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Abstract. The objective of steganalysis is to detect messages
hidden in cover objects, such as digital images. In practice,
the steganalyst is frequently interested in more than whether
or not a secret message is present. The ultimate goal is to ex-
tract and decipher the secret message. However, in the absence
of the knowledge of the stego technique and the stego and ci-
pher keys, this task may be extremely time consuming or com-
pletely infeasible. Therefore, any additional information, such
as the message length or its approximate placement in image
features, could prove very valuable to the analyst. In this pa-
per, we present general principles for developing steganalytic
methods that can accurately estimate the number of changes
to the cover image imposed during embedding. Using those
principles, we show how to estimate the secret message length
for the most common embedding archetypes, including the F5
and OutGuess algorithms for JPEG, EzStego algorithm with
random straddling for palette images, and the classical LSB
embedding with random straddling for uncompressed image
formats. The paper concludes with an outline of ideas for fu-
ture research such as estimating the steganographic capacity
of embedding algorithms.
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1 Basics of steganography and steganalysis

The purpose of steganography is to communicate information
in a stealth manner so that anyone who inspects the messages
being exchanged cannot collect enough evidence that the mes-
sages hide additional secret data. As opposed to cryptography
that makes the communication unintelligible to those who do
not know the proper cipher keys, steganography makes the
communication inconspicuous or invisible. An old example
of steganography is writing messages between the lines of an
ordinary letter using invisible ink.Another simple technique is
to use tiny markers (pinholes) to mark letters in a text. A very
well-written historical perspective on steganography can be
found in [20]. In today’s digital world, invisible ink and paper
have been replaced by much more versatile and practical cov-
ers for hiding messages – digital documents, images, video,

and audio files. All electronic documents containing percep-
tually irrelevant or redundant information provide a good en-
vironment for steganographic communication. The object that
holds the secret information is called the cover object. After a
secret message has been hidden in the cover, the cover object
becomes the stego object.

The problem of steganography was formulated for the first
time by Simmons as the prisoners’ problem [18]. In this sce-
nario, Alice and Bob are prisoners locked in separate cells. All
communication between them goes through a warden. The
warden can read their messages or even modify them at will
(reformulate phrases, inject noise, etc.). The goal of Alice and
Bob is to come up with a method of communication that would
enable them to hatch an escape plan, i.e., to send messages so
that the warden will be unaware of their existence. Once the
warden finds out about the secret communication, she will cut
the communication channel. We note that Alice and Bob may
agree on a communication method and on a secret key before
imprisonment. The key may, for example, be used for seeding
a pseudorandom number generator (PRNG) for selecting the
letters or pixels that will carry secret message bits.

We distinguish different steganographic scenarios based
on what information is available to the warden and what she
can do to the messages:

Pure steganography: The warden may not know the method
Alice and Bob are using. This is called pure stegano-
graphy [13]. However, Alice and Bob should not rely on
the fact that the warden does not know the communica-
tion method. Historically, this “security through obscu-
rity” principle was never successful in the long term.

Secret-key steganography: The warden has full knowledge
of the communication algorithm but does not know the
secret key shared by Alice and Bob. This scenario com-
plies with Kerckhoff’s principle, which is always used in
cryptography. Some researchers argue, however, that in
any practical situation, this principle is likely too strong.
This is because a complete knowledge of the stegano-
graphic system includes a complete knowledge of the
source of cover objects, which may be very difficult for
the warden to obtain.
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Passive warden: If the warden can only observe the commu-
nication but not modify the messages, the communica-
tion scenario is called the passive warden scenario.

Active warden: If the warden is allowed to make changes
to the messages, we talk about an active (or malicious)
warden scenario. Obviously, under the active warden
scenario,Alice and Bob must resort to robust data hiding
methods and quite likely sacrifice the message payload
for robustness.

