
Perturbed Quantization Steganography
with Wet Paper Codes

Jessica Fridrich
SUNY Binghamton
Department of ECE

Binghamton, NY 13902-6000
001 607 777 2577

fridrich@binghamton.edu

Miroslav Goljan
SUNY Binghamton
Department of ECE

Binghamton, NY 13902-6000
001 607 777 5793

mgoljan@binghamton.edu

David Soukal
SUNY Binghamton
Department of CS

Binghamton, NY 13902-6000
001 607 777 2577

dsoukal1@binghamton.edu

ABSTRACT
In this paper, we introduce a new approach to passive-warden
steganography in which the sender embeds the secret message into a
certain subset of the cover object without having to share the
selection channel with the recipient. An appropriate information-
theoretical model for this communication is writing in memory with
(a large number of) defective cells [1]. We describe a simple
variable-rate random linear code for this channel (the “wet paper”
code) and use it to develop a new steganographic methodology for
digital media files – Perturbed Quantization. In Perturbed
Quantization, the sender hides data while processing the cover
object with an information-reducing operation, such as lossy
compression, downsampling, A/D conversion, etc. The sender uses
the cover object before processing as side information to confine the
embedding changes to those elements of the processed cover object
whose values are the most “uncertain”. This informed-sender
embedding and uninformed-recipient message extraction improves
steganographic security because an attacker cannot easily determine
from the processed stego object the location of embedding changes.
Heuristic is presented and supported by blind steganalysis [2] that a
specific case of Perturbed Quantization for JPEG images is
significantly less detectable than current JPEG steganographic
methods.

Categories and Subject Descriptors
E.4 Coding and Information Theory, I.4 Image processing and
computer vision

General Terms: Algorithms, Security, Theory

Keywords: Adaptive, multimedia, quantizer, security,
steganalysis, steganography

1. MOTIVATION
The primary goal of steganography is to build a statistically
undetectable communication channel (the famous Prisoner Problem
[3]). In order to embed a secret message, the sender slightly

modifies the cover object to obtain the embedded stego object. In
steganography under the passive warden scenario [4,5], the goal is
to communicate as many bits as possible without introducing any
detectable artifacts into the cover object. Attempts to give a formal
definition of the concept of steganographic security can be found in
[5–8]. In practice, a steganographic scheme is considered secure if
no existing attack can be modified to build a detector that would be
able to distinguish between cover and stego images with a success
better than random guessing.
One possible measure to improve the security of steganographic
schemes for digital media is to embed the message in adaptively
selected components of the cover object [9–11], such as noisy areas
or segments with a complex texture. However, if the adaptive
selection rule is public or only “weakly dependent on a key”, the
attacker can apply the same rule and start building an attack. It is
then a valid question whether the adaptive selection improves
steganographic security at all. A good example of a scheme where
adaptive pixel selection in fact decreased its security is the recent
surprising result of Westfeld [12].
This problem with adaptive steganography could be remedied if the
selection rule was determined from some side information available
only to the sender but in principle unavailable to the recipient (and
thus any attacker). For example, imagine the situation when the
sender has a raw, uncompressed image and wants to embed data into
its JPEG compressed form. Can the sender use his side information
– the uncompressed image – to construct better steganography? The
authors of this paper are not aware of any steganographic scheme
that utilizes this side information, perhaps because it seems that the
recipient would have to know the uncompressed image to read the
message, which would not be practical. In this paper, we generalize
this example and form a new steganographic method called
“Perturbed Quantization”. As explained in Section 2, this
embedding method requires a coding technique for memories with a
large number of defective cells. We call such codes “wet paper
codes” because of the following metaphor that is highly relevant to
steganography in general.
Imagine the situation when the cover object (a digital image, for
example) has been exposed to “rain” and the sender can only
slightly modify the dry spots of the cover image but not the wet
spots. During transmission, the stego image dries out and thus the
recipient does not know which pixels the sender used. We note that
in this scenario we allow the rain to be truly random, pseudo-
random, completely determined by the sender or the image, or an
arbitrary mixture of all of the above. This channel is a memory with
(a large number of) defective cells [1]. In Section 3, we describe a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MM&Sec'04, September 20–21, 2004, Magdeburg, Germany.
Copyright 2004 ACM 1-58113-854-7/04/0009...$5.00.

simple variable-rate random linear code (the wet paper code) that
gives the sender control over the embedding modifications and
enables the sender to communicate to the recipient on average the
same number of bits as if the receiver knew the set of dry pixels.
The code gives the sender complete freedom in choosing the dry
pixels that will be used for embedding because the recipient does
not need to (or even cannot in principle) determine the dry pixels
from the stego image in order to read the message. This setup
removes the above mentioned problem of adaptive steganography
because it does not give an attacker a starting point for mounting an
attack as when the selection rule is public. Also, the sender can now
focus on the steganographic impact of the embedding changes
without worrying whether or not the recipient will be able to read
the message.
The proposed writing on wet paper shares some features with
existing concepts in steganography and information theory, namely
the selection channel [5], matrix embedding [13,14], and
communication with side information [15]. The relationship
between these concepts and writing on wet paper is commented
upon throughout the paper in Sections 2.2, 3.1, and 3.2.
In Section 2, we describe the Perturbed Quantization steganography
and propose several practical embedding scenarios. We then show
that this steganographic communication requires codes for
memories with a large number of defective cells. In Section 3, we
propose a variable-rate random linear code for this channel that can
be easily implemented even when the number of defective cells (wet
pixels) is large. In the same section, we give a detailed pseudo-code
for an encoder and decoder for practical applications. In Section 4,
we describe a Perturbed Quantization steganographic technique for
JPEG images that embeds message bits while recompressing a JPEG
image with a lower quality factor. Security of this new technique is
analyzed in Section 5, where we apply the blind steganalysis of [2]
and compare the results with current state of the art JPEG
steganographic algorithms. The paper is concluded in Section 6.

2. PERTURBED QUANTIZATION
We explain the basic idea on the example mentioned in the
introduction. Let us assume that the sender has a raw grayscale
image X that has never been compressed before. During JPEG
compression, the Discrete Cosine Transform (DCT) is performed,
the DCT coefficients are divided by quantization steps from the
quantization table, then rounded to integers, and finally encoded
according to the JPEG standard to a JPEG file, G. Let us denote the
DCT coefficients (divided by quantization steps) before and after
rounding with di and Di, respectively, i = 1, …, n, where n is the
total number of DCT coefficients. Identify those coefficients di
whose fractional part is in a narrow interval around 0.5: di –
di∈ [0.5–ε, 0.5+ε], where ε is called tolerance and should be set to
a small number (e.g., ε = 0.1 or smaller). Such coefficients will be
called changeable coefficients. The symbol d denotes the largest
integer smaller than or equal to d.
Let C = {i1, …, ik} be the set of indices of all changeable
coefficients. During compression, we will round changeable
coefficients dj, j∈ C, up or down at our will and thus encode up to
k = |C| bits (obtaining a compressed and embedded image G′).
However, we cannot simply code the message bits as parities (for
example LSBs) of the rounded DCT coefficients Dj because the
recipient would not know which coefficients carry message bits. In

Section 3, we show how the sender can communicate on average |C|
bits to the recipient, who has no information about the set C.
We call this method Perturbed Quantization (PQ) because during
compression we slightly perturb the quantizer (the process of
rounding to integers) for a certain subset of changeable coefficients
in order to embed message bits. It is shown in Section 3.6 that the
difference between the average rounding distortion of the regular
quantizer and its perturbed form is ε 2, which is at least by an order
of magnitude smaller than the average rounding error (1/4). An
attacker would have to be able to find statistical evidence that some
of the values Di were quantized “incorrectly”. This is likely going to
be a formidable task for the following reasons:
(1) The sender is using side information that is practically removed

during quantization and is unavailable to the attacker. Indeed,
it is in general impossible to reverse JPEG compression and
obtain the uncompressed image or an approximation to the
uncompressed image that would be good enough to enable the
attacker to gain evidence that some coefficients were quantized
“incorrectly”.

