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ABSTRACT

This paper investigates practical strategies for distributing
payload across images with content-adaptive steganography
and for pooling outputs of a single-image detector for ste-
ganalysis. Adopting a statistical model for the detector’s out-
put, the steganographer minimizes the power of the most-
powerful detector of an omniscient Warden, while the War-
den, informed by the payload spreading strategy, detects with
the likelihood ratio test in the form of a matched filter. Exper-
imental results with state-of-the-art content-adaptive additive
embedding schemes and rich models are included to show the
relevance of the results.

Index Terms— Batch steganography, pooled steganalysis,
adaptive embedding, optimal detection.

1. INTRODUCTION

Steganography alters innocuously looking cover objects in
order to communicate in secrecy. This work focuses on
steganography in digital images, arguably the most popular
and most studied cover objects.

Recent years have seen a remarkable progress in steganog-
raphy and steganalysis. Syndrome codes [1] gave birth to nu-
merous modern, content-adaptive data hiding algorithms [2,
3, 4]. The science of detection of hidden data called steganal-
ysis has also remarkably improved over the past few years
with the introduction of rich media models [5, 6] and new
machine learning tools [7, 8].

In batch steganography, the payload is spread over multi-
ple covers while pooled steganalysis jointly analyzes multiple
objects for detection. Introduced in [9], these two topics are
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among the most pressing open problems today [10]. Payload
spreading strategies for non-adaptive hiding schemes and tar-
geted detectors were studied in [11, 12, 13] with the conclu-
sion that the payload should either be concentrated in as few
covers as possible or spread evenly.

Pooled steganalysis was studied in [12] under the assump-
tion that the Warden knows the chunk sizes but not their
assignment to individual images. In a different setup, the
authors of [14] used a local outlier factor to identify the
steganographer in the wild. The topic of learning optimal
pooling functions appeared in [15], and the problem of se-
quential detection was investigated in [16].

In this paper, we work in spatial domain because of the
availability of good and tractable models that recently lead to
important advances in steganography and steganalysis [4, 17].
By adopting a statistical model of Warden’s detector, the
problem of batch steganography and pooled steganalysis are
formalized within a unified theoretical framework that allows
us to design and study realistic payload spreading strategies
that can be viewed as approximations of optimal but practi-
cally infeasible approaches.

In Section 2, we adopt a model of Warden’s detector and
formalize optimal pooled steganalysis in Section 3 and opti-
mal content-adaptive batch steganography in Section 4. Sev-
eral practical alternatives for optimal batch embedding strate-
gies are introduced in Section 4. Experiments with content-
adaptive embedding schemes and steganalysis detectors built
with rich models appear in Section 5. The paper is concluded
in Section 3.

2. PROBLEM STATEMENT

Abstracting away from specific details, we assume that the
actors are aware of the state-of-the-art in the corresponding
fields, namely that the steganographer uses content-adaptive
embedding and the steganalyst a classifier trained on possibly
high-dimensional features from Rd. For now, we will disre-
gard the details of exactly how the classifier is trained and
simply assume that, when applied to a feature from a single



image, the classifier θ returns a scalar output: θ : Rd → R
that is subsequently thresholded to reach the decision.

Denoting the ith image with x(i) = (x
(i)
kl ) and its repre-

sentation in the feature space as z(i) ∈ Rd, the steganogra-
phers generate a source of I images x(i), i = 1, . . . , I , that
are either all cover or all stego embedded with payloads Ri.
The number of images is assumed to be arbirary large. On
the other hand, the Warden inspects a set of B images x(i),
i = 1, . . . , B, with a classifier trained with a high dimensional
feature set. Due to the way the features are built and the fact
that the test statistic is a projection of high-dimensional fea-
tures, the Warden’s detector output, denoted θ(i) = θ(z(i)), is
likely close to Gaussian [16, 18], θ(i) ∼ N (0, σ2).

Given B ≥ 1 images x(i), i = 1, . . . , B, in Warden’s pool-
ing bag, the Warden faces the following hypothesis test for
her single-image detector outputs:

H0 : θ(i) ∼ N (0, σ2), ∀i (1)

H1 : θ(i) ∼ N
(
µi(Ri), σ

2
)
, ∀i, (2)

where µi(Ri) is the expected shift of the detection statistic
(over messages) when embedding payload size Ri in x(i).

