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Abstract—A quantitative steganalyzer is an estima-
tor of the number of embedding changes introduced
by a specific embedding operation. Since for most al-
gorithms the number of embedding changes correlates
with the message length, quantitative steganalyzers
are important forensic tools. In this paper, a general
method for constructing quantitative steganalyzers
from features used in blind detectors is proposed.
The core of the method is support vector regression,
which is used to learn the mapping between a feature
vector extracted from the investigated object and the
embedding change rate. To demonstrate the generality
of the proposed approach, quantitative steganalyzers
are constructed for a variety of steganographic algo-
rithms in both JPEG transform and spatial domains.
The estimation accuracy is investigated in detail and
compares favorably with state-of-the-art quantitative
steganalyzers.

I. INTRODUCTION

While the objective of steganalysis is to detect the
mere presence of hidden messages in communica-
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tion, in practice the steganalyst will clearly want
to achieve more. For example, an estimate of the
number of modifications introduced by steganog-
raphy provides information about the length of
the embedded secret message. Steganalyzers de-
signed to estimate the relative number of embedding
changes (the change rate) are called quantitative.
Their design typically requires full knowledge of
the embedding algorithm. The steganalyzer is built
using clever tricks and heuristic principles com-
bined with experience and intuition. Because of the
lack of a general approach, the vast majority of
current quantitative steganalyzers attack only LSB
(Least Significant Bit) embedding schemes (see,
e.g. [11, [2], [3], [4], [5], [6], [7], [8]). Although
there exist a few quantitative steganalyzers for other
embedding operations, such as LSB matching (also
called £1 embedding) in the spatial domain [9],
the embedding operation of F5 [1], and the model-
based steganography [10], quantitative steganalyz-
ers are missing for most steganographic algorithms.
This is rather surprising as essentially all of these
algorithms can be reliably detected using blind ste-
ganalyzers by representing images in an appropriate
feature space [11], [12], [13], [14], [15], [16], [17].

This paper presents a general methodology for
designing quantitative steganalyzers that does not
depend on a detailed knowledge of the embedding
algorithm. Instead, all that is required is a set
of stego objects embedded with a range of rela-
tive payloads and a set of steganographic features
changing predictably with the payload. If the latter
requirement is fulfilled, the separation boundary
between cover and stego images is a determinis-
tic function of the change rate, and we build a
change-rate estimator by mathematically describing
the relationship between the feature vector and its
position in the feature space. Regression tools are
used to learn the relationship between the features’



location and the number of embedding changes. In
this work, we explore ordinary linear least square
regression and a kernelized variation called support
vector regression, essentially a data-driven method
similar in spirit to a support vector machine.

The most important advantage of this approach
to quantitative steganalysis over previous art is
that it may be possible to design a quantitative
steganalyzer even without any knowledge of the
embedding mechanism. In fact, all that is required
is the access to a database of images embedded
with a range of known payloads. These images
could be generated if the steganalyst has access to
the embedding algorithm but not necessarily to its
inner workings (e.g., if only an executable file is
available). A second requirement is that there must
exist a feature set sensitive to the embedding, an
assumption that is satisfied for almost all currently
known steganographic schemes for digital images.
The accuracy of the resulting quantitative stegana-
lyzer depends on the sensitivity of the features to
the embedding changes.

Our previous conference contribution on this
topic [18] dealt with a small set of steganographic
algorithms for JPEG images. In this paper, we
present a more comprehensive evaluation of the
presented methodology by constructing quantita-
tive steganalyzers for algorithms hiding in both
JPEG and spatial domains and for different feature
sets [15], [14]. We also investigate for both domains
the errors due to image content and message place-
ment within the image (the so-called between- and
within-image errors).