(2) The sender can accept additional selection rule(s) to further
decrease the probability of introducing detectable artifacts and
thus improve the security. For example, the sender may avoid
changing coefficients in those areas of the cover image where
the attacker could predict the coefficient values with high
certainty.

(3) The actual rounding of values di is more influenced by the
image noise for changeable coefficients than for the remaining
coefficients because the changeable coefficients are close to the
middle of the rounding intervals. As a result, the rounding
process di→Di has a large stochastic component. The authors
are currently working on a better justification of this heuristic
statement using image models. It seems plausible that this
heuristic can be, indeed, justified in a more exact manner by
proving for a certain image model that the Perturbed
Quantization is ε-secure in the Cachin’s sense [6].

2.1 Information-reducing processes
The idea outlined above can be formulated in a more general setting.
Whenever the sender downgrades a digital image using lossy
compression, downsizing, quantization, format conversion,
recompression, etc., he will have access to all numerical values
before quantization/rounding occurs. Thus, the sender gains the
same ability to slightly modify the rounding process whenever he
subjects the cover image to an information-reducing process that
involves a real transform followed by a quantizer. As discussed
above, because the process is information-reducing, an attacker
cannot easily recover from the stego image those fine details of the
original image that would enable him to mount an attack.
Let us assume that the cover image X is represented with a vector
x∈ I m, where I is the range of its pixel/coefficient/color/index values
depending on the format of X. For example, for an 8-bit grayscale
image, I={0, …, 255}. The information-reducing process F will be
modeled as a transformation

F = Q o T: I m → J n, (1)
where J is the integer dynamic range of the downgraded image Y =
F(X) represented with an n-dimensional integer vector y∈ J n, m ≥ n.
The transform T: I m → Rn is a real-valued transformation and Q:
Rn → J n is a quantizer. The intermediate “image” T(X) will be

denoted as U and represented using an n-dimensional vector u∈ Rn.
We give several examples of image downgrading operations F that
could be used for steganography based on PQ.
Example 1 (Resizing). For grayscale images, the trans-formation T
maps a square m1×m2 matrix of integers xij, i=0, …, m1–1, j=0, …,
m2–1 into an n1×n2 matrix of real numbers urs, r=0, …, n1–1, s=0,
…, n2–1, n1 < m1, n2 < m2, using a resampling algorithm. The
quantizer Q is a uniform integer quantizer (rounding to integers)
applied to the vector u by coordinates

Q(ui) = round(ui). (2)
Example 2 (Decreasing the color depth by d bits). The
transformation T maps a square m1×m2 matrix of integers xij in the
range I={0, …, 2b–1}, i=0, …, m1–1, j=0, …, m2–1 into a m1×m2
matrix of real numbers uij, uij=xij/2d. The quantizer Q is the same
uniform scalar quantizer as in Example 1.
Example 3 (JPEG compression). For grayscale images, the
transformation T maps a square m1×m2 matrix of integers xij, into a
8m1/8×8m2/8 matrix of real numbers uij in a block-by-block
manner (z denotes the smallest integer larger than or equal to z). In
each 8×8 pixel block B x, the corresponding block B u in uij is
DCT(B x)./q, where DCT is the 2D DCT transform, q is the
quantization matrix, and the operation “./” is an element-wise
division. The quantizer Q is, again, given by (2).

2.2 Memory with defective cells
Continuing the description of Perturbed Quantization, the sender
identifies the set of indices C ⊂ {1, …, n} of pixels (or, in general,
cover object elements) whose values uj, j∈ C, may be perturbed
during quantization. The set C will be determined using some
Selection Rule (SR). There are no restrictions on the form of the
rule. The sender can use his knowledge of X and U, which are
unavailable to the receiver or any attacker. As already mentioned
above, the sender can, for example, select ui whose values are close
to the middle of the quantization intervals of Q

C={i | i∈ {1,…, n}, ui∈ [L+0.5–ε, L+0.5+ε] for some integer L}. (3)

The tolerance ε could in principle be adaptive and depend on the
neighborhood of the element xi. It can also be made key dependent if
desired. In this paper, we assume for simplicity that ε is a publicly
known small constant. The sender will communicate a message to
the receiver by rounding changeable elements uj, j∈ C, to either L or
L+1 and rounding all other elements ui, i∉ C, using the quantizer (2),
yi = Q(ui).
We note that the selection rule does not have to necessarily be of the
type (3) and can be defined differently based on other heuristic
depending on the format of X and properties of the elements. In
Section 4, we give an example of a slightly different SR for the
situation when the information-reducing transformation is
recompression of the cover JPEG image using a lower quality factor.
Once the changeable elements have been identified, the sender
needs to encode the message bits. Let bi = {Parity(yi)} be the
sequence of parities1 of elements from the processed cover object

1 The parity could be any function defined on J with range {0,1}

such that Parity(k) = 1–Parity(k+1) for all k∈ J. Thus, for J
consisting of consecutive integers, only two parity functions are

Y = F(X). By perturbing the rounding process as described above,
the sender can modify k bits bj, j∈ C, but cannot modify the
remaining n – k bits. The recipient does not know the set C. This is
an example of a channel known as an n-bit memory with up to n – k
defective cells introduced in 1974 by Tsybakov et al. [1]. This
channel is a special case of the Gelfand-Pinsker problem [15] of
coding with side information. It is known that the capacity of this
channel is k [17,21] and can be achieved, for example, using an
algebraic coding scheme with the cosets of an erasure correction
code as bins [18]. The same paper contains a noisy generalization of
this channel and shows that nested linear codes (or “partitioned”
codes) are capable of achieving the theoretical maximum capacity.
In steganographic applications, however, the number of defective
cells (wet pixels) may be quite large. For example, in the double
compression embedding described in Section 4, for a typical JPEG
image, n ~ 106 and k ~ 104. To avoid the complexity associated with
these codes when the number of defective cells is large, we describe
a simple variable-rate random linear (wet paper) code that also
enables the sender to communicate on average k bits and lends itself
to practical applications in steganography. A significant advantage
of this code is its flexibility and control it gives to the sender to
choose which pixels should be modified, which further improves the
security and minimizes the impact of embedding changes (Section
3.5).

3. Wet paper codes
3.1 Encoder
The proposed code can be viewed as a generalization of the
selection channel [5] where one message bit is embedded as the
parity of a group of elements. In the selection channel, at most one
element value must be changed in order to match the parity of a
group of elements to the message bit. The parity of the group is a
sum modulo 2 of the individual element parities. Now, if there are q
elements in the group that can be changed, one can attempt to
embed q message bits by forming q linearly independent linear
combinations of element parities instead of just one sum.
Let us assume that the sender wants to communicate q bits
m = {m1, …, mq}T. At this point, we assume that the recipient knows
q. Later, we show how to modify the communication scenario to the
case when the recipient does not know q. The sender and recipient
agree on a secret stego key that is used to generate a pseudo-random
binary matrix D of dimensions q×n. The sender will round uj, j∈ C,
obtaining the column vector y ', so that the modified binary column
vector b', b'i = Parity(yi'), i = 1, …, n, satisfies

Db'= m . (4)
Thus, the sender needs to solve a system of linear equations in
GF(2). The question of solvability of (4) is discussed in detail in
Section 3.3. Note that the selection channel is a special case of (4)
when D = [1, …, 1].

possible, Parity1(k) = LSB(k) or Parity2(k) = 1–LSB(k) (the
shifted LSB). The Parity function could be the same for all
elements or chosen randomly between Parity1 or Parity2 for each
element based on a secret stego key.

