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ABSTRACT 
In this paper, we introduce a new approach to passive-warden 
steganography in which the sender embeds the secret message into a 
certain subset of the cover object without having to share the 
selection channel with the recipient. An appropriate information-
theoretical model for this communication is writing in memory with 
(a large number of) defective cells [1]. We describe a simple 
variable-rate random linear code for this channel (the “wet paper” 
code) and use it to develop a new steganographic methodology for 
digital media files – Perturbed Quantization. In Perturbed 
Quantization, the sender hides data while processing the cover 
object with an information-reducing operation, such as lossy 
compression, downsampling, A/D conversion, etc. The sender uses 
the cover object before processing as side information to confine the 
embedding changes to those elements of the processed cover object 
whose values are the most “uncertain”. This informed-sender 
embedding and uninformed-recipient message extraction improves 
steganographic security because an attacker cannot easily determine 
from the processed stego object the location of embedding changes. 
Heuristic is presented and supported by blind steganalysis [2] that a 
specific case of Perturbed Quantization for JPEG images is 
significantly less detectable than current JPEG steganographic 
methods.  

Categories and Subject Descriptors 
E.4 Coding and Information Theory, I.4 Image processing and 
computer vision 

General Terms: Algorithms, Security, Theory 

Keywords: Adaptive, multimedia, quantizer, security, 
steganalysis, steganography 

1. MOTIVATION 
The primary goal of steganography is to build a statistically 
undetectable communication channel (the famous Prisoner Problem 
[3]). In order to embed a secret message, the sender slightly 

modifies the cover object to obtain the embedded stego object. In 
steganography under the passive warden scenario [4,5], the goal is 
to communicate as many bits as possible without introducing any 
detectable artifacts into the cover object. Attempts to give a formal 
definition of the concept of steganographic security can be found in 
[5–8]. In practice, a steganographic scheme is considered secure if 
no existing attack can be modified to build a detector that would be 
able to distinguish between cover and stego images with a success 
better than random guessing. 
One possible measure to improve the security of steganographic 
schemes for digital media is to embed the message in adaptively 
selected components of the cover object [9–11], such as noisy areas 
or segments with a complex texture. However, if the adaptive 
selection rule is public or only “weakly dependent on a key”, the 
attacker can apply the same rule and start building an attack. It is 
then a valid question whether the adaptive selection improves 
steganographic security at all. A good example of a scheme where 
adaptive pixel selection in fact decreased its security is the recent 
surprising result of Westfeld [12]. 
This problem with adaptive steganography could be remedied if the 
selection rule was determined from some side information available 
only to the sender but in principle unavailable to the recipient (and 
thus any attacker). For example, imagine the situation when the 
sender has a raw, uncompressed image and wants to embed data into 
its JPEG compressed form. Can the sender use his side information 
– the uncompressed image – to construct better steganography? The 
authors of this paper are not aware of any steganographic scheme 
that utilizes this side information, perhaps because it seems that the 
recipient would have to know the uncompressed image to read the 
message, which would not be practical. In this paper, we generalize 
this example and form a new steganographic method called 
“Perturbed Quantization”. As explained in Section 2, this 
embedding method requires a coding technique for memories with a 
large number of defective cells. We call such codes “wet paper 
codes” because of the following metaphor that is highly relevant to 
steganography in general.  
Imagine the situation when the cover object (a digital image, for 
example) has been exposed to “rain” and the sender can only 
slightly modify the dry spots of the cover image but not the wet 
spots. During transmission, the stego image dries out and thus the 
recipient does not know which pixels the sender used. We note that 
in this scenario we allow the rain to be truly random, pseudo-
random, completely determined by the sender or the image, or an 
arbitrary mixture of all of the above. This channel is a memory with 
(a large number of) defective cells [1]. In Section 3, we describe a 
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simple variable-rate random linear code (the wet paper code) that 
gives the sender control over the embedding modifications and 
enables the sender to communicate to the recipient on average the 
same number of bits as if the receiver knew the set of dry pixels.  
The code gives the sender complete freedom in choosing the dry 
pixels that will be used for embedding because the recipient does 
not need to (or even cannot in principle) determine the dry pixels 
from the stego image in order to read the message. This setup 
removes the above mentioned problem of adaptive steganography 
because it does not give an attacker a starting point for mounting an 
attack as when the selection rule is public. Also, the sender can now 
focus on the steganographic impact of the embedding changes 
without worrying whether or not the recipient will be able to read 
the message.  
The proposed writing on wet paper shares some features with 
existing concepts in steganography and information theory, namely 
the selection channel [5], matrix embedding [13,14], and 
communication with side information [15]. The relationship 
between these concepts and writing on wet paper is commented 
upon throughout the paper in Sections 2.2, 3.1, and 3.2. 
In Section 2, we describe the Perturbed Quantization steganography 
and propose several practical embedding scenarios. We then show 
that this steganographic communication requires codes for 
memories with a large number of defective cells. In Section 3, we 
propose a variable-rate random linear code for this channel that can 
be easily implemented even when the number of defective cells (wet 
pixels) is large. In the same section, we give a detailed pseudo-code 
for an encoder and decoder for practical applications. In Section 4, 
we describe a Perturbed Quantization steganographic technique for 
JPEG images that embeds message bits while recompressing a JPEG 
image with a lower quality factor. Security of this new technique is 
analyzed in Section 5, where we apply the blind steganalysis of [2] 
and compare the results with current state of the art JPEG 
steganographic algorithms. The paper is concluded in Section 6. 