The paper is organized as follows. Sect. II
presents the general methodology for construct-
ing quantitative steganalyzers from features. The
methodology is evaluated experimentally in Sec-
tions III and IV, where we report the accuracy of
message-length estimators for eight steganographic
schemes for JPEG images and for LSB steganogra-
phy in the spatial domain. Sect. V contains detailed
analysis of the estimator error for Jsteg, nsF5, and
LSB matching, decomposing it into the within-
image and between-image components. In Sect. VI,
the estimation accuracy is compared with state-
of-the-art quantitative steganalyzers for Jsteg, LSB

matching, and LSB replacement. The paper is con-
cluded in Sect. VIIL

II. APPROACH

Before explaining the general approach to the
construction of quantitative steganalyzers, we would
like to stress that it is only changes to the cover
which can ever be detected, and so any quantitative
steganalyzer necessarily estimates the number of
embedding changes rather than the message length.
To obtain an estimate of the message length, one
may have to take into account the effect of matrix
embedding [19], [20] and source coding (data com-
pression applied to the message prior to embedding)
incorporated in the embedding algorithm. Although
we explain the methodology on the example of
digital images, it can be readily applied to other
digital media objects, such as audio or video files.

The process of building a quantitative stegana-
lyzer starts with extracting steganographic features
from an image. Formally, this is captured with
a mapping f : C — R? from the space of all
images, C, to a d-dimensional Euclidean feature
space. The map f is usually scalable so that it can
be applied to images of arbitrary size. Everywhere
in this paper, we will work with C being the set
of all grayscale images in either the raster or JPEG
format. Our quantitative steganalyzer will be in the
form of a function 1 : R? + [0,1] revealing
the relationship between the features’ location and
the change rate. By change rate, we denote the
number of embedding modifications divided by the
number of cover elements. Depending on the type
of the cover, its elements could be pixels (in a
grayscale raster image) or non-zero quantized DCT
coefficients (in a JPEG file).

To formalize the problem, let X =
{(xs,y:)| 1€ {1,...,1}} denote | samples
consisting of feature vectors x; = f(¢;) € R¢
computed from ! images c; embedded with relative
number of embedding changes y; € [0,1]. Our
goal is to construct a quantitative steganalyzer by
finding a function ¢ : R? — [0,1] that minimizes



the error on X, or

I
1
w=argmin726(w(xi),yi), (1
i=1

YEF

where e : R x R +— R{ is an error function (also
called a loss function) and F is an appropriately
chosen class of functions 1 : R [0, 1].

The error function e(g,y) and the class of func-
tions F influence the accuracy of the resulting
estimator 1& It is possible that a desired accuracy is
not achieved for a given feature set simply because
of a wrong combination of e and F. In this work
we consider two ways to solve the regression prob-
lem (1): Ordinary Linear Least-Square Regression
(OLLSR) and Support Vector Regression (SVR)
with a Gaussian kernel.

A. Linear Least-Squares Regression

In Linear Regression, the class F consists of
linear functionals (x;) = a-x; +b for a € R% and
b € R, and it typically uses the square loss function
e(9,y) = (§ — y)?. The regression problem (1)
can then be solved directly using linear operations.
This OLLSR is very simple, intuitive, and has a
low computational complexity, but it cannot find
nonlinear dependencies between the features and
the target variable. We assume that the reader is
already familiar with OLLSR.

B. Support Vector Regression

Support Vector Regression solves the regression
problem by a technique analogous to the Support
Vector Machine (SVM) [21] approach to classifi-
cation. In the simplest version, the class F still
consists of linear functionals ¥ (x;) = a - x; + b,
but the loss function combines an e-insensitive error
with the norm of a:

e (i) = slall? + Clg—yl—e), if [j—yl > €
3]l otherwise.

The first term is a measure of complexity, with
less complex functionals given preference to pre-
vent overfitting. The second is a measure of loss
which ignores the error of near-correct estimates.

The latter causes the optimization problem (1) to
become sparse and only a few of the training
instances become the support vectors which influ-
ence the outcome: the result is better generalization
and faster estimation. Furthermore, we will see in
Sect. V that estimation is subject to a few extreme
outliers; replacing a square loss function with one
which is linear (above the threshold €) may help
counterbalance this. The parameter C' controls how
the two terms are balanced.