In this paper, we will position ourselves into the role of
the passive warden who inspects digital images. In particular,
our goal is to estimate the number of embedding modifications
(and thus the secret message length). The main contribution of
this paper is to put several detection schemes previously pro-
posed by the authors under one umbrella and present a concise,
unified approach to quantitative steganalysis for all three ma-
jor image archetypes – transform, uncompressed, and palette
formats. We start the next section by introducing the concepts
of steganographic security and steganographic capacity in an
informal manner. Then in Sect. 3, we outline our strategy for
the design of steganalytic techniques capable of estimating
the secret message length. In Sect. 4, we describe steganalytic
algorithms for F5 and OutGuess for JPEG images. Uncom-
pressed raw formats are investigated in Sect. 5, while Sect. 6
is devoted to palette images. The paper is concluded in Sect. 7
with an outline of how the proposed methods can be used for
estimating steganographic capacity.

2 Steganographic capacity

Each steganographic communication system consists of an
embedding algorithm and an extraction algorithm. To accom-
modate a secret message, the original image (cover image) is
slightly modified by the embedding algorithm. As a result, the
stego image is obtained. The steganographic method will be
called secure if the stego images do not contain any detectable
artifacts due to message embedding. In other words, the set of
stego images should have the same statistical properties as the
set of cover images. If there exists an algorithm that can guess
whether or not a given image contains a secret message with a
success rate better than random guessing, the steganographic
system is considered broken. Several definitions of stegano-
graphic security have been proposed in the literature [1,2]. The
problem with most definitions is that they assume observers
have unlimited computational power and detailed statistical
knowledge of the source of cover images. In practice, these
assumptions are rarely satisfied or feasible to obtain. Attempts
to define the concept of steganographic security in a relevant
but practical way include the recent work of Katzenbeisser
and Petitcolas [14].

Obviously, the less information we embed into the cover
image, the smaller the probability of introducing detectable ar-
tifacts by the embedding process. Each steganographic method
seems to have an upper bound on the maximal safe message
length (or the bit rate expressed in bits per pixel or sample)
that tells us how many pseudorandom bits can be safely em-
bedded in a given image without introducing any statistically
detectable artifacts. This limit is called the steganographic ca-
pacity. The absolute steganographic capacity CA is a function

of the cover image I and the embedding method Σ. CA(I,Σ)
is the expected value of the maximal number of bits that can
be safely embedded in the cover image I using the method Σ,
the expected value being taken over all stegokeysK uniformly
distributed in the key space and all pseudorandom messages.
When we say safely, we mean that no detection algorithm can
perform better for distinguishing cover and stego images than
random guessing.

While for some special cases it is possible to establish
CA exactly, in general its determination is a very difficult and
still unsolved problem even for the simplest schemes. One can
attempt to remove the dependency of CA on the cover image
by defining the relative steganographic capacity CR, which is
the ratio between the steganographic capacity and the largest
message, with lengthmmax, that can be embedded in the cover
image

CR = CA/mmax

An example of a technique for which CA = 0 is that used
for palette images (GIFs) that preprocess the image palette by
reducing the palette to 128 colors or less and then expanding
the palette by adding to each color another color that is close
to it. The resulting palette will have a quite unusual structure
(clusters of close colors) that is practically never created using
color quantization and dithering algorithms. Thus, no matter
what message is later embedded in the image, just analyzing
the palette can reveal the fact that the stego image has been ma-
nipulated. As another, less trivial example, we cite the JPEG
compatibility analysis [9]. It can be shown that for virtually all
steganographic techniques that embed bits in the spatial do-
main, CA = 0 for covers that are JPEG images decompressed
to the spatial domain.

Surprisingly little theoretical work has been published re-
garding exact estimates of steganographic capacity. A notable
exception is the work of Chandramouli et al. [4], who gave a
theoretical analysis of the steganographic capacity for the LSB
embedding (least significant bit) in the spatial domain and for
a binary-valued embedding distortion [3]. At the end of this
paper, we outline how the detection methods described in this
paper can be used to determine an upper bound on stegano-
graphic capacity for the most common embedding paradigms
for digital images in various formats.