2. PERTURBED QUANTIZATION 
We explain the basic idea on the example mentioned in the 
introduction. Let us assume that the sender has a raw grayscale 
image X that has never been compressed before. During JPEG 
compression, the Discrete Cosine Transform (DCT) is performed, 
the DCT coefficients are divided by quantization steps from the 
quantization table, then rounded to integers, and finally encoded 
according to the JPEG standard to a JPEG file, G. Let us denote the 
DCT coefficients (divided by quantization steps) before and after 
rounding with di and Di, respectively, i = 1, …, n, where n is the 
total number of DCT coefficients. Identify those coefficients di 
whose fractional part is in a narrow interval around 0.5: di –
di∈ [0.5–ε, 0.5+ε], where ε is called tolerance and should be set to 
a small number (e.g., ε = 0.1 or smaller). Such coefficients will be 
called changeable coefficients. The symbol d denotes the largest 
integer smaller than or equal to d. 
Let C = {i1, …, ik} be the set of indices of all changeable 
coefficients. During compression, we will round changeable 
coefficients dj, j∈ C, up or down at our will and thus encode up to 
k = |C| bits (obtaining a compressed and embedded image G′). 
However, we cannot simply code the message bits as parities (for 
example LSBs) of the rounded DCT coefficients Dj because the 
recipient would not know which coefficients carry message bits. In 

Section 3, we show how the sender can communicate on average |C| 
bits to the recipient, who has no information about the set C. 
We call this method Perturbed Quantization (PQ) because during 
compression we slightly perturb the quantizer (the process of 
rounding to integers) for a certain subset of changeable coefficients 
in order to embed message bits. It is shown in Section 3.6 that the 
difference between the average rounding distortion of the regular 
quantizer and its perturbed form is ε 2, which is at least by an order 
of magnitude smaller than the average rounding error (1/4). An 
attacker would have to be able to find statistical evidence that some 
of the values Di were quantized “incorrectly”. This is likely going to 
be a formidable task for the following reasons: 
(1) The sender is using side information that is practically removed 

during quantization and is unavailable to the attacker. Indeed, 
it is in general impossible to reverse JPEG compression and 
obtain the uncompressed image or an approximation to the 
uncompressed image that would be good enough to enable the 
attacker to gain evidence that some coefficients were quantized 
“incorrectly”.  

(2) The sender can accept additional selection rule(s) to further 
decrease the probability of introducing detectable artifacts and 
thus improve the security. For example, the sender may avoid 
changing coefficients in those areas of the cover image where 
the attacker could predict the coefficient values with high 
certainty. 

(3) The actual rounding of values di is more influenced by the 
image noise for changeable coefficients than for the remaining 
coefficients because the changeable coefficients are close to the 
middle of the rounding intervals. As a result, the rounding 
process di→Di has a large stochastic component. The authors 
are currently working on a better justification of this heuristic 
statement using image models. It seems plausible that this 
heuristic can be, indeed, justified in a more exact manner by 
proving for a certain image model that the Perturbed 
Quantization is ε-secure in the Cachin’s sense [6]. 

2.1 Information-reducing processes 
The idea outlined above can be formulated in a more general setting. 
Whenever the sender downgrades a digital image using lossy 
compression, downsizing, quantization, format conversion, 
recompression, etc., he will have access to all numerical values 
before quantization/rounding occurs. Thus, the sender gains the 
same ability to slightly modify the rounding process whenever he 
subjects the cover image to an information-reducing process that 
involves a real transform followed by a quantizer. As discussed 
above, because the process is information-reducing, an attacker 
cannot easily recover from the stego image those fine details of the 
original image that would enable him to mount an attack. 
Let us assume that the cover image X is represented with a vector 
x∈ I m, where I is the range of its pixel/coefficient/color/index values 
depending on the format of X. For example, for an 8-bit grayscale 
image, I={0, …, 255}. The information-reducing process F will be 
modeled as a transformation 

F = Q o T: I m → J n,   (1) 
where J is the integer dynamic range of the downgraded image Y = 
F(X) represented with an n-dimensional integer vector y∈ J n, m ≥ n. 
The transform T: I m → Rn is a real-valued transformation and Q: 
Rn → J n is a quantizer. The intermediate “image” T(X) will be 



denoted as U and represented using an n-dimensional vector u∈ Rn. 
We give several examples of image downgrading operations F that 
could be used for steganography based on PQ. 
Example 1 (Resizing). For grayscale images, the trans-formation T 
maps a square m1×m2 matrix of integers xij, i=0, …, m1–1, j=0, …, 
m2–1 into an n1×n2 matrix of real numbers urs, r=0, …, n1–1, s=0, 
…, n2–1, n1 < m1, n2 < m2, using a resampling algorithm. The 
quantizer Q is a uniform integer quantizer (rounding to integers) 
applied to the vector u by coordinates 

Q(ui) = round(ui).   (2) 
Example 2 (Decreasing the color depth by d bits). The 
transformation T maps a square m1×m2 matrix of integers xij in the 
range I={0, …, 2b–1}, i=0, …, m1–1, j=0, …, m2–1 into a m1×m2 
matrix of real numbers uij, uij=xij/2d. The quantizer Q is the same 
uniform scalar quantizer as in Example 1. 
Example 3 (JPEG compression). For grayscale images, the 
transformation T maps a square m1×m2 matrix of integers xij, into a 
8m1/8×8m2/8 matrix of real numbers uij in a block-by-block 
manner (z denotes the smallest integer larger than or equal to z). In 
each 8×8 pixel block B x, the corresponding block B u in uij is 
DCT(B x)./q, where DCT is the 2D DCT transform, q is the 
quantization matrix, and the operation “./” is an element-wise 
division. The quantizer Q is, again, given by (2). 
 

2.2 Memory with defective cells 
Continuing the description of Perturbed Quantization, the sender 
identifies the set of indices C ⊂  {1, …, n} of pixels (or, in general, 
cover object elements) whose values uj, j∈ C, may be perturbed 
during quantization. The set C will be determined using some 
Selection Rule (SR). There are no restrictions on the form of the 
rule. The sender can use his knowledge of X and U, which are 
unavailable to the receiver or any attacker. As already mentioned 
above, the sender can, for example, select ui whose values are close 
to the middle of the quantization intervals of Q 

C={i | i∈ {1,…, n}, ui∈ [L+0.5–ε, L+0.5+ε] for some integer L}.  (3) 

The tolerance ε could in principle be adaptive and depend on the 
neighborhood of the element xi. It can also be made key dependent if 
desired. In this paper, we assume for simplicity that ε is a publicly 
known small constant. The sender will communicate a message to 
the receiver by rounding changeable elements uj, j∈ C, to either L or 
L+1 and rounding all other elements ui, i∉ C, using the quantizer (2), 
yi = Q(ui). 
We note that the selection rule does not have to necessarily be of the 
type (3) and can be defined differently based on other heuristic 
depending on the format of X and properties of the elements. In 
Section 4, we give an example of a slightly different SR for the 
situation when the information-reducing transformation is 
recompression of the cover JPEG image using a lower quality factor. 
Once the changeable elements have been identified, the sender 
needs to encode the message bits. Let bi = {Parity(yi)} be the 
sequence of parities1 of elements from the processed cover object 