In this work we will combine the SVR technique
with the “kernel trick” [22] which replaces the
usual scalar product a:iij with, in our case, the
Gaussian kernel k(z;,z;) = exp(—vy|lzi — z;]13).
Kernelized SVR can reveal more complicated non-
linear dependencies at the cost of increased com-
putational complexity. For more details we refer to
the tutorial [21].

There are three hyper-parameters that need to be
set prior to training (solving (1)): the penalization
parameter C, the width of the Gaussian kernel ~,
and the insensitivity of the loss function €. The
choice of the hyper-parameters has a significant in-
fluence on the ability of the estimator to generalize
(to accurately estimate the change rate on samples
not in the training set). Since there is no optimal
method to set them, in experiments presented in
Sections IIT and IV we used a search on a predefined
set of triplets (C,~, €), on which the generalization
was estimated by five-fold cross-validation over the
training set. To decrease the computational com-
plexity, the search used two phases.

In the first phase, the generalization was mea-
sured on the following grid

(C,v.e) € S1 ={(10%,27,0.005 - k) |

1€ {-3,...,4},
je{-11,...,-5},
ke{1,2,3,4}.

The triplet (Cy,71,€1) with the least error on S
was used to seed the search in the second phase,
which was performed on the grid

Sy = {(10°,27,0.005 - k) | i,j € Z,k € N} .

In each iteration, the point with the least general-
ization error was checked to see whether it lay on



the grid boundary. If so, the error was estimated
on the neighboring points from the set Sy and the
check was repeated. If not, the search was stopped
and the triplet (C3, 72, €2) with the least estimated
generalization error was used for training.

The two-phase search is to ensure that the point
with the least estimated generalization error is not
the boundary point of the explored set. Under the
assumption that the generalization error surface is
convex, which generally holds for the vast majority
of practical problems, this algorithm keeps the
number of explored points relatively low, while
returning a suitable set of hyper-parameters.

ITI. STEGANALYSIS IN TRANSFORM DOMAIN

In this section, the proposed method is evaluated
by constructing quantitative steganalyzers for eight
steganographic algorithms for JPEG images: JP
Hide&Seek (JPHS) [23], Jsteg [24], Model Based
Steganography without deblocking (MBS1) [25],
MMx [26], F5 with shrinkage removed by wet
paper codes with matrix embedding turned off
(nsF5) [27], OutGuess [28], Perturbed Quantiza-
tion [29] (PQ), and Steghide [30]. The chosen
steganographic algorithms employ a variety of dif-
ferent embedding mechanisms. PQ and MMx use
side information in the form of the uncompressed
image during embedding.

A. Setup of experiments

The image sets for experiments reported here,
and in the next section, were all derived from
a mother database called the CAMERA database.
This database contains approximately 9200 images
taken by 23 different digital cameras in their native
resolution in raw format (no in-camera JPEG com-
pression). The size of the images ranges from one
to six megapixels.

For the purpose of steganalyzing JPEG images
in this section, all CAMERA images were first
converted to grayscale and then single-compressed
with JPEG quality factor 80 (the MMx algorithm
requires the uncompressed grayscale image). The
only exception were images used in the experiments
with Perturbed Quantization [29] (PQ) where the

cover images were double-compressed with primary
quality factor 85 and secondary quality factor 70.!
These two quality factors were chosen in order to
maximize the capacity of PQ.

All images were divided into two sets of equal
size (approximately 4600 images per set). One set
was used exclusively for training the estimator,
while the other set was used for evaluating its
accuracy. The stego images were created by embed-
ding a random message of (uniform) random length
between 0 and m a4y, Where M.y is the maximum
embeddable payload for each combination of the
embedding algorithm and the cover image.

As a feature set f, we used the 274-PEV feature
set from [14]. Since the features are sensitive not
only to the payload, but also to the image size
(i.e., they are not properly normalized), we have
augmented the features with the number of non-zero
DCT coefficients, ng. The additional 275th feature
improves the accuracy of the steganalyzer, helping
it to adjust to different values of features on images
of different size.

All 275-PEV features were normalized to have
zero mean and unit variance. The normalization
coefficients were always calculated on the training
set of cover images.