In (2), we adopted the so-called shift hypothesis [9], mean-
ing that the embedding affects only the mean of the detector
output but not its distribution. Note that we allow this shift
to be a different function of the payload size for each im-
age, hence the subscript i of µ. In addition, because we did
not impose any assumption on the steganographers’ payload
spreading strategy, Ri can also be different for each image.

3. OPTIMAL POOLED STEGANALYSIS AND
PRACTICAL APPROXIMATIONS

From the formulation of the hypotheses in (2), the Warden’s
problem consists of maximizing the detection accuracy given
a set of B inspected images x(i), i = 1, . . . , B.

The case in which the Warden does not have any informa-
tion about the payload strategy used by the steganographers,
R = (R1, . . . , RB), has been addressed in [16]. The conclu-
sion of this prior work is that the steganalyst should simply
average all outputs of the single-image detector θ(i). In this
paper, we consider an “omniscient” Warden who knows the
spreading strategy R = (R1, . . . , RB) and the expectations
µi(Ri). In this case, (2) reduces to a test between simple
hypotheses for which the Most Powerful (MP) test that maxi-
mizes the detection power for a given false-alarm probability
is the Likelihood Ratio (LR) test, the matched filter [20]:

ΛB =
1

σ ‖µB‖2

B∑
i=1

µi(Ri)θ
(i). (3)

where µB = (µ1(R1), . . . , µB(RB)) denotes the outputs of
Warden’s detector on all images embedded with payloads R

and ‖x‖2 is the Euclidean norm of x. The term (σ ‖µB‖2)
−1

is just a normalization factor.
From Eq. (3) and from the distribution of the detector’s out-

put θ(i) (2), it is immediate that the LR ΛB follows

ΛB ∼

{
N (0, 1) underH0

N
(√

B ‖µB‖2 , 1
)

underH1.
(4)

Note that the power of this LRT only depends on ‖µB‖2.
Since in practice the steganalyst does not know the expec-

tations µi(Ri), they need to be estimated. In this paper, we
chose a polynomial regressor of second degree in three vari-
ables: the payload Ri, the change rate ri caused by embed-
ding payload Ri, and %i, the deflection coefficient based on
MiPOD’s [4] cover model:

%i =

Np∑
kl=1

(r
(i)
kl )2(σ

(i)
kl )−4, (5)

where (σ
(i)
kl )2 is the variance of pixel x(i)kl estimated from its

neighborhood as in [4, Section V] and r(i)kl is the change rate
of pixel x(i)kl . The regressor coefficients were estimated from
the training part of the image database (images available to
the Warden) using the least square estimator. Replacing the
detector output expectation in the optimal LR under H1 by
the estimates µ̂i gives us the “estimated LR”:

Λ̂B =
1

σ ‖µ̂B‖2

B∑
i=1

µ̂iθ
(i). (6)

4. BATCH EMBEDDING BY MINIMIZING
STATISTICAL DETECTABILITY (AND EMPIRICAL

SOLUTIONS)

Once the steganographers have chosen an embedding scheme
and have been granted acces to a source of digital images x(i),
i = 1, . . . , I , their task is to select a payload spreading strat-
egy R = (R1, . . . , RB) to minimize detectability. An omni-
scient steganographer with perfect knowledge of the expecta-
tion of Warden’s detector output µi(Ri) for all i = 1, . . . , I
can find optimal combination of payloads, R?, by minimiz-
ing the statistical detectability against the MP adversary or the
expectation of the LR ΛB (4), ‖µB‖2:

R? = arg min
R

B∑
i=1

µi(Ri)
2, (7)

s.t. R =

B∑
i=1

Ri, (8)

where Eq. (8) is the steganographer’s payload constraint.
Evaluating for each image the expectation of the detector’s

output µi(Ri) can be very cumbersome. Additionally, the



steganographers will likely be ignorant of the detector used
by the Warden and especially how it has been trained. In this
paper, we thus consider the following alternatives to optimal
spreading that are feasible to implement in practice:

1. Trust the steganography [Image Merging Sender
(IMS)]. The steganographer merges all B images into
one and lets the emb. algorithm spread the payload.

2. Trust the cover model [Detectability Limited Sender
(DeLS)]. The steganographer adopts a cover model and
spreads payload over images so that each image from
the bag contributes with the same value of the KL diver-
gence (deflection coefficient) %i (5).

3. Trust the distortion [Distortion Limited Sender
(DiLS)]. The steganographer spreads payload over im-
ages so that each image from the bag contributes with
the same value of distortion.