                                                                 
1 The parity could be any function defined on J with range {0,1} 

such that Parity(k) = 1–Parity(k+1) for all k∈ J. Thus, for J 
consisting of consecutive integers, only two parity functions are 

Y = F(X). By perturbing the rounding process as described above, 
the sender can modify k bits bj, j∈ C, but cannot modify the 
remaining n – k bits. The recipient does not know the set C. This is 
an example of a channel known as an n-bit memory with up to n – k 
defective cells introduced in 1974 by Tsybakov et al. [1]. This 
channel is a special case of the Gelfand-Pinsker problem [15] of 
coding with side information. It is known that the capacity of this 
channel is k [17,21] and can be achieved, for example, using an 
algebraic coding scheme with the cosets of an erasure correction 
code as bins [18]. The same paper contains a noisy generalization of 
this channel and shows that nested linear codes (or “partitioned” 
codes) are capable of achieving the theoretical maximum capacity.  
In steganographic applications, however, the number of defective 
cells (wet pixels) may be quite large. For example, in the double 
compression embedding described in Section 4, for a typical JPEG 
image, n ~ 106 and k ~ 104. To avoid the complexity associated with 
these codes when the number of defective cells is large, we describe 
a simple variable-rate random linear (wet paper) code that also 
enables the sender to communicate on average k bits and lends itself 
to practical applications in steganography. A significant advantage 
of this code is its flexibility and control it gives to the sender to 
choose which pixels should be modified, which further improves the 
security and minimizes the impact of embedding changes (Section 
3.5). 
 

3. Wet paper codes 
3.1 Encoder 
The proposed code can be viewed as a generalization of the 
selection channel [5] where one message bit is embedded as the 
parity of a group of elements. In the selection channel, at most one 
element value must be changed in order to match the parity of a 
group of elements to the message bit. The parity of the group is a 
sum modulo 2 of the individual element parities. Now, if there are q 
elements in the group that can be changed, one can attempt to 
embed q message bits by forming q linearly independent linear 
combinations of element parities instead of just one sum.  
Let us assume that the sender wants to communicate q bits 
m = {m1, …, mq}T. At this point, we assume that the recipient knows 
q. Later, we show how to modify the communication scenario to the 
case when the recipient does not know q. The sender and recipient 
agree on a secret stego key that is used to generate a pseudo-random 
binary matrix D of dimensions q×n. The sender will round uj, j∈ C, 
obtaining the column vector y ', so that the modified binary column 
vector b', b'i = Parity(yi'), i = 1, …, n, satisfies 

Db'= m .    (4) 
Thus, the sender needs to solve a system of linear equations in 
GF(2). The question of solvability of (4) is discussed in detail in 
Section 3.3. Note that the selection channel is a special case of (4) 
when D = [1, …, 1].  

                                                                                                           
possible, Parity1(k) = LSB(k) or Parity2(k) = 1–LSB(k) (the 
shifted LSB). The Parity function could be the same for all 
elements or chosen randomly between Parity1 or Parity2 for each 
element based on a secret stego key. 



3.2 Decoder 
The sender sends the modified stego object Y '={yi

 '} to the recipient. 
The decoding is very simple because the recipient first forms the 
vector b'i = Parity(yi') and then multiples Db' using the shared matrix 
D. The extracted message is simply m = Db'. The biggest 
computational load is on the sender’s side who needs to solve (4).  
The decoding mechanism is similar to that of matrix embedding 
[13,14] where the recipient also extracts the message bits by 
multiplying the parity vector by an appropriate code matrix. The 
difference is that in matrix embedding the sender’s goal is to 
maximize the embedding rate utilizing the positions of the changes 
to convey information. While in matrix embedding any element can 
be modified, in writing on wet paper the set of elements that can be 
modified is pre-determined by the sender (or the cover object, or 
some randomness) beforehand and is different for different objects. 

3.3 Average capacity 
It will be advantageous to rewrite (4) to 

Dv = m – Db   (5) 
using the variable v = b'– b. In the system (5), there are k unknowns 
vj, j∈ C, while the remaining n – k values vi, i∉ C, are zeros. Thus, on 
the left hand side, we can remove from D all n – k columns i, i∉ C, 
and also remove from v all n – k elements vi with i∉ C. Keeping the 
same symbol for v, the system (5) now becomes 

Hv = m – Db,    (6) 

where H is a binary q×k submatrix of D and v is an unknown k×1 
binary vector. This system has a solution for an arbitrary message m 
as long as rank(H)≥q. The probability Pq,k(s) that the rank of a 
random2 q×k binary matrix is s, s ≤ min(q,k), is [22, Lemma 4] 
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Figure 1. Probability that a random k–r by k binary matrix has 

rank k–r (for large k). 
From (11) below, it can be shown that for a fixed large k,             Pk–

r,k(k – r) quickly approaches 1 with increasing r (see Figure 1). This 
suggests that the expected maximal number of bits q that can be 
communicated is likely close to k, which is the theoretical upper 
bound. Next, we calculate the expected maximal number of bits that 
can be communicated using the wet paper code and show that it is 
                                                                 
2 The probability of 0 and 1 in D is the same and equal to 1/2. 

approximately k. Due to the page limit for this paper, we only 
provide a rather sketchy proof of this statement leaving the details to 
our forthcoming paper [23].  
For a given q-bit message, (6) may have a solution even when 
rank(H) < q because each linearly dependent row in H is compatible 
with the corresponding bit on the right hand side with probability ½. 
Thus, the probability that one can communicate at least k – r (r≥0) 
bits is 

∑
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−−≥ −−=
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i
krkirk irkPp