3 General detection methodology

In this section, we outline the principles that will be applied in
the following sections for development of steganalytic tech-
niques that can estimate the length of the secret message. We
can only provide general guidelines and principles because
it appears that no simple straightforward recipe can be for-
mulated for all possible steganographic techniques. Conse-
quently, each steganographic embedding archetype needs to
be treated individually. Having said this, the authors believe
that this text contains enough constructive examples and tools
to assist researchers in the creative process of designing ste-
ganalytic techniques that can accurately estimate the secret
message length.

For most steganographic techniques, it is usually not
too difficult to identify a macroscopic quantity S(m) that
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predictably changes (e.g., monotonically increases) with the
length of the embedded secret message m. Let us assume that
the functional form of S is known or can be guessed from
experiments. For example, S may be linear, quadratic, expo-
nential, etc. In general, the function S will depend on several
undetermined parameters. We can attempt to determine those
parameters by estimating some extreme values of S, such as
S(0) (S for the cover image) or S(mmax) (for the stego im-
age with maximal message). Once the parameters have been
determined, one can calculate an estimate of the unknown
message length m by solving the equation S(m) = Sstego for
m, where Sstego is the value of S for the stego image under
investigation. We call S(m) the distinguishing statistics.

For JPEG images it is actually possible to construct from
the stego image a new JPEG image that will have many macro-
scopic properties very close to the cover JPEG image (Sect. 4).
This is because the JPEG file is formed by quantized DCT
(discrete cosine transform) coefficients, which are “robust” to
small distortion, such as the one due to message embedding
and previous JPEG compression. By cropping the (decom-
pressed) stego image by four pixels and recompressing it using
the quantization table of the stego image, we obtain a JPEG file
with macroscopic properties that well approximate the prop-
erties of the cover image. Because of the cropping, the newly
calculated DCT coefficients will not exhibit clusters due to
quantization.Also, because the cropped stego image is visually
similar to the cover image, macroscopic characteristics will be
approximately preserved. For detection of F5, we use the his-
tograms of individual DCT coefficients as the distinguishing
statistics because the changes in histograms are proportional
to the number of embedding changes. Because OutGuess uses
LSB embedding, we measure the degree of LSB randomiza-
tion in the stego file by embedding additional messages in the
stego image (and in the cropped/recompressed image) and de-
rive the unknown message length from the increase in the sum
of spatial discontinuities along 8 × 8 boundaries.

For uncompressed raw formats (e.g., BMP), we cannot use
the same approach as for JPEGs because the embedding dis-
tortion is too small and there is little hope that we will be able
to obtain an approximation to the cover image. In Sect. 5, we
describe an attack on LSB embedding (the RS steganalysis),
and in Sect. 6 we deal with detection of LSB embedding in
GIF images with a preordered palette (pairs analysis). Both
methods are based on the fact that LSB embedding creates an
imbalance between neighboring grayscales – the values 2i and
2i+1 flip into one another but never to 2i−1 or 2i+2. Thus,
the proposed distinguishing statistics are sensitive to changes
in LSBs but are roughly invariant when 1 is added to all pixels
in the cover image.

4 JPEG images

In the past, several steganographic techniques were proposed
for the JPEG format – J-Steg, JP Hide&Seek, F5, OutGuess. In
this section, we show how the ideas presented in Sect. 3 apply
to the recently developed F5 algorithm and to OutGuess. These
two algorithms represent the current state of the art in JPEG
steganography.

4.1 The F5 algorithm

The F5 steganographic algorithm was introduced by Westfeld
[22]. The F5 algorithm embeds message bits as the LSBs of
coefficients along a key-dependent random walk through all
DCT coefficients of the cover image while skipping the DC co-
efficients and all coefficients that are zeros. If the coefficient’s
LSB does not match the message bit, the absolute value of the
coefficient is always decremented. If the subtraction leads to
a zero coefficient (we say that so-called shrinkage occurred),
the same message bit must be embedded at the next coeffi-
cient because at the receiving end the message is extracted
only from nonzero coefficients. As a special feature, the F5
algorithm employs matrix embedding to minimize the neces-
sary number of changes to embed a message of certain length.
A detailed description of F5 can be found in the original paper
[22].