Among the above strategies, the only one that minimizes a
distortion (detectability) over all pixels from all images is
the IMS. Here, the unknown expectation of the detectors’
output is replaced with the distortion function on which the
(adaptive) embedding scheme is based. The DeLS strategy
is the only that operates with statistical detectability. Ideally,
the steganographer should minimize the total KL divergence∑B

i=1 %i. However, this would be rather expensive to imple-
ment especially for large B and also computationally infeasi-
ble to test (see below). Similar complexity issues arise when
minimizing the sum of distortions over all B images. Spread-
ing the payload by finding a fixed value of the deflection coef-
ficient (distortion) for all B images that commmunicates the
required payload can be implemented much more efficiently.

It is important to note that experimental evaluation of each
strategy in practice would be very time consuming as the War-
den needs to determine the vector of payloads R and extract
features for each bag, which makes the training very expen-
sive. We hence adopt two more simplifying assumptions that
will allow us execute the experiments with a significantly
lower computational burden. We will assume that over time
the steganographers maintain an average communicated pay-
loadR. Having access to a large number of images I , for each
spreading strategy the steganographer determines the payload
that would be embedded in ith image if all I � B images
were in the embedding bag. This payload is essentially a tag
attached to each image with the tag value depending on the
spreading strategy. For large enough bags B, the actual pay-
loads determined for each bag will be approximately the same
as the “asymptotic” tags. This will allow us to execute the
experiments by precomputing the feature vectors for all im-
ages in the training (and testing) set and then performing the
pooled steganalysis by randomly drawingB features from the
testing set. Note that under this simplification, the embedding
is “bagless” as the tags are determined only by R and the
spreading strategy.

DeLS - average
DeLS - LR test
DeLS - estimated LR
DiLS - average
DiLS - LR test
DiLS - estimated LR
IMS - average
IMS - LR test
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Fig. 1. Batch strategies and pooling methods evaluated using
ROC curves for S-UNIWARD at mean payload R = 0.2.
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Fig. 2. Empirical distribution of payload size across BOSS-
base images for the three proposed batch strategies.

5. NUMERICAL RESULTS

We use three content-adaptive embedding schemes that ap-
pear to be the state of the art as of writing this paper: S-
UNIWARD [3], HILL [21], and MiPOD [4]. All three algo-
rithms were modified to avoid making embedding changes in
saturated pixels (grayscale with value 255) to prevent weak-
ening their security as documented in [4, 22].

The image source in all experiements is the BOSSbase
1.01 [23] split 10 times randomly into 5,000 images for
training (Warden’s database) and 5,000 for testing (Alice’s
database), unless mentioned otherwise. All experiments were
conducted with a single-image LSMR-based linear classifier
described in [8] trained on SRM features [5]. Since the War-
den is omniscient, she trains on the same stego source pro-
duced by Alice, which depends on the embedding scheme,
average secret communication rate R, and spreading strategy.

Due to space limitations, we only included the most in-
teresting results regarding the proposed batch steganography
strategies and pooling methods. Table 1 shows the accuracy



Table 1. Evolution of minimal total probability of error under equal priors PE as a function of pooling bag size B, R = 0.2.
Embedding scheme Batch strategy Pooling method Bag size: 1 2 5 10 20 50 100 200

HILL

DiLS
Average 0.4224 0.3930 0.3372 0.2811 0.2137 0.1134 0.0487 0.0175

Optimal LR (3) 0.4224 0.3778 0.2936 0.2224 0.1513 0.0720 0.0380 0.0112
Estimated LR (6) 0.4224 0.3852 0.3128 0.2431 0.1685 0.0725 0.0210 0.0120

DeLS
Average 0.4521 0.4368 0.4077 0.3739 0.3291 0.2525 0.1782 0.1039

Optimal LR (3) 0.4521 0.4272 0.3782 0.3304 0.2812 0.2043 0.1452 0.0903
Estimated LR (6) 0.4521 0.4352 0.4030 0.3666 0.3225 0.2446 0.1737 0.1005

IMS
Average 0.4663 0.4506 0.4277 0.4026 0.3663 0.3046 0.2369 0.1594

Optimal LR (3) 0.4663 0.4444 0.3988 0.3515 0.2930 0.2150 0.1528 0.1014
Estimated LR (6) 0.4663 0.4483 0.4208 0.3923 0.3516 0.2838 0.2171 0.1408