0
, )(

2
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while the probability that one can communicate at least k + r (r≥0) 
bits is 
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From (8–9), we calculate the expected maximum number qmax of bits 
communicated using k changeable pixels (the expected value taken 
over random messages and random matrices D) 
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where p=i = p≥i – p≥i+1 is the probability that one can communicate 
exactly i bits. To prove that indeed qmax(k) = k, we rewrite (7) using 
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From Taylor expansion, we can easily show that π(i) = π(∞)(1+O(2–

i)) for large i, where π(∞) = 0.288788… by direct calculation. 
Because we are only interested in large values of k, q, and s (e.g., 
when k = 100 or larger), we can rewrite (11) using the asymptotic 
expression for π(i) and substitute into (8) and (9). After some 
algebra and dropping the asymptotically small terms, we obtain for 
small r≥0 
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It is possible to prove by induction [23] that for large k the 
probabilities p=i are with a very high precision symmetrical about 
i=k: p=k–r = p=k+r for r = 1, 2, … (see Figure 2). Consequently, from 
(10), qmax(k) ≈ k. This means that on average, the sender will be able 
to communicate k bits to the recipient using the wet paper code. 
We now explain how to relax the assumption that the recipient 
knows k or q. The sender and recipient can generate the matrix D in 
a row-by-row manner rather than generating it as a two-dimensional 
array of q×n bits. In this way, the sender can reserve the first few 
bits of the message m for a header of length log2(n) bits to inform 



the recipient of the number of rows in D. The recipient first 
generates the first log2(n) rows of D, multiplies them by the 
received vector b', and reads the header (the message length q). 
Then, he generates the rest of D, and reads the message m by 
multiplying Db'. Thus, under the assumption that the recipient has 
no information about either k or q, the sender can on average 
communicate k – log2 n bits. 

 

15 10 5 5 10 15
0 

0.05 

0.1 

0.15 

0.2 

0.25 

k+k+ k+ k– k– k– k 
 

Figure 2. The probability p=i . 

3.4 Practical encoder implementation 
The main complexity of this communication setup is on the side of 
the sender. The sender needs to solve q linear equations for k 
unknows in GF(2) (in binary arithmetic). Assuming that the 
maximal length message is sent, the complexity of Gaussian 
elimination for (6) is O(k3). For a medium size image with n = 106 
pixels and the scenario in Example 3 with ε = 0.1, we have k ~ 104 
for a typical 80% quality JPEG image. While solving a linear system 
with 104 unknowns using Gaussian elimination is doable on a PC, it 
may require several minutes of calculations, which is impractical for 
the user. 
At this point, we stress that it is not possible to impose any specific 
structure on matrix H that would make the encoding easier because 
H is a submatrix of D obtained by selecting those columns from D 
that correspond to changeable pixels. Thus, different images will 
produce different matrices H even when D is kept the same. 
Another possibility to solve (6) is to use more efficient solvers of 
linear systems. As shown in [24], Pk,k(k) = 0.2889… for random 
sparse matrices H with as few as log2 k ones in each row. This fact 
opens up new possibilities in solving (6) significantly faster using 
techniques designed for sparse matrices. We investigated the 
Lanczos method [25] and the Wiedemann method [25]. Both 
methods have complexity proportional to k(k+ωk)(log k)c, where ω 
is the average number of ones in each row of H and c is a small 
positive constant. Thus, they will be faster than Gaussian 
elimination for sufficiently large k. In our application, however, the 
matrix H is rectangular and may be singular, which complicates and 
slows down both methods. As a result, we did not find either 
method producing running times that would lead to a practical 
implementation (e.g., the order of at most few seconds for n = 106 
and k = 104 to 105). 
By far the best performance and most flexible method was obtained 
using structured Gaussian elimination by dividing the image into β 
pseudo-random disjoint subsets Bi and using the Gaussian 
elimination on each subset separately. This can bring down the 
computational requirements substantially because the complexity of 

Gaussian elimination will decrease by the factor of β 3 while the 
number of solvings increases β-times. This leads to performance 
improvement of β 2. A careful C++ implementation of the Gaussian 
elimination on a 2.2GHz PC (storing 32 bits of H and b as int) can 
solve a 1000×1000 system in about 0.02 seconds. Thus, for β = 30 
subsets, the embedding of a maximal length message takes roughly 
1 second. Dividing the image into subsets, however, brings new 
complications, such as the necessity to communicate the message 
length in each block, and thus leads to a slight decrease in 
embedding capacity (a few percent). Overall, the small decrease in 
capacity is well worth the significant improvement in speed. Below, 
we explain the embedding algorithm in detail. 
Let us assume that the communicating parties know the range of 
typical values of the rate r = k/n, r1 ≤ r ≤ r2. If the range is unknown 
or r2/r1 is too large, the sender can modify the embedding algorithm 
below to communicate r [23] (not shown in this paper due to lack of 
space). The specific value of r will be influenced by the image 
content, the SR, and the transform T. To keep encoding time 
reasonably low, we desire approximately kavg ~ 250 changeable 
pixels in each subset. We also require all subsets to be of almost the 
same size. Thus, we choose the number of sets β = nr2/kavg. The 
size ni of each subset Bi will be ni∈ {n/β, n/β} so that 
n1+n2+…+nβ = n. Assuming the subsets are selected pseudo-
randomly, there will be ki changeable bits in each subset Bi, where ki 
is a random variable with hypergeometrical distribution with mean 
k/β [23]. 
The number of message bits qi embedded in each subset will be 
allocated dynamically during embedding by the sender (see the 
pseudo-code below). Without any loss of generality, we can assume 
that the image pixels are permuted using a pseudo-random 
permutation generated from a shared secret stego key. Then, the 
subsets Bi can simply be taken as subsets of ni consecutive pixels, 
for example, in the row-by-row manner, and b=(b(1), b(2), …, b(β)), 
where b(i) is a vector of ni parities of pixels in subset Bi. We are now 
ready to describe the encoder and decoder (see Figure 3). 
 
Encoder 
E0. Using a PRNG, generate a random binary matrix D with n/β 

columns and sufficiently many rows 
E1.   Determine the header size h = log2(r2n/β) +1, q = |m| + βh  
E2. b' ← b, i ← 1 
E3. qi = ki (q+10)/k, qi = min{qi, 2h–1, |m|}, m(i) ← the next qi bits 

in m 
E4. Select the first ni columns and qi rows from D and denote this 

submatrix D(i). Solve qi equations H(i)v = m(i) – D(i)b(i) for ki 
unknowns v, where H(i) is a qi×ki submatrix of D(i) consisting of 
those columns of D(i) that correspond to changeable bits in Bi. 
If this system does not have a solution, the encoder decreases qi 
till a solution is found 

E5. According to the solution v, obtain the i-th segment b'(i) of the 
vector b' by modifying or leaving b(i) unchanged 

E6. Binary encode qi using h bits and append them to m 
E7. Remove the first qi bits from m 
E8. q ← q – qi, k ← k – ki, i ← i +1 
E9. IF  i < β  GOTO 3 
E10. IF  i = β, qβ ← q 
E11. Binary encode qβ using h bits and prepend to m, m(β) ← m 
E12. Select the first nβ columns and qβ rows from D and denote this 

submatrix D(β). Solve qβ equations H(β)v = m(β) – D(β)b(β) for 



kβ unknowns v. If this system does not have a solution, exit and 
report failure to embed the message. 