B. Experimental results

Two quantitative steganalyzers trained on the
same training set were created for each stegano-
graphic algorithm: one created using OLLSR, the
other one was constructed using kernelized SVR as
outlined earlier.

Fig. 1 shows a scatter plot of the change rates
estimated by SVR steganalyzers versus the true
values. Because the error distribution of quantitative
steganalyzers often exhibits heavy tails [31] (and
Sect. V confirms this observation for our stegana-
lyzers as well), the performance is evaluated using
robust statistics. Tab. I displays the estimator bias,
defined as the mean observed error, and two mea-
sures of estimator dispersion: interquartile range of
observed error (denoted IQR) and mean absolute

'PQ embeds messages while recompressing the cover JPEG
image with a different quality factor.
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Scatter plot showing the estimated change rate with respect to the true change rate for eight JPEG domain embedding
algorithms, and one spatial domain embedding algorithm. All estimates were made on images from the testing set, using SVR with
Gaussian kernel. The dashed line corresponds to perfect estimation.



Embedding Feature OLLSR SVR

Algorithm Set IQR HAE Bias IQR HAE Bias
JPHS 275-PEV. 1.58-10"2 1.05-1072 —1.70-10"% 1.03-1072 815-10°3 2.41-10~4
Isteg 275-PEV  551-10"3 3.85-1073 2.40-10~4 3.87-1073 2.91-1073 2.59-10~4
nsF5 275-PEV 1.68-10"2 1.12-1072 —529-10"% 9.67-107% 6.97-107% —2.51-10"%
MBS1 275-PEV. 1.81-10"2 1.20-102 3.86-10—° 1.32-1072 920-1073% —1.63-10~%
MMx 275-PEV  6.52-1073 4.30-103 1.58-10~% 5.37-1073 3.82-1073 1.08 .10~
Steghide ~ 275-PEV  5.10-10~% 3.51-1073 1.51-107% 410-1073 2.86-1073 1.80-10~4
PQ 275-PEV. 9.96-10"3 7.06-1073 —4.44-10"% 8.69-1073 5.81-1073 3.61-10~4
OutGuess  275-PEV  6.50-10~3  4.40-10—3 2.60-10—4 4971073 3.57-1073 3.67-10~4
LSBM SPAM 259101  6.32.1072 1.57-10"1 3.04-1072 299.-1072 —141-1073
LSBR SPAM 2.65-10"1 5851072 1.51-10"1 290-10-1 255-1072 —3.70-10"%

Table 1

INTERQUARTILE RANGE (IQR), MEAN ABSOLUTE ERROR (#AE) AND BIAS, FOR THE OLLS ESTIMATOR AND SVR WITH
GAUSSIAN KERNEL, ON EIGHT JPEG DOMAIN AND TWO SPATIAL DOMAIN STEGANOGRAPHIC ALGORITHMS.

observed error (denoted pAE). The most robust
measure is IQR, which is completely insensitive to
outlier estimates; uAE retains some sensitivity to
outliers but does not suffer from the same leverage
as, for example, sample variance.

We can see most quantitative steganalyzers for
transform domain steganography have good per-
formance, with IQR of the estimation of relative
change-rate of the order of 10™2 and an order
of magnitude lower bias (recall that the quantity
estimated is the change rate, which is on a scale
from O to 1). All estimators show a few outlier
values. Despite the fact that the attacked stegano-
graphic schemes employ very different embedding
operations and strategies, the steganalyzers provide
rather accurate estimates. However, the estimator
for the PQ algorithm is accurate only for small
payloads (less than 0.2 bpac). For larger payloads,
the estimator basically fails despite the fact that a
binary classifier for the presence or absence of stego
data, based on the same feature set, works quite well
for all payloads [27].

We carefully investigated this phenomenon: it
arises because the cluster of stego-image feature
vectors seriously deforms with increasing payload
rather than being moved rigidly in one direction
by a vector whose length depends on the change
rate. This phenomenon makes it difficult for the es-
timator to learn the relationship between cover and

stego features as a function of the change rate. We
confirmed this by measuring the average distance
between the clusters of cover and stego images as
well as the distances between the cover image and
its corresponding stego image in the feature space.
While each image appears to have been shifted by
a vector whose length monotonically increases with
the change rate, the difference between the means of
cover and stego features stops increasing at around
0.2 bpac.

