from its neighborhood.We used a mother database of 6500 images obtained from 22 di�erent cameras at their full resolution in araw format from which a database of 6500 grayscale JPEG cover images was created. Each raw image was �rstconverted to grayscale, resized to a smaller size of 512 pixels using bilinear interpolation while preserving theaspect ratio, and �nally JPEG compressed using quality factor 75.A common way of expressing the payload in DCT-domain steganography is the number of bits embedded pernon-zero AC DCT coe�cient,12 which we denote as �bpac.� This is because essentially all embedding schemes forDCT domain never change zero coe�cients and some even avoid changing DC coe�cients due to their high impacton statistical detectability. According to,12 the most secure algorithm that does not rely on any side-informationis the nsF5, which minimizes the number of changed non-zero AC DCT coe�cients. Using our terminology, thensF5 uses a binary embedding operation that decreases the absolute value of a non-zero AC DCT coe�cient,i.e., Ii = {xi, xi − sign(xi)} whenever xi 6= 0 is an AC coe�cient, and Ii = {xi} otherwise. Figure 4 shows theperformance of nsF5 when simulated as described in Section 2. The detection was implemented using the CDFset with a Gaussian SVM-based steganalyzer.Similar to the spatial domain, we design the costs based on the di�erences between DCT coe�cients ei-ther from neighboring blocks or from similar DCT modes in the same 8 × 8 block. This allows us to expressthe context in which a single change is made. We represent a JPEG image x in a matrix notation, where

xi,j ∈ I , {−1024, . . . , 1024} denotes the DCT element of mode (i mod 8, j mod 8) in the di/8e , dj/8eth block.The set {xi,j |i mod 8 6= 0 ∨ j mod 8 6= 0} describes all AC DCT coe�cients in x. We de�ne the following costmodel, which we use with a ternary embedding operation.
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Figure 4. (Left) Detectability of embedding algorithms for the DCT domain based on the inter/intra-block cost model (14)optimized using the L2R_L2LOSS criterion and CC-PEV features for the payload of 0.5 bpac. The error PE was measuredusing a Gaussian SVM-based steganalyzer with the CDF set. (Right) The values of θir for the optimized inter-blockmodel used to generate the plot on the left.Inter/intra-block cost model: Let θ = (θir, θia) ∈ R(2∆+1)+1 × R(2∆+1)+1 be the model parameters de-scribing the cost of disturbing inter- and intra-block dependencies with θir = (θir,−∆, . . . , θir,∆, θir,•) and θia =

(θia,−∆, . . . , θia,∆, θia,•). The cost of changing any (even zero) AC DCT coe�cient xi,j to y ∈ Ii,j , {xi,j −
1, xi,j , xi,j + 1} ∩ I is

ρi,j(x, y) = Θ(y) =











0 if y = xi,j ,

∞ if y /∈ Ii,j ,
∑

z∈Nia θ2ia,xi,j−z +
∑

z∈Nir θ2ir,xi,j−z otherwise, (14)whereNir ={xi+8,j , xi,j+8, xi−8,j , xi,j−8} and Nia ={xi+1,j , xi,j+1, xi−1,j , xi,j−1} are inter- and intra-block neigh-borhoods, respectively. As before, θia,z = θia,• and θir,z = θir,• whenever |z| > ∆. We reduced the sum in (14)accordingly when the required element falled outside of the image boundary.Figure 4 (left) compares the performance of embedding algorithms based on the above inter/intra-block costmodel when optimized using the L2R_L2LOSS criterion with CC-PEV features and payload 0.5 bpac. We reportthe performance of two algorithms for ∆ = 6. In the �rst version, both θir and θia were optimized, while in thesecond version only the inter-block part θir was optimized while θia = (0, . . . , 0). To show that the optimizedalgorithms are not over-trained to the CC-PEV features calibrated by cropping by 4 × 4 pixels, we report the
PE error obtained from a Gaussian SVM-based steganalyzer utilizing the CDF set. Similar performance resultswere obtained using the CC-PEV feature set with calibration by cropping by 2 × 4 pixels, which suggests thatthe algorithms are not over-trained to a speci�c feature set. Unfortunately, the algorithm optimized w.r.t. bothinter- and intra-block parts did not achieve a better performance than the algorithm with θia = 0, which isjust a special case. This is due to the fact that the Nelder�Mead algorithm converged to a local minimum(the L2R_L2LOSS criterion was smaller for the case with θia = 0). When compared with the non-adaptive nsF5algorithm, both versions increased the payload for the same level of security more than twice. All algorithmscan be implemented using the multi-layered STCs8 in practice. Figure 4 shows that the loss introduced by sucha practical implementation is small when implemented using STCs with constraint height h = 10.We found out experimentally that it is more e�ective to optimize the cost functions w.r.t. larger payloads.Methods optimized for smaller payloads, such as 0.1 bpac, did not achieve as high performance for higher payloadsas methods optimized for larger payloads.