3.2 Decoder
The sender sends the modified stego object Y '={yi

 '} to the recipient.
The decoding is very simple because the recipient first forms the
vector b'i = Parity(yi') and then multiples Db' using the shared matrix
D. The extracted message is simply m = Db'. The biggest
computational load is on the sender’s side who needs to solve (4).
The decoding mechanism is similar to that of matrix embedding
[13,14] where the recipient also extracts the message bits by
multiplying the parity vector by an appropriate code matrix. The
difference is that in matrix embedding the sender’s goal is to
maximize the embedding rate utilizing the positions of the changes
to convey information. While in matrix embedding any element can
be modified, in writing on wet paper the set of elements that can be
modified is pre-determined by the sender (or the cover object, or
some randomness) beforehand and is different for different objects.

3.3 Average capacity
It will be advantageous to rewrite (4) to

Dv = m – Db (5)
using the variable v = b'– b. In the system (5), there are k unknowns
vj, j∈ C, while the remaining n – k values vi, i∉ C, are zeros. Thus, on
the left hand side, we can remove from D all n – k columns i, i∉ C,
and also remove from v all n – k elements vi with i∉ C. Keeping the
same symbol for v, the system (5) now becomes

Hv = m – Db, (6)

where H is a binary q×k submatrix of D and v is an unknown k×1
binary vector. This system has a solution for an arbitrary message m
as long as rank(H)≥q. The probability Pq,k(s) that the rank of a
random2 q×k binary matrix is s, s ≤ min(q,k), is [22, Lemma 4]

Pq,k(s) = ∏
−

=
−

−−
−−+

−
−−1

0

)(

)21(
)21)(21(2

s

i
si

kiqi
qkskqs . (7)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

r

P k
–r

,k
(k

–r
)

Figure 1. Probability that a random k–r by k binary matrix has

rank k–r (for large k).
From (11) below, it can be shown that for a fixed large k, Pk–

r,k(k – r) quickly approaches 1 with increasing r (see Figure 1). This
suggests that the expected maximal number of bits q that can be
communicated is likely close to k, which is the theoretical upper
bound. Next, we calculate the expected maximal number of bits that
can be communicated using the wet paper code and show that it is

2 The probability of 0 and 1 in D is the same and equal to 1/2.

approximately k. Due to the page limit for this paper, we only
provide a rather sketchy proof of this statement leaving the details to
our forthcoming paper [23].
For a given q-bit message, (6) may have a solution even when
rank(H) < q because each linearly dependent row in H is compatible
with the corresponding bit on the right hand side with probability ½.
Thus, the probability that one can communicate at least k – r (r≥0)
bits is

∑
−

=
−−≥ −−=

rk

i
krkirk irkPp

0
,)(

2
1 , (8)

while the probability that one can communicate at least k + r (r≥0)
bits is

∑
=

+++≥ −=
k

i
krkirrk ikPp

0
,)(

2
1 . (9)

From (8–9), we calculate the expected maximum number qmax of bits
communicated using k changeable pixels (the expected value taken
over random messages and random matrices D)

∑∑
∞

=
+≥≥

∞

=
= −==

1
1

1
max)()(

i
ii

i
i ppiipkq = k, (10)

where p=i = p≥i – p≥i+1 is the probability that one can communicate
exactly i bits. To prove that indeed qmax(k) = k, we rewrite (7) using

the function ∏
=








 −=
i

j
ji

1 2
11)(π , 1)0(=π ,

Pq,k(s) =)()()(
)()(2)(

sksqs
kqqkskqs

−−
−−+

πππ
ππ . (11)

From Taylor expansion, we can easily show that π(i) = π(∞)(1+O(2–

i)) for large i, where π(∞) = 0.288788… by direct calculation.
Because we are only interested in large values of k, q, and s (e.g.,
when k = 100 or larger), we can rewrite (11) using the asymptotic
expression for π(i) and substitute into (8) and (9). After some
algebra and dropping the asymptotically small terms, we obtain for
small r≥0

∑
∞

=

−−−

−≥ +
∞=

1
)()(

2)(
2

i

irii

rk rii
p

ππ
π

and (12)

 ∑
∞

=

−−−

+≥ +
∞=

1
)()(

2
2

)(
2

i

irii

rrk rii
p

ππ
π .

It is possible to prove by induction [23] that for large k the
probabilities p=i are with a very high precision symmetrical about
i=k: p=k–r = p=k+r for r = 1, 2, … (see Figure 2). Consequently, from
(10), qmax(k) ≈ k. This means that on average, the sender will be able
to communicate k bits to the recipient using the wet paper code.
We now explain how to relax the assumption that the recipient
knows k or q. The sender and recipient can generate the matrix D in
a row-by-row manner rather than generating it as a two-dimensional
array of q×n bits. In this way, the sender can reserve the first few
bits of the message m for a header of length log2(n) bits to inform

the recipient of the number of rows in D. The recipient first
generates the first log2(n) rows of D, multiplies them by the
received vector b', and reads the header (the message length q).
Then, he generates the rest of D, and reads the message m by
multiplying Db'. Thus, under the assumption that the recipient has
no information about either k or q, the sender can on average
communicate k – log2 n bits.

15 10 5 5 10 15
0

0.05

0.1

0.15

0.2

0.25

k+k+ k+ k– k– k– k

Figure 2. The probability p=i .

3.4 Practical encoder implementation
The main complexity of this communication setup is on the side of
the sender. The sender needs to solve q linear equations for k
unknows in GF(2) (in binary arithmetic). Assuming that the
maximal length message is sent, the complexity of Gaussian
elimination for (6) is O(k3). For a medium size image with n = 106
pixels and the scenario in Example 3 with ε = 0.1, we have k ~ 104
for a typical 80% quality JPEG image. While solving a linear system
with 104 unknowns using Gaussian elimination is doable on a PC, it
may require several minutes of calculations, which is impractical for
the user.
At this point, we stress that it is not possible to impose any specific
structure on matrix H that would make the encoding easier because
H is a submatrix of D obtained by selecting those columns from D
that correspond to changeable pixels. Thus, different images will
produce different matrices H even when D is kept the same.
Another possibility to solve (6) is to use more efficient solvers of
linear systems. As shown in [24], Pk,k(k) = 0.2889… for random
sparse matrices H with as few as log2 k ones in each row. This fact
opens up new possibilities in solving (6) significantly faster using
techniques designed for sparse matrices. We investigated the
Lanczos method [25] and the Wiedemann method [25]. Both
methods have complexity proportional to k(k+ωk)(log k)c, where ω
is the average number of ones in each row of H and c is a small
positive constant. Thus, they will be faster than Gaussian
elimination for sufficiently large k. In our application, however, the
matrix H is rectangular and may be singular, which complicates and
slows down both methods. As a result, we did not find either
method producing running times that would lead to a practical
implementation (e.g., the order of at most few seconds for n = 106
and k = 104 to 105).
By far the best performance and most flexible method was obtained
using structured Gaussian elimination by dividing the image into β
pseudo-random disjoint subsets Bi and using the Gaussian
elimination on each subset separately. This can bring down the
computational requirements substantially because the complexity of