The OLLSR estimator has a slightly higher dis-
persion, but exhibits a lower bias for several em-
bedding algorithms, than the SVR estimator. The
fact that the OLLSR accuracy is of the same order
as the corresponding SVR estimator suggests that
the features shift almost linearly with the num-
ber of embedding changes. Despite the slightly
higher dispersion, the OLLSR regression offers an
attractive choice, because of its low computational
complexity: training the SVR, which includes the
search for the hyper-parameters, takes about one
day on a 64-bit AMD Opteron 2.4GHz computer,
but OLLSR regression on the same machine takes
less than 1 minute.

Using this “cookie-cutter” approach we were
able to construct quantitative steganalyzers for al-
gorithms such as JPHS and MMx, where none pre-



viously existed in the literature.? Moreover, as will
be explored in more detail in Sect. VI in the case of
Jsteg, where previous quantitative steganalysers do
exist, the estimator built from the 275-PEV feature
set comfortably outperforms them.

IV. STEGANALYSIS IN SPATIAL DOMAIN

In the previous section, the newly proposed
methodology for constructing quantitative stegana-
lyzers was demonstrated on algorithms that embed
in JPEG images. To further prove its utility, in
this section we apply the same approach to algo-
rithms that embed in the spatial domain. We will
concentrate on LSB matching (LSBM, also called
41 embedding), the steganographic method that
hides message bits in LSBs of pixels by randomly
modifying their values by 1. Despite its simplicity,
LSB matching has proved to be difficult to reliably
detect even at relatively large payloads of 0.1 bits
per pixel (bpp). Although there exist some feature-
based steganalyzers detecting LSB matching [32],
[33], [17], [15], to the best of our knowledge there is
only one quantitative steganalyzer, reported in [9],
and it has a rather poor accuracy.

As before, we construct the quantitative stegan-
alyzer by means of the SVR following the method
described in Sect. II. As a feature set f, we used
the “second-order SPAM features” [15], which have
dimension 686, augmented by the number of pixels
in the image as an additional 687th feature. We
chose this feature set due to its popularity and
ability to detect LSB matching.

The images for our experiments were taken from
the CAMERA database and converted to graysale
by the convert program from ImageMagick
package [34]. Using LSB matching, a random mes-
sage of random length between 0 and muyax (Mmax
is the number of pixels in the image) was embedded
in each image. Half of the images were used to train
the estimator, with the other half used to evaluate
its accuracy.

Fig. 1(i) shows the estimated change rates against
true change rates, and the estimator bias and disper-

2A quantitative steganalyzer for MBS1 has been constructed
in [10]. The construction was essentially the same as the one used
in this paper. The difference is a different regression algorithm.

sion appear in Tab. I. The estimator is less accurate
than those for embedding in JPEG images. This
is most likely due to the fact that the embedding
changes in the spatial domain are well masked by
noise already present in digital images. Because
the noise component is largely suppressed in JPEG
coefficients due to quantization, it is also easier
to detect the pseudo-random changes made to the
quantized coefficients. Previously published studies
confirm the difficulty of detecting LSB matching in
the spatial domain over JPEG steganography [27],
[15]. Tab. I shows that the errors of steganalyzers
in spatial domain are approximately one magnitude
larger than of steganalyzers for DCT domain. Tab. I
also shows the performance of the same estimator
trained and tested on LSB replacement (LSBR) em-
bedding, which has been shown to be substantially
weaker than LSB matching [35], [4], [5]; these
results show that the SPAM features are not able
to make much use of the additional weaknesses in
the LSB replacement embedding.

V. DETAILED ERROR ANALYSIS

Motivated by the presence of outlier estimates
visible in Fig. 1, this section presents a break-
down of the errors in the quantitative steganalyzers
for nsF5 and Jsteg (using 275-PEV features), and
LSB matching (using SPAM features). We chose
those two JPEG algorithms because their simple
embedding mechanism allows precise control of the
number of embedding changes. We are interested in
the extent of the outliers and how variation in cover,
payload, and their random correlations, contribute
to estimation error.