E13. According to the solution v, obtain the β-th segment b'(β) of the 
vector b' by modifying or leaving b(β) unchanged 

 
Decoder 
D0. Using a PRNG, generate a random binary matrix D with 
        n/β columns and sufficiently many rows 
D1. Determine the header length h = log2(r2n/β) +1 
D2. i ← β 
D3. Select the first nβ columns and h rows from D and denote this 

submatrix Dh. Obtain h bits as Dhb' (β) and decode as qβ 
D4. Select the first nβ columns and next qβ – h  rows from D and 

denote this submatrix D(β). Obtain message bits m = D(β)b' (β) 
D5. i ← i –1 
D6. Decode qi from the last h bits of m and remove the last h bits 

from m 
D7. Select the first ni columns and qi rows from D and denote this 

submatrix D(i). Prepend D(i)b' (i) to m, m ← D(i)b' (i)&m 
D8. IF  i > 1  GOTO 5 
D9. ELSE     m  is the extracted message 
 
In Steps E4 and E12, the sender forms an upper diagonal matrix 
from H(i) using Gaussian elimination, exchanging columns as 
needed to make sure that there will be 1’s on the main diagonal. 
Once qi rows are successfully processed, the sender sets the 
remaining values vi = 0 for i = qi+1, …, ki and calculates the 
unknowns vi, i = 1, …, qi. This will ensure that the embedding rate 
will always be close to 2 bits per change on average. 
The encoder is allowed to decrease qi whenever it cannot form an 
upper diagonal matrix (with ones on the diagonal) from H(i) using 
Gaussian elimination and by exchanging columns. The encoding 
process may fail in the last block because this is the only block in 
which the sender doesn’t have the freedom to decrease qβ. To 
minimize the probability of this happening when q is close to k, the 
encoder is forced to embed slightly more bits in all other blocks than 
in the last one. This is the reason why the sender starts dividing the 
message bits with q + 10 rather than q (Step E3). Notice that one 
more bit is reserved for headers to cover a possibly larger ki in a 
block than the expected value k/β. Because the header in each block 
has h bits, the message length in one block must not exceed 2h – 1 in 
Step E3. 
The maximum number of bits that can be communicated using this 
algorithm is about 

k – βh = k – β × log2(r2k/β) .     (13) 
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Figure 3. Placement of message bits and headers. 

3.5 Minimizing the impact of embedding 
When embedding a shorter than maximal message, in Steps E4 and 
E12 the sender will have freedom in choosing which unknowns vi 
should be set to 0 and which will be determined by the Gaussian 
elimination. This freedom can be used to further minimize the 
impact of embedding. The SR will usually be formulated in 
quantitative terms and thus it will be possible to associate with each 
changeable sample xi a numerical value f(xi) that somehow expresses 
its “fitness” to be included in the set of changeable samples. In Steps 
E4 and E12, when solving qi equations H(i)v = m(i) – D(i)b(i) for ki 
unknowns v, the sender can solve for those unknowns vi that 
correspond to samples with the largest fitness and set the remaining 
vi’s to zero. This way, the impact of embedding will be further 
minimized and the security of the scheme further improved. 
A different way to minimize the impact of embedding is to minimize 
the number of embedding changes (maximize the embedding 
efficiency). With a fixed set of changeable pixels C, the problem of 
maximizing the rate is a binary vector quantization problem. To see 
this, we repeat that the sender needs to solve the system of q linear 
equations (6) Hv = M – Db for k unknowns v1, …, vk. Also, recall 
that the non-zero elements of the vector v are the places where the 
sender needs to apply the perturbed quantizer. If q < k, the set of all 
solutions to (6) is of the form 

v0 + Ker(H)    
where v0 is one solution to (6) and Ker(H) is the kernel of H formed 
by vectors x, such that Hx = 0. Minimizing the embedding distortion 
is equivalent to finding a vector v = v0 + x with the minimal 
Hamming weight. Thus, the sender needs to perform binary vector 
quantization, which is, however, known to be an NP complete 
problem. Never the less, there is a potential for improvement here 
even using suboptimal vector quantizers. 

3.6 Perturbed quantizer 
Assuming the SR is of the form (3), if the message bits form a 
random bit-stream, the act of embedding a message in the cover 
image X is well modeled with the probabilistic process X → 
Qε o T(X) = Y ', where Qε is the perturbed quantizer 

Qε(z) = L for L ≤ z < L+0.5–ε, (L is an integer)      

Qε(z) = L+1 for L+0.5+ε ≤ z < L+1,   (14) 

Qε(z)∈ {L,L+1} with equal probability for L+0.5–ε ≤ z <L+0.5+ε, 

and Y ' is the stego image represented using an integer vector y '∈ J m. 
Note that Qε = Q for ε = 0. The quantizers Q and Qε are identical 
with the exception of the interval [L+0.5–ε, L+0.5+ε) where their 
output differs in 50% of cases. It can be easily shown that, assuming 
u is a random variable uniformly distributed on [0, 1], the average 
quantization error u – Q(u) introduced by the scalar quantizer (2) is 
1/4, while for the perturbed quantizer it is 1/4+ε 2. Thus, the 
difference between the average error of both quantizers is ε 2, which 
for ε = 0.1 is at least by one order of magnitude smaller than the 
average quantization error. Also, note that –2ε ≤ |u – Q(u)| – |u –
 Qε(u)| ≤ 2ε for all u. 

4. EMBEDDING WHILE DOUBLE 
COMPRESSING 
In this section, we apply Perturbed Quantization to the information-
reducing process of repeated JPEG compression. First, we introduce 



the necessary basics of JPEG compression, then explain the 
embedding method and calculate its capacity. In Section 5, we 
subject this method to blind steganalysis [2] and compare its 
performance to existing methods. We further note that due to 
simplicity we work with grayscale images. The considerations hold 
for color images as well. 