Because the embedding is not based on bit replacement or
exchanging any fixed pairs of values, the F5 algorithm cannot
be detected using the chi-square attack [21] or its generalized
versions (17,23]. On the other hand, the F5 algorithm does
modify a macroscopic quantity of the JPEG file – the his-
togram of DCT coefficients – in a predictable manner. Thus,
we use it as the distinguishing quantity S. The number of
zeros in the histogram increases due to shrinkage, while the
histogram values for other coefficients decrease with embed-
ding. In the next section, we give mathematical formulas that
express the values of the stego image histogram as a function
of the total number of embedding modifications and the his-
togram of the cover image. In order to calculate the number of
modifications, we need to estimate the cover image histogram.
This is achieved using a trick that proved very effective for
designing detection methods for most current steganographic
methods for JPEGs. We crop the stego image by four columns
and recompress the cropped image using the same quanti-
zation table as that of the stego image. The spatial shift by
four pixels breaks the quantized structure of block DCT co-
efficients, and a good approximation of the cover JPEG file
results. Finally, the number of changes is obtained by mini-
mizing the L2 norm between the stego image histogram and
the histogram obtained from the estimated cover image his-
togram after a certain number of changes.

4.1.1 Distinguishing statistics

Let h(d), d = 0, 1, . . . be the total number of AC DCT coeffi-
cients in the cover image with absolute value equal to d before
the actual embedding starts. In a similar manner, we denote
by hkl(d) the total number of AC coefficients corresponding
to the frequency (k, l), 1 ≤ k, l ≤ 8, whose absolute value is
equal to d. The corresponding histogram values for the stego
image will be denoted using the capital letters H and Hkl.

Let us suppose that the F5 embedding process changes n
AC coefficients. The probability that a nonzero AC coefficient
will be modified is β = n/P , where P is the total number of
nonzero AC coefficients (P = h(1) + h(2) + . . .). Because
the selection of the coefficients is random in F5, the expected
values of the histograms Hkl of the stego image are

Hkl(d) = (1 − β)hkl(d) + βhkl(d + 1), for d > 0
Hkl(0) = hkl(0) + βhkl(1), for d = 0 (1)
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Fig. 1. The effect of F5 embedding on the histogram of the DCT
coefficient (2,1)

Equation 1 expresses the distinguishing statistics as a func-
tion of the number of modifications and the original image
histogram. If we had an estimateĥkl(d) of the cover image his-
togram (the unknown parameters of the distinguishing statis-
tics), we could use this estimate to calculate the expected val-
ues Hkl(d) using Eq. 1 and estimate β as the value that gives
us the best agreement with the cover image histogram. We
have experimented with various formulas for β, and the best
performance was obtained using the least-square approxima-
tion. Because the first two values in the histogram (d = 0
and d = 1) undergo the largest change during embedding (see
Fig. 1), we calculate β as the value that minimizes the square
error between the stego image histogramHkl and the expected
values Ĥkl(d) calculated from the estimated histogram ĥkl us-
ing Eq. 1:

βkl = arg min
β

[Hkl(0) − ĥkl(0) − βĥkl(1)]2

+[Hkl(1) − (1 − β)ĥkl(1) − βĥkl(2)]2 (2)

The least square approximation in Eq. 2 leads to the fol-
lowing formula for β:

βkl =

ĥkl(1)[Hkl(0) − ĥkl(0)] + [Hkl(1) − ĥkl(1)][(ĥkl(2) − ĥkl(1)]
ĥ2

kl(1) + [ĥkl(2) − ĥkl(1)]2

(3)

The final value of the parameter β is calculated as an av-
erage over selected low-frequency DCT coefficients (k, l) ∈
{(1, 2), (2, 1), (2, 2)}. We decided not to include the higher-
frequency coefficients due to problems with potential insuffi-
cient statistics, especially for small images.