In general, the payload size estimation error can
be decomposed into three parts, as first described
in [31] and extended in [36]. When a payload
is embedded, because the number of embedding
changes depends on random correlations with the
cover, the changes do not indicate exactly the size of
the payload. In our experiments, we have eliminated
this deviation by working directly with the number
of embedding changes. This error, however, may
have a non-negligible effect when the estimator is
applied to genuine stego images, and we call it



change-rate uncertainty (CRU). The remaining er-
ror can be partly attributed to random placement of
the payload within the cover, the so-called within-
image error (WIE), and the rest to the properties
of the cover itself, called the between-image error
(BIE). These errors are not independent, but can be
approximately separated and compared by repeat-
edly embedding different payloads in each cover.
We selected six embedding change rates, 8 €
{0,0.025,0.05,0.125,0.25,0.375}, and embedded
200 random payloads into each of the approxi-
mately 4600 images in the training set, using Jsteg,
nsF5, and LSB matching. We term each combina-
tion of the embedding algorithm, change rate, and
cover image, a cell, so that each cell contains esti-
mates of 200 equally-sized but differently-located
payloads (except for cells with no payload, for
which there is only one possible object per cover).

First, we consider the shape of the within- and
between-image errors: picking a single cell of the
Jsteg steganalyzer, we display a log-log empirical
cdf plot for the 200 estimates in Fig. 2. The data has
been normalized to zero mean, and the Gaussian fit
is selected to match the sample variance: it appears
to be excellent, and we see similar results across
all steganalyzers, images and embedding rates. A
summary of these fits is found in the first columns
of Tab. II: we computed Shapiro-Wilk tests [37] for
normality in every cell, and display the proportion
of cells with p values above 0.1. If the cells are truly
Gaussian, we would expect that 90% of cells would
pass this test; here, any deviation from normality is
small enough to be undetectable with 200 samples
per cell.

The cell means describe the between-image error,
and we plot log-log empirical cdfs for one particular
embedding rate in Fig. 2. These data are clearly not
Gaussian, but there is a good fit with the Student
t-distribution. These results accord closely with
what was observed for heuristic LSB replacement
estimators in [36] and [31] (it is surprising that
quantitative steganalysis of JPEG embedding via
SVR displays the same characteristics as structural
steganalysis of spatial-domain embedding, given
that their modes of operation are so different). An
important consequence of this observation is that it

is unsound to measure estimator variance, standard
deviation, or mean square error: the true estimator
variance may be infinite, or even if finite the sample
statistic will converge only very slowly to the true
value.

Finally, we compare the magnitudes of the
within- and between-image errors, also including
the theoretical predictions for embedding change
rate uncertainty which is given by a simple Bino-
mial distribution whose dispersion depends on the
number of embedding locations. For this analysis,
bias is discounted. Because of the heavy tails in
the between-image error, we use interquartile range
(IQR) as a highly robust measure of spread. For six
embedding change rates, the IQRs of these three
error factors are displayed in Tab. II. Because the
CRU and WIE vary a small amount between covers,
the table displays the average values for these IQRs.

The magnitude of the CRU is generally negligi-
ble. For BIE and WIE, the behavior of the JPEG
steganalyzers differs from the spatial-domain case:
for the latter, the dispersion of WIEs are not neg-
ligible, even for fairly small embedding rates. This
is also in contrast to the structural steganalyzers
considered in [36] and [31]. Also, the BIE for JPEG
domain steganalysis remains stable or increases at
larger embedding rates, whereas the opposite holds
for spatial-domain estimators.

VI. COMPARISON WITH PRIOR ART

This section compares the SVR based quantita-
tive steganalyzers of Jsteg, LSB matching, and LSB
replacement with their heuristic based counterparts
from the literature. Because of the lack of accu-
rate quantitative steganalyzers, we could not make
comparison with other steganographic algorithms
for JPEG images.?