4.1 JPEG compression preliminaries 
In JPEG compression, the image is first divided into disjoint blocks 
of 8×8 pixels. For each block B x (with integer pixel values in the 
range 0−255), the discrete cosine transform, c = DCT(B x), produces 
64 DCT coefficients cij, 0 ≤ i, j ≤ 7, which are then divided using the 
quantization matrix q=(qij) and rounded to integers using the 
quantizer (2) 
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The quantized coefficients Dij are arranged in a zigzag manner and 
compressed using the Huffman encoder. The resulting compressed 
stream together with a header forms the final JPEG file. 
The JPEG decompression works in the opposite order. The JPEG 
bit-stream is decompressed using the Huffman decoder and, for each 
block, the quantized DCT coefficients Dij are multiplied by qij, 
inverse DCT transformed, and the result is rounded and clipped to a 
finite dynamic range obtaining the 8×8 pixel block B in the 
decompressed image      
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where [x] = Q(x) for 0 ≤ x ≤ 255, [x] = 0 for x < 0, and [x] = 255 for 
x > 255. 
Let us assume that the cover JPEG file has been decompressed to 
the spatial domain to image X. Let B be an 8×8 block in X. 
Assuming that B has no pixels saturated at 0 or 255, from (17) we 
see that the quantization error ξij = Bij

raw
 – Bij, 0 ≤ i, j ≤ 7, satisfies –

0.5 ≤ ξij ≤ 0.5. Consequently, 

DCT(B) = DCT(Braw) – DCT(ξ) = C – η,  (18) 
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Modeling the quantization error ξij as an i.i.d. noise uniformly 
distributed on the interval (–1/2, 1/2], we obtain 
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2) = 1/12 and ∑ =
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the fact that the DCT is an orthonormal transformation. Finally, 
because ηij is an average of bounded independent variables, by the 
Liapunov extension of the Central Limit Theorem (see, for example 
[27]), the distribution of ηij is approximately Gaussian N(0,1/12). 

4.2 Effects of repeated JPEG compression and 
the embedding algorithm 
In this section, we investigate the impact of double compression on 
distribution of DCT coefficients and explain how double 
compression can be used in the context of Perturbed Quantization. 
Let us assume that we have an image that is a decompressed JPEG 
with quality factor Q1 (with quantization matrix qij

(1)) and we resave 
it as JPEG again but with a different quality factor Q2 (with 
quantization matrix qij

(2)). For simplicity, we take a look at a specific 
DCT coefficient with (i, j) = (1, 2) (the first AC coefficient in the 
zigzag scan) and Q1 = 88, Q2 = 76. In the original JPEG image, the 
DCT values C12 are multiples of q12

(1) = 3 (see the top part of Figure 
4). As explained above, after decompression (17) and the second 
DCT transform (15), the values of c12 will no longer be exact 
multiples of 3 but will be spread around them as in the bottom part 
of Figure 4. Next, we look at what happens when the coefficients c12 
are quantized with a quantization step q12

(2) = 6 corresponding to the 
second quality factor Q2 = 76. 
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Figure 4 Top: histogram of values of the DCT coefficient C12 in 
the original 88% quality JPEG file (note that the values are 
multiples of the quantization step q12

(1) = 3). Bottom: histogram 
of the same DCT coefficient c12 after decompressing the JPEG 
file to the spatial domain and DCT transforming. 
From Figure 5, one can see that the peaks around the even multiples 
2k×3, k=0, 1, …, are quantized to 6k, while the peaks around the 
odd multiples (2k+1)×3, k=0, 1, …, are split in half, the “left” half 
being quantized to 6k+2 and the right half to 6k+4. Based on the 
arguments presented in the previous section, this quantization 
during a normal double compression is essentially a random process 
because η12 is Gaussian N(0,1/12). This gives us the possibility to 
build a Perturbed Quantization embedding method by including all 
odd multiples (2k+1)×3 to the set of changeable coefficients. In the 
next section, we formulate the Selection Rule for an arbitrary 
combination of quantization matrices q(1) and q(2). 



4.3 Coefficient Selection Rule 
We can use other DCT coefficients cij for embedding as long as the 
first and the second quantization steps qij

(1) and qij
(2) satisfy certain 

numerical properties. The pair (qij
(1), qij

(2)) will be called 
contributing if there exist integers k and l such that  

kqij
(1) = lqij

(2)+qij
(2)/2 .  (19) 

All integers k and l, l+1 that satisfy (19) will be called contributing 
multiples of qij

(1) and qij
(2), respectively. The condition says that the 

pair (qij
(1), qij

(2)) is contributing if there exists a multiple of qij
(1) (a 

contributing multiple) that is exactly in the middle of the second 
quantization interval of length qij

(2). The following theorem gives a 
sufficient and necessary condition for the pair (qij

(1), qij
(2)) to be 

contributing and also gives a formula for all contributing multiples 
of qij

(1). 
Theorem 1. The pair (qij

(1), qij
(2)) is contributing if and only if 

qij
(2)/g is even, where g = GCD(qij

(1), qij
(2)) is the greatest 

common divisor of qij
(1) and qij

(2). Furthermore, all contributing 
multiples k of qij

(1) are expressed by the formula 
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Proof. The implication from left to right is trivial. Dividing (19) by 
g gives qij

(2)/2g = kqij
(1)/g – lqij

(2)/g. Because there is an integer on 
the right hand side, qij

(2)/(2g) is an integer, too. To prove the other 
implication, from the Euclid theorem [28], there are two integers a 
and b such that aqij

(1) + bqij
(2) = g. After multiplying this equation by 

qij
(2)/(2g), which is an integer, we obtain (19) with k = aqij

(2)/(2g) 
and l = –bqij

(2)/(2g). To derive the formula (20), from (19) we have 
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Because GCD(qij
(1)/g, qij

(2)/g) = 1, it must be the case that 2l+1 is an 
odd multiple of qij

(1)/g (note that qij
(1)/g must be odd). Thus, the 

contributing multiples of qij
(1) are odd multiples of qij

(2)/(2g). This 
ends the proof. � 
All contributing coefficients in the single compressed JPEG cover 
image form the set of changeable coefficients C. Theorem 1 can be 
used to calculate the cardinality of C. Let hij(k) be the histogram of 
the DCT coefficient Cij of the cover JPEG file (the one compressed 
with qij

(1)). The number of changeable coefficients |C| is given by the 
following formula 
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where uij = 1 if (qij
(1), qij

(2)) is a contributing pair and uij = 0 
otherwise.   
To show how |C| depends on the quality factors Q1 and Q2, we 
evaluated (22) for all combinations of quality factors ranging from 

50 to 95. The result was averaged over 20 test grayscale images and 
displayed in Figure 6. The plot shows that one can choose from a 
variety of combinations of both quality factors to achieve a relatively 
large capacity up to 0.5 bits per non-zero DCT coefficient of the 
stego image (bpc). Note the ridge of high capacities corresponding 
to Q2 = 2(Q1 – 50). This combination of quality factors translates to 
qij

(2) = 2qij
(1) (as in Figure 5). 