The reasons why we opted to work with histograms of indi-
vidual low-frequency DCT coefficients rather than the global
histogram will become apparent in the next section after we
introduce the method for obtaining an approximation to the
cover image histogram.

4.1.2 Parameter estimation

Accurate estimation of the baseline value (the cover image
histogram h) is absolutely crucial for our detection method
to work. The accuracy of this estimate is the main factor that
determines the accuracy for the estimate of the relative number
of modificationsβ (and the estimated message length).We first
decompress the stego image to the spatial domain, then crop
the image by four columns, and finally recompress the cropped
image using the same quantization matrix as that of the stego
image. The resulting DCT coefficients provide the estimates
ĥkl(d) for our analysis. We note that the same trick will be
used for attacking OutGuess in Sect. 4.2.

According to our experiments, the estimated histogram is
quite close to the histogram of the cover image. We give a sim-
ple heuristic explanation of why the method for obtaining the
baseline histogram values is indeed plausible. In fact, unless
the quality factor of the JPEG compression is too low (e.g.,
lower than 60), the stego image produced by F5 is still very
close to the cover image both visually and using measures such
as the PSNR. The spatial shift by four pixels effectively breaks
the structure of quantized DCT coefficients. Thus, it is not sur-
prising that macroscopic properties, such as the statistics of
DCT coefficients, are similar to those of the cover image.

In Fig. 1, we show a typical example of how good the
histogram estimate is when compared to the histogram of the
cover image. The graph shows the cover image histogram for
the low-frequency DCT mode (2,1) (crosses), histogram val-
ues after applying the F5 algorithm with maximal possible
message, or β = 0.5 (stars), and the estimate of the cover
image histogram (circles).

The main reason why we decided to use histograms of
individual low-frequency DCT coefficients rather than the
global image histogram is as follows. Even with the low-pass
prefiltering, the spatial shift by four pixels introduces some
nonzero coefficients in high frequencies due to the discon-
tinuities at block boundaries. And the values that are most
influenced are 0, 1, and –1, which are the most influential in
our calculations. Individual histograms of low-frequency co-
efficients are much less susceptible to this onset of spurious
nonzero DCTs.

4.1.3 Estimating the true message length

Once the relative number of changes β has been estimated,
we may attempt to further estimate the total message length.
Both the shrinkage and matrix embedding must be taken into
account. Let n be the total number of changes in quantized
DCT coefficients introduced by the F5 algorithm.We can write
n as n = s + m, where s is the shrinkage (modifications
that did not lead to message bit embedding), and m is the
number of changes due to actual message bit embedding. The
probability of selecting a coefficient that may lead to shrinkage
isPS = h(1)/P . Since the coefficients are selected at random,
the expected value of s is nPS . Thus, we obtain the following
formula:

m + nPS = n ,

which gives m = n(1−S) for the number of changes due
to message embedding. Assuming the (1, 2k − 1, k) matrix
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embedding [23], the expected number of bits per changeW (k)
is

W (k) =
2k

2k − 1
k

Thus, the unknown message length M can be calculated
as

M=W (k)m =
2k

2k − 1
kn(1 − PS)

=
2k

2k − 1
kβP (1 − h(1)/P ) =

2k

2k − 1
kβ(P − h(1))

where

P =
∑
i≥0

h(i) ≈
∑
i≥0

8∑
k,l=1
k+l>2

ĥkl(i)

The parameter k can be derived from the knowledge of
n = βP and m and the estimated cover image histogram
by following the algorithm of determining the optimal matrix
embedding as implemented in F5.

4.1.4 Correcting for double compression for F5

When the cover image is stored in the JPEG format, both F5
and OutGuess decompress it first and then recompress with
a user-specified quality factor. After that, the message is em-
bedded in the quantized DCT coefficients. This means that the
stego image has been double-compressed before embedding.
The double compression can have a profound effect on the
distinguishing statistics S, and it complicates the detection.