Gaussian elimination will decrease by the factor of β 3 while the
number of solvings increases β-times. This leads to performance
improvement of β 2. A careful C++ implementation of the Gaussian
elimination on a 2.2GHz PC (storing 32 bits of H and b as int) can
solve a 1000×1000 system in about 0.02 seconds. Thus, for β = 30
subsets, the embedding of a maximal length message takes roughly
1 second. Dividing the image into subsets, however, brings new
complications, such as the necessity to communicate the message
length in each block, and thus leads to a slight decrease in
embedding capacity (a few percent). Overall, the small decrease in
capacity is well worth the significant improvement in speed. Below,
we explain the embedding algorithm in detail.
Let us assume that the communicating parties know the range of
typical values of the rate r = k/n, r1 ≤ r ≤ r2. If the range is unknown
or r2/r1 is too large, the sender can modify the embedding algorithm
below to communicate r [23] (not shown in this paper due to lack of
space). The specific value of r will be influenced by the image
content, the SR, and the transform T. To keep encoding time
reasonably low, we desire approximately kavg ~ 250 changeable
pixels in each subset. We also require all subsets to be of almost the
same size. Thus, we choose the number of sets β = nr2/kavg. The
size ni of each subset Bi will be ni∈ {n/β, n/β} so that
n1+n2+…+nβ = n. Assuming the subsets are selected pseudo-
randomly, there will be ki changeable bits in each subset Bi, where ki
is a random variable with hypergeometrical distribution with mean
k/β [23].
The number of message bits qi embedded in each subset will be
allocated dynamically during embedding by the sender (see the
pseudo-code below). Without any loss of generality, we can assume
that the image pixels are permuted using a pseudo-random
permutation generated from a shared secret stego key. Then, the
subsets Bi can simply be taken as subsets of ni consecutive pixels,
for example, in the row-by-row manner, and b=(b(1), b(2), …, b(β)),
where b(i) is a vector of ni parities of pixels in subset Bi. We are now
ready to describe the encoder and decoder (see Figure 3).

Encoder
E0. Using a PRNG, generate a random binary matrix D with n/β

columns and sufficiently many rows
E1. Determine the header size h = log2(r2n/β) +1, q = |m| + βh
E2. b' ← b, i ← 1
E3. qi = ki (q+10)/k, qi = min{qi, 2h–1, |m|}, m(i) ← the next qi bits

in m
E4. Select the first ni columns and qi rows from D and denote this

submatrix D(i). Solve qi equations H(i)v = m(i) – D(i)b(i) for ki
unknowns v, where H(i) is a qi×ki submatrix of D(i) consisting of
those columns of D(i) that correspond to changeable bits in Bi.
If this system does not have a solution, the encoder decreases qi
till a solution is found

E5. According to the solution v, obtain the i-th segment b'(i) of the
vector b' by modifying or leaving b(i) unchanged

E6. Binary encode qi using h bits and append them to m
E7. Remove the first qi bits from m
E8. q ← q – qi, k ← k – ki, i ← i +1
E9. IF i < β GOTO 3
E10. IF i = β, qβ ← q
E11. Binary encode qβ using h bits and prepend to m, m(β) ← m
E12. Select the first nβ columns and qβ rows from D and denote this

submatrix D(β). Solve qβ equations H(β)v = m(β) – D(β)b(β) for

kβ unknowns v. If this system does not have a solution, exit and
report failure to embed the message.

E13. According to the solution v, obtain the β-th segment b'(β) of the
vector b' by modifying or leaving b(β) unchanged

Decoder
D0. Using a PRNG, generate a random binary matrix D with
 n/β columns and sufficiently many rows
D1. Determine the header length h = log2(r2n/β) +1
D2. i ← β
D3. Select the first nβ columns and h rows from D and denote this

submatrix Dh. Obtain h bits as Dhb' (β) and decode as qβ
D4. Select the first nβ columns and next qβ – h rows from D and

denote this submatrix D(β). Obtain message bits m = D(β)b' (β)
D5. i ← i –1
D6. Decode qi from the last h bits of m and remove the last h bits

from m
D7. Select the first ni columns and qi rows from D and denote this

submatrix D(i). Prepend D(i)b' (i) to m, m ← D(i)b' (i)&m
D8. IF i > 1 GOTO 5
D9. ELSE m is the extracted message

In Steps E4 and E12, the sender forms an upper diagonal matrix
from H(i) using Gaussian elimination, exchanging columns as
needed to make sure that there will be 1’s on the main diagonal.
Once qi rows are successfully processed, the sender sets the
remaining values vi = 0 for i = qi+1, …, ki and calculates the
unknowns vi, i = 1, …, qi. This will ensure that the embedding rate
will always be close to 2 bits per change on average.
The encoder is allowed to decrease qi whenever it cannot form an
upper diagonal matrix (with ones on the diagonal) from H(i) using
Gaussian elimination and by exchanging columns. The encoding
process may fail in the last block because this is the only block in
which the sender doesn’t have the freedom to decrease qβ. To
minimize the probability of this happening when q is close to k, the
encoder is forced to embed slightly more bits in all other blocks than
in the last one. This is the reason why the sender starts dividing the
message bits with q + 10 rather than q (Step E3). Notice that one
more bit is reserved for headers to cover a possibly larger ki in a
block than the expected value k/β. Because the header in each block
has h bits, the message length in one block must not exceed 2h – 1 in
Step E3.
The maximum number of bits that can be communicated using this
algorithm is about

k – βh = k – β × log2(r2k/β) . (13)

q 1 m(β)

q 2

…

q β

q β

q β – 1

h

m(2) q2 …
k 2 k 1

q 1 m(1)

headers

Figure 3. Placement of message bits and headers.

3.5 Minimizing the impact of embedding
When embedding a shorter than maximal message, in Steps E4 and
E12 the sender will have freedom in choosing which unknowns vi
should be set to 0 and which will be determined by the Gaussian
elimination. This freedom can be used to further minimize the
impact of embedding. The SR will usually be formulated in
quantitative terms and thus it will be possible to associate with each
changeable sample xi a numerical value f(xi) that somehow expresses
its “fitness” to be included in the set of changeable samples. In Steps
E4 and E12, when solving qi equations H(i)v = m(i) – D(i)b(i) for ki
unknowns v, the sender can solve for those unknowns vi that
correspond to samples with the largest fitness and set the remaining
vi’s to zero. This way, the impact of embedding will be further
minimized and the security of the scheme further improved.
A different way to minimize the impact of embedding is to minimize
the number of embedding changes (maximize the embedding
efficiency). With a fixed set of changeable pixels C, the problem of
maximizing the rate is a binary vector quantization problem. To see
this, we repeat that the sender needs to solve the system of q linear
equations (6) Hv = M – Db for k unknowns v1, …, vk. Also, recall
that the non-zero elements of the vector v are the places where the
sender needs to apply the perturbed quantizer. If q < k, the set of all
solutions to (6) is of the form

v0 + Ker(H)
where v0 is one solution to (6) and Ker(H) is the kernel of H formed
by vectors x, such that Hx = 0. Minimizing the embedding distortion
is equivalent to finding a vector v = v0 + x with the minimal
Hamming weight. Thus, the sender needs to perform binary vector
quantization, which is, however, known to be an NP complete
problem. Never the less, there is a potential for improvement here
even using suboptimal vector quantizers.