 
 
 
 

 
 
 

Figure 5 Example of a contributing multiple.  
 
4.4 Encoder summary 
We summarize the PQ embedding method based on double 
compression. The method takes a (single compressed) JPEG file as 
the cover image and produces a double compressed and embedded 
JPEG file as the stego image. The sender and recipient can use the 
LSB of DCT coefficients as the parity function. The sender chooses 
the second quality factor Q2 < Q1 (to make the recompression 
information-reducing) so that the number of secret message bits is 
within the capacity (22) with some reserve for the headers (13) and 
identifies the set C of changeable coefficients cij from the 
quantization matrices q(1) and q(2) using Theorem 1. From (19), the 
sender enforces that after the second JPEG compression, the 
quantized value Dij (15) of the ij-th changeable DCT coefficient in 
the stego file is either l or l+1, where kqij

(1) = lqij
(2)+qij

(2)/2 and k is 
the value of the quantized ij-th DCT coefficient in the cover image. 
The sender remembers the values l and l+1 for each changeable 
coefficient cij and uses them as two possible values for Dij in the 
stego JPEG file. The embedding process continues with 
decompression of the cover JPEG file to the spatial domain and 
recompression with the second quantization table. This determines 
the values of all coefficients that are not changeable. The value Dij 
of each changeable coefficient is determined during the encoding 
process as described in Section 3.4 while encoding the secret 
message. 
To cast the embedding in the setup of Section 2.1, the transform 
F = Q o T is composed of the decompression (17), the DCT 
transform (15), division by the second quantization matrix q(2), and 
the quantizer Q (2). Symbolically, 

T(Dij) = DCTij([DCT–1(qij
(1)Dij)])/qij

(2),  (23) 

where DCT–1(qij
(1)Dij) stands for the inverse DCT of the coefficient 

block to which Dij belongs and DCTij(B) is the ij-th coefficient of 
the DCT of B. 
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Figure 6 Embedding capacity expressed in bits per non-zero 
DCT coefficient (of the double-compressed image) averaged over 
20 test images. Note the prominent ridge for quality factors 
satisfying Q2 = 2(Q1 – 50).  
 
5. STEGANALYSIS 
In this section, we investigate the character of the embedding 
distortion and evaluate the security of the proposed algorithm using 
the approach described in [2].  
 
First of all, we would like to point out that double compressed 
images are not that unusual, as it might seem at the first sight. Vast 
majority of owners of digital cameras use the JPEG format for 
storing images inside the camera. Then, as the images are 
downloaded to the computer, they may be processed and resaved as 
JPEGs in some image processing software with a default or a user-
specified quality factor. Because most digital cameras adjust the 
quantization table to the image (to guarantee that all images have 
approximately the same size), digital camera images have a wide 
range of quality factors and quantization tables. There are several 
cases when the user will frequently (unconsciously) create a double-
compressed image that will be double-compressed in a manner 
compatible with our steganographic scheme: The user 

1. rotates it by 90 degrees and resaves (it is easy to see that 
during rotation by multiples of 90 degrees, each DCT 
coefficient Dij may either not change or change to Dji 
and/or change its sign), or 

2. recompresses the image with a lower quality factor to 
decrease its size (e.g., for sending by e-mail) or 

3. removes the red eye glare (a few dozen pixels) and 
resaves the image as JPEG, or 

4. adjusts the brightness and resaves. 
Thus, we believe that double-compressed images are, in fact, quite 
ubiquitous and should not be suspicious by themselves. We stress 
that if the image is resized or cropped by non-multiples of 8 before 
resaving, or modified in any way that removes the quantized 
structure of DCT coefficients, we do not call the image a double 
compressed image because it will not exhibit traces of repetitive 
compression in the sense of this paper. In this case, one may use the 
approach from Example 3 from Section 2 for embedding. 

We point out that it is necessary that the second quality factor be 
smaller than the first one, Q1 > Q2. If the second quality factor was 
larger than the first one, one could first estimate the first 
quantization table using methods in [32] and then exactly recover 
the single compressed cover image (compressed with Q1). In fact, 
this property of double JPEG compression is used in some semi-
fragile watermarking systems for content authentication [33]. Once 
this single compressed image is obtained, the attacker will simply 
recompress it with Q2 and compare to the stego image. Any 
discrepancies will be indicative of steganography. This attack can be 
mounted because when Q1 < Q2 the double compression is not 
information-reducing. 
We have subjected the PQ method based on double-compression to 
the blind steganalysis of [2]. This blind steganalysis uses 23 features 
derived from first-order (global histogram, individual histograms, 
and dual histograms) and higher-order statistics (spatial blockiness, 
co-occurrence matrices of coefficients from neighboring blocks, 
etc.) of DCT coefficients. The features are calibrated using the 
shifted/cropped/recompressed image first used in [29] for accurate 
estimation of secret message length. By using the calibrated features 
in this manner, one can significantly decrease image to image 
variations among features and vastly improve the detection 
sensitivity. Also, because the features are calculated directly from 
the DCT coefficients rather than from wavelet decomposition [30] 
or image quality metrics [31], it is possible to directly draw 
conclusions about the impact of the embedding changes on 
detectability. As shown in [2], this detection scheme was able to 
reliably detect OutGuess [35] at embedding rates as low as 0.05 bpc 
and F5 at 0.1 bpc. The Model based Steganography of [34] was also 
detected at full capacity of 0.4 bpc. Because, to the best knowledge 
of the authors, this detection is the only one that reliably detects all 
current state of the art steganographic techniques for JPEGs, we 
selected it as a benchmark for our tests as well. 
The Greenspun database of 1812 grayscale images 
(www.greenspun.com) was used for testing. The Fisher Linear 
Discriminant was trained on the set of 23 features for the first 1412 
cover and fully embedded images. By cover images, we understand 
images that were subjected to a regular double compression with 
Q1 = 85 and Q2 = 70, while the stego images were obtained by 
embedding a random message of length 0.4, 0.2, 0.1, and 0.05 bpc 
(bits per non-zero DCT coefficient of the stego image). The testing 
was done on the remaining set of 400 images in the database. On 
average, fully embedded images were able to accept approximately 
0.48 bpc of the double-compressed image. As in [2], the detection 
was evaluated using the detection reliability ρ, which is the area 
between the ROC curve and the diagonal line in the ROC diagram 
(normalized so that ρ = 1 perfect detection, ρ = 0 no detection). 
As can be seen from Table 1, the new algorithm significantly 
outperforms existing steganographic algorithms for JPEG images. 
Figure 7 shows ROC curves when testing for images fully 
embedded with PQ (on average 0.48 bpc). 