The process of obtaining the baseline value S(0) from
the cropped image as described in Sect. 4.1.2 will produce a
histogram similar to the broken line in Fig. 2 instead of the
solid line from which the F5 started its embedding. Conse-
quently, the estimated relative number of changes β may be
quite different from the actual value. To address the problems
with inaccurate detection when the cover image is stored in
the JPEG format, we proposed the following modification of
our detection.

We calculate the ratio β for a fixed set of quantization ta-
bles, {Q1, Q2, . . . , Qr}. For each quantization table, we run
our detection scheme with one small modification – after crop-
ping the decompressed stego image, it is compressed with the
quantization table Qi and immediately decompressed before
proceeding with the rest of the baseline histogram estimation.
Then the estimated ratio βi, i = 1, . . . , r is calculated in the
usual manner. For each i and for each DCT mode kl, we calcu-
late the L2 distance E

(i)
kl between the stego image histogram

Hkl and the histogram obtained using Eq. 1 with β = βi:

E
(i)
kl =[Hkl(0) − ĥkl(0) − βiĥkl(1)]2

+
∑J

j=0
[Hkl(j) − (1 − βi)ĥkl(j) − βiĥkl(j + 1)]2

where in our experiments, we took J = 10 histogram values.
The final estimated ratio β is obtained as β = βt, where t =

Fig. 2. Effect of double compression on the histogram of quantized
DCT coefficients. The broken line is the image histogram with a
single compression, the solid line after double compression with a
lower quality factor being the first one. The histogram corresponds
to the DCT coefficient (1,2)

Fig. 3. Example of an image with spatial resonance. The same image
cropped by four and four pixels has very different block frequency
characteristics than the original image

arg min
i

∑
kl E

(i)
kl , where the sum is being taken over all low-

frequency DCT modes that participate in our calculations (see
Sect. 4.1.1).

The estimated relative number of modifications improves
dramatically when the double compression detection is added
to the detection routine. The overall accuracy of the estimated
ratio β is slightly lower when compared to the results obtained
for cover images that were not JPEG compressed.

Another case of images that may produce large errors in our
detection scheme are images that exhibit very different block
frequency characteristics after the cropping. This “spatial res-
onance” may occur when the cover image contains some reg-
ular structure with a characteristic length comparable to the
block size, such as the metal grid in Fig. 3. Fortunately, it is
easy to identify such images both visually and algorithmically
and take appropriate measures. One possibility is to use those
frequency modes that are most stable with respect to cropping
and avoid those that exhibit strong resonant behavior. In our
tests, we have encountered only two images with spatial res-
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Fig. 4. β detected in 670 cover images

onance among hundreds of images randomly selected from
different sources (see Fig. 4).

4.1.5 Experimental results

For testing purposes, we used a database of 900 grayscale
images of natural scenes. All images were obtained using a
digital camera and originally stored as JPEG images. We have
resized them all to 800 × 600 pixels before processing with
F5. Thus, none of the test images showed double compres-
sion artifacts. First, we processed all images using F5 with
80% quality factor without embedding any message and then
applied our detection scheme to estimate the number of mod-
ifications β. The detection results are shown in Fig. 4. The
results indicate that the estimated β has a small systematic
error. We tend to estimate a small positive number of changes
(β0 = 0.056 ± 0.037) in cover images. Also, we can see
two outliers around the index 520 that correspond to cases of
uncorrected spatial resonance. Then, we have embedded mes-
sages of different sizes corresponding to the value ofβ ranging
from 0.3 to 0.5. The images were sorted by β and then pro-
cessed using our detection algorithm. The results are shown in
Fig. 5. The error between the true β and the estimated β was
0.034 ± 0.03.

4.2 OutGuess

The OutGuess steganographic algorithm was proposed by
Neils Provos [17] to counter the statistical chi-square attack
[18,21]. In the first pass, like J-Steg, OutGuess 0.2 embeds
message bits along a random walk into the LSBs of coeffi-
cients while skipping 0s and 1s. After embedding, the image
is processed again using a second pass. This time corrections
are made to the coefficients that were not visited during the
first pass to make the stego image histogram match the cover
image histogram.