3.6 Perturbed quantizer
Assuming the SR is of the form (3), if the message bits form a
random bit-stream, the act of embedding a message in the cover
image X is well modeled with the probabilistic process X →
Qε o T(X) = Y ', where Qε is the perturbed quantizer

Qε(z) = L for L ≤ z < L+0.5–ε, (L is an integer)

Qε(z) = L+1 for L+0.5+ε ≤ z < L+1, (14)

Qε(z)∈ {L,L+1} with equal probability for L+0.5–ε ≤ z <L+0.5+ε,

and Y ' is the stego image represented using an integer vector y '∈ J m.
Note that Qε = Q for ε = 0. The quantizers Q and Qε are identical
with the exception of the interval [L+0.5–ε, L+0.5+ε) where their
output differs in 50% of cases. It can be easily shown that, assuming
u is a random variable uniformly distributed on [0, 1], the average
quantization error u – Q(u) introduced by the scalar quantizer (2) is
1/4, while for the perturbed quantizer it is 1/4+ε 2. Thus, the
difference between the average error of both quantizers is ε 2, which
for ε = 0.1 is at least by one order of magnitude smaller than the
average quantization error. Also, note that –2ε ≤ |u – Q(u)| – |u –
 Qε(u)| ≤ 2ε for all u.

4. EMBEDDING WHILE DOUBLE
COMPRESSING
In this section, we apply Perturbed Quantization to the information-
reducing process of repeated JPEG compression. First, we introduce

the necessary basics of JPEG compression, then explain the
embedding method and calculate its capacity. In Section 5, we
subject this method to blind steganalysis [2] and compare its
performance to existing methods. We further note that due to
simplicity we work with grayscale images. The considerations hold
for color images as well.

4.1 JPEG compression preliminaries
In JPEG compression, the image is first divided into disjoint blocks
of 8×8 pixels. For each block B x (with integer pixel values in the
range 0−255), the discrete cosine transform, c = DCT(B x), produces
64 DCT coefficients cij, 0 ≤ i, j ≤ 7, which are then divided using the
quantization matrix q=(qij) and rounded to integers using the
quantizer (2)

.)(

/

),(
7

0,

ijij

ijijij

lk
x

klklij

dQD

qcd

Bjiac

=

=

=∑ =

 (15)

In (15), akl (i, j) are the elements of the DCT transform matrix

)12(
16

cos)12(
16

cos)()(
4
1),(++= jkiklwkwjiakl

ππ , (16)

otherwise. 1)(and 0 when 2/1)(=== kwkkw

The quantized coefficients Dij are arranged in a zigzag manner and
compressed using the Huffman encoder. The resulting compressed
stream together with a header forms the final JPEG file.
The JPEG decompression works in the opposite order. The JPEG
bit-stream is decompressed using the Huffman decoder and, for each
block, the quantized DCT coefficients Dij are multiplied by qij,
inverse DCT transformed, and the result is rounded and clipped to a
finite dynamic range obtaining the 8×8 pixel block B in the
decompressed image

,][

)(1

raw

raw
ijijij

BB

CDCTB

DqC

=

=

=
− (17)

where [x] = Q(x) for 0 ≤ x ≤ 255, [x] = 0 for x < 0, and [x] = 255 for
x > 255.
Let us assume that the cover JPEG file has been decompressed to
the spatial domain to image X. Let B be an 8×8 block in X.
Assuming that B has no pixels saturated at 0 or 255, from (17) we
see that the quantization error ξij = Bij

raw
 – Bij, 0 ≤ i, j ≤ 7, satisfies –

0.5 ≤ ξij ≤ 0.5. Consequently,

DCT(B) = DCT(Braw) – DCT(ξ) = C – η, (18)

where ∑ =
=

7

0,
),(

lk klklij jia ξη .

Modeling the quantization error ξij as an i.i.d. noise uniformly
distributed on the interval (–1/2, 1/2], we obtain

 ∑ =
==

7

0,
0)(),()(

lk klklij EjiaE ξη ,

∑ ∑

∑
= ≠

=

=

=

+=

7

0,

7

),(),(
0,

7

0,
222

12
1)(

)(),()(

lk lksr
sr rsklrskl

lk klklij

Eaa

EjiaE

ξξ

ξη

because E(ξij
2) = 1/12 and ∑ =

=
7

0,
2 1),(

lk kl jia for all i, j due to

the fact that the DCT is an orthonormal transformation. Finally,
because ηij is an average of bounded independent variables, by the
Liapunov extension of the Central Limit Theorem (see, for example
[27]), the distribution of ηij is approximately Gaussian N(0,1/12).

4.2 Effects of repeated JPEG compression and
the embedding algorithm
In this section, we investigate the impact of double compression on
distribution of DCT coefficients and explain how double
compression can be used in the context of Perturbed Quantization.
Let us assume that we have an image that is a decompressed JPEG
with quality factor Q1 (with quantization matrix qij

(1)) and we resave
it as JPEG again but with a different quality factor Q2 (with
quantization matrix qij

(2)). For simplicity, we take a look at a specific
DCT coefficient with (i, j) = (1, 2) (the first AC coefficient in the
zigzag scan) and Q1 = 88, Q2 = 76. In the original JPEG image, the
DCT values C12 are multiples of q12

(1) = 3 (see the top part of Figure
4). As explained above, after decompression (17) and the second
DCT transform (15), the values of c12 will no longer be exact
multiples of 3 but will be spread around them as in the bottom part
of Figure 4. Next, we look at what happens when the coefficients c12
are quantized with a quantization step q12

(2) = 6 corresponding to the
second quality factor Q2 = 76.

-15 -10 -5 0 5 10 15
0

1000

2000

3000

4000

-15 -10 -5 0 5 10 15
0

200

400

600

800

Figure 4 Top: histogram of values of the DCT coefficient C12 in
the original 88% quality JPEG file (note that the values are
multiples of the quantization step q12

(1) = 3). Bottom: histogram
of the same DCT coefficient c12 after decompressing the JPEG
file to the spatial domain and DCT transforming.
From Figure 5, one can see that the peaks around the even multiples
2k×3, k=0, 1, …, are quantized to 6k, while the peaks around the
odd multiples (2k+1)×3, k=0, 1, …, are split in half, the “left” half
being quantized to 6k+2 and the right half to 6k+4. Based on the
arguments presented in the previous section, this quantization
during a normal double compression is essentially a random process
because η12 is Gaussian N(0,1/12). This gives us the possibility to
build a Perturbed Quantization embedding method by including all
odd multiples (2k+1)×3 to the set of changeable coefficients. In the
next section, we formulate the Selection Rule for an arbitrary
combination of quantization matrices q(1) and q(2).