Table 1 Detection reliability ρ for F5, F5 without matrix 
embedding (1,1,1), OutGuess 0.2 (OG), Model based 
Steganography without and with deblocking (MB1 and MB2, 
respectively), and the proposed Perturbed Quantization during 
double compression for different embedding rates (U = 
unachievable rate). All but the PQ algorithm, were tested with 
Q = 80. The PQ algorithm was tested with Q1 = 85 and Q2 = 70. 

bpc F5 F5_111 OG MB1 MB2 PQ 

0.05 0.241 0.645 0.879 0.220 0.163 ~ 0 

0.1 0.539 0.922 0.993 0.415 0.310 0.048 

0.2 0.956 0.996 0.991 0.704 0.570  0.098 

0.4 1.000 1.000 U 0.938 0.824  0.174 

0.6 1.000 1.000 U 0.983 U U 

0.8 1.000 1.000 U 0.992 U U 
 
We close this section with some thoughts on the possibility of 
constructing a targeted attack on the proposed scheme. To construct 
a targeted attack, one would have to estimate the values of DCT 
coefficients prior to quantizing. While it is certainly possible to 
attempt to remove the JPEG quantization using smoothing 
techniques in the spatial domain, it will be extraordinarily difficult 
to estimate the unquantized coefficients with accuracy necessary to 
obtain sufficient evidence for presence of perturbed quantization. 
This is because in general one cannot reverse the loss of information 
that occurs during JPEG compression. 
 

6. CONCLUSIONS 
The main contributions of this paper are as follows. First of all, this 
paper reveals an important relationship between memories with 
defective cells [1] and steganography. The defective cells 
correspond to those cover object elements designated by the sender 
to be avoided for embedding and are not shared with the recipient. 
Because in steganography the number of defective cells could be 
quite large, we coin a new term for this steganographic channel – 
writing on wet paper. This is a metaphor for a steganographic 
channel in which the sender embeds message bits into a subset of 
elements of the cover object and communicates the message to the 
recipient, who does not have any information about the selection 
rule applied by the sender. If the selection rule is determined by side 
information available only to the sender but in principle unavailable 
to the recipient (and any attacker), this scenario provides improved 
steganographic security compared to schemes with a public 
selection rule [9–12]. 
Second, we propose a simple variable-rate random linear code (the 
wet paper code) for memories with a large number of defects and 
show how it can be applied for our steganographic channel. We 
prove that this code enables on average communication of k bits 
given k “dry” elements (n–k defective cells). The wet paper code 
lends itself to efficient practical implementations and offers 
flexibility and control to the sender over which cover object 
elements will be modified. This further minimizes the impact of 
embedding changes (Section 3.5). 

 
Figure 7 ROC for images embedded using PQ with Q1 = 85 and 
Q2 = 70 for the embedding rate 0.4, 0.2, and 0.1 bpc. 
 
Third, using the wet paper code we develop new steganographic 
methodology for digital media called Perturbed Quantization. In 
Perturbed Quantization, the sender embeds a secret message while 
downgrading the cover object using some information-reducing 
operations, such as lossy compression, A/D conversion, 
downsampling, etc. The sender uses his knowledge of the 
unprocessed object and embeds data into those pixels whose values 
are the most “uncertain” after the processing. We illustrate the 
methodology on the example of recompressing a JPEG image with a 
lower quality factor. Using heuristic arguments supported with blind 
steganalysis [2], we show that Perturbed Quantization is 
significantly less detectable than existing steganographic methods 
for JPEG images while providing a relatively large capacity. 
Finally, we note that the writing on wet paper scenario and the 
proposed wet paper code can be thought of as a generalization of the 
selection channel [5]. The wet paper is also a special case of the 
general problem of communication with informed sender [15]. 
While the Costa’s dirty paper code [16], which is another special 
case of [15], is relevant for watermarking [19,20], the wet paper is a 
suitable model for steganography. 
There are other numerous applications of the wet paper code in 
steganography and general data embedding. For example, we name 
the removal of shrinkage in the F5 algorithm [13] and improving its 
embedding efficiency. Obviously, nullifying a DCT in F5 
embedding coefficient will no longer be a problem for the decoder if 
the wet paper code is employed. Another application is constructing 
steganographic schemes that, besides the secret shared stego key, 
contain an element of true randomness and thus cannot be subjected 
to brute force stego key searches [36]. As the last application, we 
mention data hiding in binary images proposed by Wu [37]. In this 
application, the sender first identifies the set of “flippable” pixels 
that can be modified for embedding. Because this set of pixels is not 
shared with the recipient, Wu proposed block embedding combined 
with random shuffling. The block embedding however, leaves most 
of the flappable pixels unused and only a fraction of the embedding 
capacity is used. Because this problem exactly corresponds to 
writing on wet paper, the capacity of this data hiding method can be 
dramatically improved. 



In the future, we plan to investigate in more detail the 
steganographic security of Perturbed Quantization. In particular, it 
seems plausible to prove its ε-security in the Cachin’s sense [6] 
assuming an appropriate model of the cover object.  
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