MiPOD

DeLS/DiLS
Average 0.4444 0.4260 0.3924 0.3528 0.3004 0.2138 0.1375 0.0665

Optimal LR (3) 0.4444 0.4178 0.3638 0.3129 0.2581 0.1852 0.1334 0.0586
Estimated LR (6) 0.4444 0.4258 0.3885 0.3482 0.2948 0.2074 0.1341 0.0670

IMS
Average 0.4610 0.4477 0.4204 0.3905 0.3527 0.2802 0.2129 0.1312

Optimal LR (3) 0.4610 0.4368 0.3863 0.3200 0.2522 0.1590 0.1080 0.0691
Estimated LR (6) 0.4610 0.4419 0.4095 0.3680 0.3206 0.2391 0.1693 0.0967

of three pooling methods as a function of the bag size B used
by Eve for steganlysis. Note that the DiLS is by far the worst,
though for larger bag size the difference becomes rather small,
while the DeLS performs almost as well as the IMS. The rank-
ing of steganographic algorithms, batch strategies, and pool-
ing methods also almost always remains consistent over the
bag size, which is in agreement with the proposed statistical
model presented in Sections 2–3. Regarding the accuracy of
the pooling methods, as one can expect the optimal LR test al-
ways has the best performance while the proposed “estimated
LR” reaches a comparable performance only for DiLS. For
the most secure DeLS and IMS batch strategies, the perfor-
mance of the estimated LR drops significantly in comparison
with the optimal test, indicating thus a possible detection im-
provent with a more accurate predictor of the detector output.
The average test proposed in [16] for an ignorant Warden does
not know the batch strategy performs much worse across all
batch strategies.

The PE for bag size B = 1 in the table corresponds to
the performance of the single-image detector. It should be
contrasted with the single-image detector trained to detect
the most commonly considered uniform spreading strategy
or payload-limited sender (PLS) that embeds the mean pay-
load R = 0.2 bpp in every image. The detector of the PLS
achieves PE ≈ 0.35 for both HILL and MiPOD while the
DeLS and IMS senders are detected by the single-image de-
tector at PE ≈ 0.46, which testifies to the rather large gain in
security due to payload spreading. It is also worth pointing
out that, while MiPOD has been evaluated as the most secure
additive embedding scheme [8, 4, 22], it appears slightly less
secure than HILL in the batch mode as HILL seems to spread
the payload more efficiently across multiple images.

The ROC curves in Fig. 1 show the probability of correct
detection as a function of the false-alarm probability for S-
UNIWARD [3] with mean payload R = 0.1 bpp and pooling
bag size B = 100. We note that, in agreement with the sta-
tistical model described in Sec. 2, the ranking of batch strate-
gies and pooling methods is consistent for almost all false-

alarm probabilities. Also note the small differences between
the accuracy of pooling methods for DiLS (lighest curves)
compared to the other batch strategies and how the proposed
“estimated LR” fails to match the performance of the opti-
mal LR. Finally, note how close the IMS and DeLS spreading
strategies are in terms of security. This, of course, depends
on the statistical model of the cover Alice uses and on the
distortion function on which the embedding is based.

Last, but not least, Fig. 2 provides a useful insight about the
batch strategies. This figure shows the empirical distribution
of payloads among all 10,000 BOSSbase images for all batch
strategies for S-UNIWARD at mean payload R = 0.2 bpp.
We note that the IMS and DeLS strategies are similar in the
sense that both tend to put small payloads in the vast majority
of images and allocate most of the hidden data in a limited
number of images for which the detection is the most chal-
lenging, such as very textured images. On the other hand, the
DiLS often embeds a payload that is close to the mean pay-
load R and thus adapts to image content to a much smaller
degree. Qulitatively similar results have been observed for
other embedding schemes and all tested mean payloads.

6. CONCLUSIONS

In this paper, we study the problem of content-adaptive
batch steganography and pooled steganalysis for an omni-
scient Warden aware of the payload-spreading strategy and
equipped with a single-image detector trained as a classifier
between the cover and stego sources. By adopting a statis-
tical model for the output of the single-image detector, we
derive the optimal pooling function as a likelihood ratio in
the form of a matched filter and its approximations realiz-
able in practice. We also consider several batch strategies that
can be efficiently implemented in practice and test them, to-
gether with pooling strategies on state-of-the-art steganogra-
phy, drawing numerous interesting conclusions for practition-
ers of steganography as well as the steganalyst.
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