4.3 Coefficient Selection Rule
We can use other DCT coefficients cij for embedding as long as the
first and the second quantization steps qij

(1) and qij
(2) satisfy certain

numerical properties. The pair (qij
(1), qij

(2)) will be called
contributing if there exist integers k and l such that

kqij
(1) = lqij

(2)+qij
(2)/2 . (19)

All integers k and l, l+1 that satisfy (19) will be called contributing
multiples of qij

(1) and qij
(2), respectively. The condition says that the

pair (qij
(1), qij

(2)) is contributing if there exists a multiple of qij
(1) (a

contributing multiple) that is exactly in the middle of the second
quantization interval of length qij

(2). The following theorem gives a
sufficient and necessary condition for the pair (qij

(1), qij
(2)) to be

contributing and also gives a formula for all contributing multiples
of qij

(1).
Theorem 1. The pair (qij

(1), qij
(2)) is contributing if and only if

qij
(2)/g is even, where g = GCD(qij

(1), qij
(2)) is the greatest

common divisor of qij
(1) and qij

(2). Furthermore, all contributing
multiples k of qij

(1) are expressed by the formula

k =
g

q
m ij

2
)12(

)2(

+ , m = …, –2, –1, 0, 1, 2, …. (20)

Proof. The implication from left to right is trivial. Dividing (19) by
g gives qij

(2)/2g = kqij
(1)/g – lqij

(2)/g. Because there is an integer on
the right hand side, qij

(2)/(2g) is an integer, too. To prove the other
implication, from the Euclid theorem [28], there are two integers a
and b such that aqij

(1) + bqij
(2) = g. After multiplying this equation by

qij
(2)/(2g), which is an integer, we obtain (19) with k = aqij

(2)/(2g)
and l = –bqij

(2)/(2g). To derive the formula (20), from (19) we have

k =)1(

)2(

2

)12(

ij

ij

q

ql +
 =

g
q

g
q

l

ij

ij

)1(

)2(

2
)12(+

. (21)

Because GCD(qij
(1)/g, qij

(2)/g) = 1, it must be the case that 2l+1 is an
odd multiple of qij

(1)/g (note that qij
(1)/g must be odd). Thus, the

contributing multiples of qij
(1) are odd multiples of qij

(2)/(2g). This
ends the proof. �
All contributing coefficients in the single compressed JPEG cover
image form the set of changeable coefficients C. Theorem 1 can be
used to calculate the cardinality of C. Let hij(k) be the histogram of
the DCT coefficient Cij of the cover JPEG file (the one compressed
with qij

(1)). The number of changeable coefficients |C| is given by the
following formula

∑ ∑= 












+=

7

0,

)2(

2
)12(||

ji k
ij

ijij g
q

khuC , (22)

where uij = 1 if (qij
(1), qij

(2)) is a contributing pair and uij = 0
otherwise.
To show how |C| depends on the quality factors Q1 and Q2, we
evaluated (22) for all combinations of quality factors ranging from

50 to 95. The result was averaged over 20 test grayscale images and
displayed in Figure 6. The plot shows that one can choose from a
variety of combinations of both quality factors to achieve a relatively
large capacity up to 0.5 bits per non-zero DCT coefficient of the
stego image (bpc). Note the ridge of high capacities corresponding
to Q2 = 2(Q1 – 50). This combination of quality factors translates to
qij

(2) = 2qij
(1) (as in Figure 5).

Figure 5 Example of a contributing multiple.

4.4 Encoder summary
We summarize the PQ embedding method based on double
compression. The method takes a (single compressed) JPEG file as
the cover image and produces a double compressed and embedded
JPEG file as the stego image. The sender and recipient can use the
LSB of DCT coefficients as the parity function. The sender chooses
the second quality factor Q2 < Q1 (to make the recompression
information-reducing) so that the number of secret message bits is
within the capacity (22) with some reserve for the headers (13) and
identifies the set C of changeable coefficients cij from the
quantization matrices q(1) and q(2) using Theorem 1. From (19), the
sender enforces that after the second JPEG compression, the
quantized value Dij (15) of the ij-th changeable DCT coefficient in
the stego file is either l or l+1, where kqij

(1) = lqij
(2)+qij

(2)/2 and k is
the value of the quantized ij-th DCT coefficient in the cover image.
The sender remembers the values l and l+1 for each changeable
coefficient cij and uses them as two possible values for Dij in the
stego JPEG file. The embedding process continues with
decompression of the cover JPEG file to the spatial domain and
recompression with the second quantization table. This determines
the values of all coefficients that are not changeable. The value Dij
of each changeable coefficient is determined during the encoding
process as described in Section 3.4 while encoding the secret
message.
To cast the embedding in the setup of Section 2.1, the transform
F = Q o T is composed of the decompression (17), the DCT
transform (15), division by the second quantization matrix q(2), and
the quantizer Q (2). Symbolically,

T(Dij) = DCTij([DCT–1(qij
(1)Dij)])/qij

(2), (23)

where DCT–1(qij
(1)Dij) stands for the inverse DCT of the coefficient

block to which Dij belongs and DCTij(B) is the ij-th coefficient of
the DCT of B.

kqij
(2)(k–1)qij

(2) (k+1)qij
(2)

lqij
(1)

(l+1)qij
(1)

kqij
(2)(k–1)qij

(2) (k+1)qij
(2)

lqij
(1)

(l+1)qij
(1)

Figure 6 Embedding capacity expressed in bits per non-zero
DCT coefficient (of the double-compressed image) averaged over
20 test images. Note the prominent ridge for quality factors
satisfying Q2 = 2(Q1 – 50).

5. STEGANALYSIS
In this section, we investigate the character of the embedding
distortion and evaluate the security of the proposed algorithm using
the approach described in [2].

First of all, we would like to point out that double compressed
images are not that unusual, as it might seem at the first sight. Vast
majority of owners of digital cameras use the JPEG format for
storing images inside the camera. Then, as the images are
downloaded to the computer, they may be processed and resaved as
JPEGs in some image processing software with a default or a user-
specified quality factor. Because most digital cameras adjust the
quantization table to the image (to guarantee that all images have
approximately the same size), digital camera images have a wide
range of quality factors and quantization tables. There are several
cases when the user will frequently (unconsciously) create a double-
compressed image that will be double-compressed in a manner
compatible with our steganographic scheme: The user

1. rotates it by 90 degrees and resaves (it is easy to see that
during rotation by multiples of 90 degrees, each DCT
coefficient Dij may either not change or change to Dji
and/or change its sign), or

2. recompresses the image with a lower quality factor to
decrease its size (e.g., for sending by e-mail) or

3. removes the red eye glare (a few dozen pixels) and
resaves the image as JPEG, or

4. adjusts the brightness and resaves.
Thus, we believe that double-compressed images are, in fact, quite
ubiquitous and should not be suspicious by themselves. We stress
that if the image is resized or cropped by non-multiples of 8 before
resaving, or modified in any way that removes the quantized
structure of DCT coefficients, we do not call the image a double
compressed image because it will not exhibit traces of repetitive
compression in the sense of this paper. In this case, one may use the
approach from Example 3 from Section 2 for embedding.