3The heuristic quantitative steganalyzer of F5, presented in
[1], is based on an essentially the same idea (regression). It uses
a 2d-feature vector (two histogram bins) for which an analytic
expression for the stego feature vector as a function of change
rate can be derived. Thus, by definition, it will be less accurate,
because the used 275-PEV feature vector is a superset of this 2d
vector.
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Figure 2. Log-log tail plots of empirical distributions of within- (left) and between- (right) image errors, for the Jsteg steganalyzer.

Gaussian and Student-t fits are shown.

Jsteg/PEV-275 nsF5/PEV-275 LSBM/SPAM
Jé] S-W S-w S-wW

p20.1 BIE WIE CRU p 201 BIE WIE CRU P2 0.1 BIE WIE CRU

0.000 - 3.63  0.00  0.00 — 774 0.00  0.00 — 47.6 0.00  0.00
0.025 90.2% 3.23 152 028 93.9% 699 281 029 90.2% 434 695 028
0.050 89.9% 302 191 039 93.9% 679 352 041 90.1% 39.7 946  0.39
0.125 90.2% 279 257 059 93.7% 693 478  0.62 89.1% 31.0 135 0.59
0.250 89.8% 287 325 078 94.2% 831 677 081 90.2% 234 168 0.78
0.375 90.3% 369 356  0.87 942%  10.6 847 091 89.3% 253 186 0.87
1073 1073 .1073 1072 1073 .1073 -1073 1073 1073

Table 11

PROPORTION OF CELLS PASSING A SHAPIRO-WILK (S-W) TEST FOR NORMALITY OF WITHIN-IMAGE ERROR, AT 10%
SIGNIFICANCE; COMPARISON OF MAGNITUDES OF BETWEEN-IMAGE ERROR (BIE), WITHIN-IMAGE ERROR (WIE), AND
CHANGE RATE UNCERTAINTY (CRU), MEASURED BY INTER-QUARTILE RANGE, FOR SIX EMBEDDING CHANGE RATES (3).

A. Jsteg

Among the multitude of methods described
in [8], we selected Jpairs and Weighted Non-
steganographic Borders Attack (WB) and com-
pared their performance with our quantitative SVR
steganalyzer. According to [8], the Jpairs quan-
titative steganalyzer was one of the most accu-
rate quantitative steganalyzers for Jsteg. The algo-
rithms were compared on the approximately 4600
images in the testing set, by bias and IQR, at
21 embedding change rates from the set 3 €
{0,0.025,0.05, ...,0.475,0.5}.

Fig. 3 shows that the quantitative steganalyzer
constructed by SVR has almost always better per-

formance than both Jpairs and WB attacks. More-
over, its performance is more stable with respect to
the change rate. Contrary to the conclusion reached
in [8], we found that the WB attack was more
precise than Jpairs attack; this discrepancy could be
caused by us using a different database of images.
Note, though, that Fig. 3 overstates the accuracy of
JPairs, because the JPairs method sometimes fails
to produce an estimate at all. This happens most
often for large embedding rates: for § = 0.375, as
many as one third of estimates fail. The SVR and
WB methods never fail to produce an estimate.
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Figure 3.  Comparison with prior art: Jsteg. Interquartile range, left, and bias, right, of Jpairs, WB, and SVR quantitative
steganalyzers.
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Figure 4.  Comparison with prior art: LSB matching. Bias and variance of Soukal’s estimator and SVR steganalyzer at five
embedding rates.

B. LSB matching database [38]), embedding rates, number of images

for testing (180 images), and same evaluation crite-
ria (bias and variance*). We have been also careful

to avoid using testing images for training the SVR
estimator.

Results for five different payloads are summa-
rized in Figure 4 and Table III. We can see that our
estimator has approximately 3 orders of magnitude

To the best of our knowledge, the only quanti-
tative steganalyzer of LSB matching is based on
maximum likelihood principle [9]. We compared
the accuracy of this detector with our solution
based on SVR and SPAM features. Since we did
not possess the implementation of the maximum
likelihood estimator, we mimicked the testing con- 4Although we stated in Sect. V that variance is not good for
ditions published in Sect. 3.1 of [9]. This means '

evaluation of the quality of the estimator, we made an exception
that we have used same image database (Greenspun here, because Soukal’s work reports errors by bias and variance.