6. CONCLUSIONMinimal-distortion steganography is a general principle for building embedding schemes for empirical coversources, such as digital media, for which the embedding cannot be designed to preserve the cover source dis-tribution simply because epistemiological arguments can be made that such a distribution may not even exist.The basic premise behind steganography designed to embed while minimizing a certain distortion function isthat the distortion is related to statistical detectability. In the past, steganographers used heuristically de�neddistortion functions and focused on the problem of embedding with minimal distortion while no attempt wasmade to justify the choice of the distortion function or optimize its design. Since the problem of embedding withminimal distortion has been resolved in a near-optimal fashion using clever coding methods, what remains to bedone and where the biggest gain in steganographic security lies is the form of the distortion function.The main contribution of this paper is a practical methodology using which one can optimize the distortionto design steganographic schemes with improved security. We do so by representing images in a feature spacein which we de�ne a criterion evaluating the separability between the sets of cover and stego features. Thedistortion function is parametrized and the parameters are found by optimizing them w.r.t. the chosen criterionon a set that is relatively small � 80 cover and stego images. The result is validated on various cover sourcesusing blind steganalyzers. We intentionally use steganalyzers that utilize di�erent feature spaces than the onein which we optimize to demonstrate that our optimized design generalizes to other feature sets as well coversources.We work with additive distortion functions that can be written as a sum of costs de�ned for each pixel, whileeach pixel cost depends on neighboring cover pixels. After investigating three di�erent choices for the criterion,we selected the margin of a linear SVM as the most suitable one that is computationally e�cient yet still closelytied to detectability as determined by a binary classi�er trained on a large set of images.The merit of the proposed work is demonstrated by incorporating the optimized cost for the ±1 embeddingoperation in the spatial domain and the ±1 operation for the DCT domain. The improvement over current stateof the art is especially apparent in the DCT domain where the methods with optimized costs can embed morethan twice as large payloads for the same detectability as the nsF5 algorithm. The costs are robust in the sensethat the improvement can be observed even when the new method is tested with steganalyzers using a di�erentfeature set and even on a slightly di�erent cover source.Without any doubts, better parametric models for the distortion in the DCT domain can and should beconsidered. For example, the cost parameters should be dependent on the spatial frequency of DCT coe�cients.This would substantially increase the dimensionality of the parameter space which would need to be balanced outby a corresponding increase of the number images. This appears to be a mere issue of increased complexity ratherthan one that would render our approach inapplicable and we might consider it in our future work. Embeddingsimulators used in this paper can be downloaded from http://dde.binghamton.edu/download/stego_design/.ACKNOWLEDGMENTSThe work on this paper was supported by Air Force O�ce of Scienti�c Research under the research grant numberFA9550-08-1-0084. The U.S. Government is authorized to reproduce and distribute reprints for Governmentalpurposes notwithstanding any copyright notation there on. The views and conclusions contained herein are thoseof the authors and should not be interpreted as necessarily representing the o�cial policies, either expressed orimplied of AFOSR or the U.S. Government. REFERENCES1. R. Anderson. Stretching the limits of steganography. In R. J. Anderson, editor, Information Hiding, 1stInternational Workshop, volume 1174 of Lect. Notes in Computer Sc., pages 39�48, Cambridge, UK, May30�June 1, 1996. Springer-Verlag, Berlin.2. P. Bas and T. Furon. BOWS-2. http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz, July 2007.3. R. Böhme. Advanced statistical steganalysis. Springer-Verlag, Heidleberg, 2010.
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