We point out that it is necessary that the second quality factor be
smaller than the first one, Q1 > Q2. If the second quality factor was
larger than the first one, one could first estimate the first
quantization table using methods in [32] and then exactly recover
the single compressed cover image (compressed with Q1). In fact,
this property of double JPEG compression is used in some semi-
fragile watermarking systems for content authentication [33]. Once
this single compressed image is obtained, the attacker will simply
recompress it with Q2 and compare to the stego image. Any
discrepancies will be indicative of steganography. This attack can be
mounted because when Q1 < Q2 the double compression is not
information-reducing.
We have subjected the PQ method based on double-compression to
the blind steganalysis of [2]. This blind steganalysis uses 23 features
derived from first-order (global histogram, individual histograms,
and dual histograms) and higher-order statistics (spatial blockiness,
co-occurrence matrices of coefficients from neighboring blocks,
etc.) of DCT coefficients. The features are calibrated using the
shifted/cropped/recompressed image first used in [29] for accurate
estimation of secret message length. By using the calibrated features
in this manner, one can significantly decrease image to image
variations among features and vastly improve the detection
sensitivity. Also, because the features are calculated directly from
the DCT coefficients rather than from wavelet decomposition [30]
or image quality metrics [31], it is possible to directly draw
conclusions about the impact of the embedding changes on
detectability. As shown in [2], this detection scheme was able to
reliably detect OutGuess [35] at embedding rates as low as 0.05 bpc
and F5 at 0.1 bpc. The Model based Steganography of [34] was also
detected at full capacity of 0.4 bpc. Because, to the best knowledge
of the authors, this detection is the only one that reliably detects all
current state of the art steganographic techniques for JPEGs, we
selected it as a benchmark for our tests as well.
The Greenspun database of 1812 grayscale images
(www.greenspun.com) was used for testing. The Fisher Linear
Discriminant was trained on the set of 23 features for the first 1412
cover and fully embedded images. By cover images, we understand
images that were subjected to a regular double compression with
Q1 = 85 and Q2 = 70, while the stego images were obtained by
embedding a random message of length 0.4, 0.2, 0.1, and 0.05 bpc
(bits per non-zero DCT coefficient of the stego image). The testing
was done on the remaining set of 400 images in the database. On
average, fully embedded images were able to accept approximately
0.48 bpc of the double-compressed image. As in [2], the detection
was evaluated using the detection reliability ρ, which is the area
between the ROC curve and the diagonal line in the ROC diagram
(normalized so that ρ = 1 perfect detection, ρ = 0 no detection).
As can be seen from Table 1, the new algorithm significantly
outperforms existing steganographic algorithms for JPEG images.
Figure 7 shows ROC curves when testing for images fully
embedded with PQ (on average 0.48 bpc).

Table 1 Detection reliability ρ for F5, F5 without matrix
embedding (1,1,1), OutGuess 0.2 (OG), Model based
Steganography without and with deblocking (MB1 and MB2,
respectively), and the proposed Perturbed Quantization during
double compression for different embedding rates (U =
unachievable rate). All but the PQ algorithm, were tested with
Q = 80. The PQ algorithm was tested with Q1 = 85 and Q2 = 70.

bpc F5 F5_111 OG MB1 MB2 PQ

0.05 0.241 0.645 0.879 0.220 0.163 ~ 0

0.1 0.539 0.922 0.993 0.415 0.310 0.048

0.2 0.956 0.996 0.991 0.704 0.570 0.098

0.4 1.000 1.000 U 0.938 0.824 0.174

0.6 1.000 1.000 U 0.983 U U

0.8 1.000 1.000 U 0.992 U U

We close this section with some thoughts on the possibility of
constructing a targeted attack on the proposed scheme. To construct
a targeted attack, one would have to estimate the values of DCT
coefficients prior to quantizing. While it is certainly possible to
attempt to remove the JPEG quantization using smoothing
techniques in the spatial domain, it will be extraordinarily difficult
to estimate the unquantized coefficients with accuracy necessary to
obtain sufficient evidence for presence of perturbed quantization.
This is because in general one cannot reverse the loss of information
that occurs during JPEG compression.

6. CONCLUSIONS
The main contributions of this paper are as follows. First of all, this
paper reveals an important relationship between memories with
defective cells [1] and steganography. The defective cells
correspond to those cover object elements designated by the sender
to be avoided for embedding and are not shared with the recipient.
Because in steganography the number of defective cells could be
quite large, we coin a new term for this steganographic channel –
writing on wet paper. This is a metaphor for a steganographic
channel in which the sender embeds message bits into a subset of
elements of the cover object and communicates the message to the
recipient, who does not have any information about the selection
rule applied by the sender. If the selection rule is determined by side
information available only to the sender but in principle unavailable
to the recipient (and any attacker), this scenario provides improved
steganographic security compared to schemes with a public
selection rule [9–12].
Second, we propose a simple variable-rate random linear code (the
wet paper code) for memories with a large number of defects and
show how it can be applied for our steganographic channel. We
prove that this code enables on average communication of k bits
given k “dry” elements (n–k defective cells). The wet paper code
lends itself to efficient practical implementations and offers
flexibility and control to the sender over which cover object
elements will be modified. This further minimizes the impact of
embedding changes (Section 3.5).

Figure 7 ROC for images embedded using PQ with Q1 = 85 and
Q2 = 70 for the embedding rate 0.4, 0.2, and 0.1 bpc.

Third, using the wet paper code we develop new steganographic
methodology for digital media called Perturbed Quantization. In
Perturbed Quantization, the sender embeds a secret message while
downgrading the cover object using some information-reducing
operations, such as lossy compression, A/D conversion,
downsampling, etc. The sender uses his knowledge of the
unprocessed object and embeds data into those pixels whose values
are the most “uncertain” after the processing. We illustrate the
methodology on the example of recompressing a JPEG image with a
lower quality factor. Using heuristic arguments supported with blind
steganalysis [2], we show that Perturbed Quantization is
significantly less detectable than existing steganographic methods
for JPEG images while providing a relatively large capacity.
Finally, we note that the writing on wet paper scenario and the
proposed wet paper code can be thought of as a generalization of the
selection channel [5]. The wet paper is also a special case of the
general problem of communication with informed sender [15].
While the Costa’s dirty paper code [16], which is another special
case of [15], is relevant for watermarking [19,20], the wet paper is a
suitable model for steganography.
There are other numerous applications of the wet paper code in
steganography and general data embedding. For example, we name
the removal of shrinkage in the F5 algorithm [13] and improving its
embedding efficiency. Obviously, nullifying a DCT in F5
embedding coefficient will no longer be a problem for the decoder if
the wet paper code is employed. Another application is constructing
steganographic schemes that, besides the secret shared stego key,
contain an element of true randomness and thus cannot be subjected
to brute force stego key searches [36]. As the last application, we
mention data hiding in binary images proposed by Wu [37]. In this
application, the sender first identifies the set of “flippable” pixels
that can be modified for embedding. Because this set of pixels is not
shared with the recipient, Wu proposed block embedding combined
with random shuffling. The block embedding however, leaves most
of the flappable pixels unused and only a fraction of the embedding
capacity is used. Because this problem exactly corresponds to
writing on wet paper, the capacity of this data hiding method can be
dramatically improved.

In the future, we plan to investigate in more detail the
steganographic security of Perturbed Quantization. In particular, it
seems plausible to prove its ε-security in the Cachin’s sense [6]
assuming an appropriate model of the cover object.

7. ACKNOWLEDGMENTS
The work on this paper was supported by Air Force Research
Laboratory, Air Force Material Command, USAF, under the
research grant number F30602-02-2-0093. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation there on. The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of Air Force Research
Laboratory, or the U. S. Government. Special thanks belong to Petr
Lisoněk, Pierre Moulin, and Ralf Koetter for many useful
discussions, and to Hany Farid for providing the Greenspun image
database.

8. REFERENCES
[1] A.V. Kuznetsov and B.S. Tsybakov, “Coding in a Memory

with Defective Cells”, Probl. Inform. Transmission, vol. 10,
pp. 132–138, 1974.

[2] J. Fridrich, “Feature-Based Steganalysis for JPEG Images and
its Implications for Future Design of Steganographic
Schemes”, Proc. 6th Information Hiding Workshop, Toronto,
CA, May 23–35, 2004.

[3] G.J. Simmons, The Prisoners' Problem and the Subliminal
Channel, CRYPTO83 – Advances in Cryptology, August 22–
24, pp. 51–67, 1984.

[4] F.A.P. Petitcolas and S. Katzenbeisser, editors, Information
Hiding Techniques for Steganography and Digital
Watermarking, Artech House Books, January 2000.