Soukal SVR
B Bias  Variance Bias Variance
0.000 0.137  0.281 0.001 2.6-1074
0.125 0.045 0.240 -0.001 14-10%
0.250 0.030  0.171 -0.001 1.3-107%
0.375 0.030 0.070 -0.011 6.4-107%
0.500 -0.020 0.017 -0.029 12-1073
Table III

COMPARISON WITH PRIOR ART: LSB MATCHING. BIAS AND
VARIANCE OF SOUKAL’S ESTIMATOR AND SVR
STEGANALYZER AT FIVE EMBEDDING RATES.

lower variance than Soukal’s, and one order of
magnitude smaller bias. Here, we need to point out
that images in Greenspun database used in this ex-
periment were JPEG compressed (at quality factor
75), which significantly simplifies the steganalysis
in spatial domain.

C. LSB replacement

Unlike quantitative steganalyzers for LSB match-
ing, state of the art quantitative steganalyzers for
LSB replacement are very accurate because they
exploit an asymmetry in the parity structure of the
embedding process. The SPAM features we have
used for spatial domain steganalysis do not expose
this asymmetry. We compared the accuracy of SVR
based steganalyzer of LSB matching presented in
Sect. IV to Sample Pairs analysis (SPA) [2] and
improved WS estimator [39]. According to [39], the
improved WS method is the most accurate estimator
for LSB replacement in the spatial domain. Fig. 5
compares bias and IQR on 21 different embedding
change rates 3 € {0,0.025,0.05,...,0.475,0.5}.

As expected, Sample Pairs analysis and improved
WS estimators offer order of magnitude higher
accuracy than the SVR based estimator. We strongly
believe that this is only due to the fact that SPAM
features do not exploit the parity asymmetric em-
bedding operation of LSB replacement.

VII. CONCLUSION

Quantitative steganalyzers were so far available
only for a small set of specific embedding methods,

because their design was inherently very difficult.
Until now, their design was driven by heuristics and
the intuition of the steganalyst, and it required a
complete knowledge of the attacked steganographic
scheme. A solid foundation enabling easy construc-
tion of quantitative steganalyzers for an arbitrary
scheme was missing.

This paper presented a method to construct
quantitative steganalyzers in a fashion similar to
blind steganalyzers, based on the combination of
steganographic features and a pattern recognition
algorithm. The main idea is to use steganographic
features and learn the relationship between the fea-
tures’ location and the change rate using regression.

The presented method assumes that the stegan-
alyst possesses steganographic features that react
predictably to the number of embedding changes.
On the example of seven out of eight steganographic
algorithms in the JPEG domain, as well as LSB
matching and LSB replacement in the spatial do-
main, we have succesfully demonstrated that the as-
sumption holds for a wide variety of steganographic
schemes: it failed for one JPEG steganographic
scheme (Perturbed Quantization), which allowed
only small payloads to be estimated. Using the
proposed method, we were able to construct quan-
titative steganalyzers for stegosystems for which no
quantitative attacks existed. Because of this lack of
prior art, we could compare the performance only
to a limited set of steganalysis methods for Jsteg,
LSB matching, and LSB replacement. Similar to
previously proposed quantitative steganalyzers, the
within-image error of the proposed steganalyzers
is significant in magnitude and the between-image
error exhibits heavy tails. This means that care must
be exercised to use robust measures of accuracy:
variance and mean square error are unsound in such
a circumstance.

We believe that the application of the presented
method in steganalysis is vast. The new approach
may provide a better control of the false positive
rate in targeted blind steganalysis (blind stegana-
lyzer trained as targeted) due to the fact that the
estimated change rate is a scalar quantity. An-
other tempting possibility is to combine existing
quantitative LSB estimators, such as Triples [5],
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quantitative steganalyzer.

SPA [35], and WS [39], and use them together in the
proposed framework to construct a new quantitative
steganalyzer with higher accuracy.
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