[5] R.J. Anderson and F.A.P. Petitcolas, “On the Limits of
Steganography”, IEEE Journal of Selected Areas in
Communications, Special Issue on Copyright and Privacy
Protection, vol. 16(4), pp. 474−481, 1998.

[6] C. Cachin, “An Information-Theoretic Model for
Steganography”, In: Aucsmith, D. (ed.): Information Hiding.
2nd International Workshop. Lecture Notes in Computer
Science, Vol. 1525. Springer-Verlag, New York, pp. 306–318,
1998.

[7] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R.
Piotraschke, A. Westfeld, G. Wicke, G. Wolf, “Modeling the
Security of Steganographic Systems”, In: Aucsmith, D. (ed.):
Information Hiding. 2nd International Workshop. Lecture Notes
in Computer Science, Vol. 1525. Springer-Verlag, New York,
pp. 344–354, 1998.

[8] S. Katzenbeisser and F.A.P. Petitcolas, “Defining Security in
Steganographic Systems”, SPIE Security and Watermarking of
Multimedia Contents IV, Vol. 4675, Electronic Imaging 2000,
San Jose, CA, pp. 50–56, 2002.

[9] E. Franz, “Steganography Preserving Statistical Properties”, In:
Petitcolas, F.A.P. (ed.): Information Hiding. 5th International
Workshop. Lecture Notes in Computer Science, Vol. 2578.
Springer-Verlag, Berlin Heidelberg New York, pp. 278–294,
2002.

[10] J. Fridrich and R. Du, “Secure Steganographic Methods for
Palette Images”, In: Pfitzmann A. (ed.): Information Hiding.
2nd International Workshop. Lecture Notes in Computer
Science, Vol. 1768, Springer-Verlag, New York, pp. 47–60.
2000.

[11] M. Karahan, U. Topkara, M. Atallah, C. Taskiran, E. Lin, E.
Delp, “A Hierarchical Protocol for Increasing the Stealthiness
of Steganographic Methods”, to appear in Proc. ACM
Multimediam Workshop, Magdeburg, Germany, September
20–21, 2004.

[12] A. Westfeld and R. Böhme, “Exploiting Preserved Statistics for
Steganalysis”, Proc. 6th International Workshop on
Information Hiding, Toronto, Canada, May 23–25, 2004.

[13] A. Westfeld, “High Capacity Despite Better Steganalysis (F5–
A Steganographic Algorithm)”, In: Moskowitz, I.S. (eds.): 4th
International Workshop on Information Hiding, LNCS,
Vol. 2137. Springer-Verlag, New York, pp. 289–302, 2001.

[14] R. Crandall, “Some Notes on Steganography”, posted on
Steganography Mailing List, http://os.inf.tu-dresden.de/
~westfeld/crandall.pdf, 1998.

[15] S.I. Gelfand and M.S. Pinsker, “Coding for channel with
random parameters,” Probl. Pered. Inform. (Probl. Inform.
Transm.), vol. 9(1), pp. 19–31, 1980.

[16] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform.
Theory, vol. IT-29(3), pp. 439–441, May 1983.

[17] C. Heegard and A. El-Gamal, “On the Capacity of Computer
Memory with Defects,” IEEE Trans. Inform. Theory, vol. IT-
29, pp. 731–739, 1983.

[18] R. Zamir, S. Shamai, U. Erez, “Nested Linear/Lattice Codes for
Structured Multiterminal Binning”, IEEE Trans. Inf. Th., vol.
48(6), pp. 1250–1276, 2002.

[19] P. Moulin and J. A. O'Sullivan, “Information-Theoretic
Analysis of Information Hiding,” IEEE Trans. on Inf. Th, vol.
49(3), pp. 563–593, March 2003.

[20] B. Chen and G. Wornell, Quantization Index Modulation: A
Class of Provably Good Methods for Digital Watermarking
and Information Embedding”, IEEE Trans. on Inf. Th., vol.
47(4), May 2001.

[21] G. Cohen, “Applications of coding theory to communication
combinatorial problems. Discrete Math. 83 (2–3), pp. 237–
248, 1990.

[22] R.P. Brent, S. Gao, A.G.B. Lauder, “Random Krylov Spaces
Over Finite Fields”, SIAM J. Discrete Math. 16(2), pp. 276–
287, 2003.

[23] J. Fridrich, M. Goljan, D. Soukal, and P. Lisoněk, “Writing on
Wet Paper”, in preparation for IEEE Trans. Sig. Proc.,
Supplement on Secure Media II, 2004.

[24] C. Cooper, “On the Rank of Random Matrices”, Random
Structures and Algorithms 16(2), pp. 209–232, 2000.

[25] B.A. LaMacchia and A.M. Odlyzko, “Solving Large Sparse
Linear Systems over Finite Fields”, In: Menezes, A.J., and
Vanstone, S.A. (eds.): Advances in Cryptology – CRYPTO
'90, Springer Verlag, Lecture Notes in Computer Science vol.
537, pp. 109–133, 1991.

[26] D.H. Wiedemann, “Solving Sparse Linear Equations Over
Finite Fields”, IEEE Transactions on Information Theory, IT–
32(1), pp. 54–62, 1986.

[27] E.R. Dougherty, Random Processes for Image and Signal
Processing, SPIE PRESS Monograph Vol. PM44, 1998.

[28] O. Ore and Y. Ore, Number Theory and Its History, Dover
Publications, 1998.

[29] J. Fridrich, M. Goljan, D. Hogea, and D. Soukal, “Quantitative
Steganalysis: Estimating Secret Message Length”, ACM
Multimedia Systems Journal. Special issue on Multimedia
Security, 9(3), 288–302, 2003.

[30] H. Farid and L. Siwei, “Detecting Hidden Messages Using
Higher-Order Statistics and Support Vector Machines”, In:
Petitcolas, F.A.P. (ed.): Information Hiding. 5th International
Workshop. Lecture Notes in Computer Science, Vol. 2578.
Springer-Verlag, Berlin Heidelberg New York, pp. 340–354,
2002.

[31] I. Avcibas, N. Memon, and B. Sankur, “Steganalysis using
Image Quality Metrics”, SPIE Security and Watermarking of
Multimedia Contents II, Electronic Imaging, San Jose, CA,
Jan. 2001.

[32] J. Lukáš and J. Fridrich, “Estimation of Primary Quantization
Matrix in Double Compressed JPEG Images”, Proc. of
DFRWS 2003, Cleveland, OH, August 5–8, 2003.

[33] Ching-Yung Lin and Shih-Fu Chang, “Semi-Fragile
Watermarking for Authenticating JPEG Visual Content”, SPIE
Security and Watermarking of Multimedia Contents II, Vol.
3971, Electronic Imaging 2000, San Jose, CA, pp. 140–151,
2000.

[34] P. Sallee, “Model Based Steganography”, In: T. Kalker, I.J.
Cox, Yong Man Ro (Eds.), International Workshop on Digital
Watermarking, Lecture Notes in Computer Science, Vol. 2939.
Springer Verlag New York, pp. 154–167, 2004.

[35] N. Provos, Defending Against Statistical Steganalysis, 10th
USENIX Security Symposium. Washington, DC 2001.

[36] J. Fridrich, M. Goljan, and D. Soukal, “Searching for the Stego
Key”, SPIE Security and Watermarking of Multimedia
Contents VI, Electronic Imaging 2004, San Jose, 2004.

[37] M. Wu, Tang E., and Liu B., “Data Hiding in Digital Binary
Image”, Proc. Conf. on Multimedia & Expo (ICME’00), New
York City, 2000.