Fig. 5. True value of β (thick line) vs. the estimated β for 670 test
images embedded with messages corresponding to β ∈ [0.3, 0.5]

4.2.1 Analyzing the embedding mechanism

Because OutGuess preserves the first-order statistics, the im-
age histogram cannot be used as the distinguishing statistics. It
is true, however, that, even though the global image histogram
is preserved, the histograms of individual DCT coefficients
are not necessarily preserved. They are preserved only if the
shape of the individual histogram is the same as the shape of
the global histogram. However, this distinguishing statistics
proved unreliable in our initial tests because the differences
between the histograms of individual DCT coefficients from
the cover and stego images were too small to be useful for
detection.

Instead of using histograms, we turned our attention to the
fact that the embedding mechanism in OutGuess is overwrit-
ing the LSBs. This means that embedding another message
into the stego image will partially cancel out and will thus
have a different effect on the stego image than on the cover
image. The embedding process introduces noise into the DCT
coefficients and thus increases the discontinuities in the spatial
domain along the 8 × 8 JPEG blocks. However, due to partial
canceling of repeated LSB embedding, this increase in spatial
discontinuities will be smaller when we reembed message bits
in the stego image than the increase for the cover image. This
increase is a candidate for the distinguishing statistics S. As
in Sect. 4.1, we will use the same trick with cropping and re-
compressing the stego image to obtain the baseline value for
the distinguishing statistics.

In this section, we will work again with grayscale images.
Extension to color images should be obvious. Let h(d), d =
. . . ,−2,−1, 0, 1, 2, . . .be the histogram of the quantized DCT
coefficients from the cover image. Let P be the total number
of coefficients different from 0 and 1:

P =
∑
i�=0
i�=1

h(i)

We will call those coefficients usable coefficients. Out-
Guess first calculates the maximal length of a randomly spread
message that can be embedded in the image while making
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sure that one will be able to make corrections to adjust the his-
togram to its original values. After embedding m pseudoran-
dom bits in the LSBs of the cover image in randomly selected
usable coefficients, the histogram values h(2i), h(2i+1) will
be changed to

h(2i) → h(2i) − α[h(2i) − h(2i + 1)]
h(2i + 1) → h(2i + 1) + α[h(2i) − h(2i + 1)]

where 2α = m/P . Let us assume that, for example, h(2i) >
h(2i+1). After embedding, there must be enough coefficients
with value 2i+1 to make necessary corrections. Thus, h(2i+
1) − 2αh(2i + 1) = α(h(2i) − h(2i + 1)), which gives

αi =
h(2i + 1)

h(2i + 1) + h(2i)

This condition must be satisfied for all histogram pairs (h(2i),
h(2i + 1)). Thus, the maximum message size that can be
embedded in the image with appropriate corrections is 2aP ,
where a = miniαi.

After embedding a message of size 2paP bits, 0≤ p ≤1, in
the cover image (we call such a message a p-percent message),
due to the correction step, the number of changes for values
2i and 2i + 1 are both pah(2i), assuming h(2i) > h(2i + 1).
Thus, the total number of changes (due to both embedding and
correction) is

Tp = 2pa
∑
i �=0

h(2i) = paP + pa
∑
i �=0

∣∣h(2i) − h(2i)
∣∣ (4)

where h̄(2i) = max(h(2i), h(2i + 1)) and h(2i + 1) =
min(h(2i), h(2i + 1)) for each i. The first term in Eq. 4 is
due to message embedding, the second term to corrections.

Because OutGuess introduces random changes into the
quantized coefficients, the spatial discontinuities at the bound-
aries of all 8 × 8 blocks will increase. We will measure the
discontinuity using the blockiness measure (Eq. 6).We take the
increase of this blockiness measure after embedding a 100%
message, again using OutGuess as the distinguishing statis-
tics. This increase will be smaller for the stego image than for
the cover image because of the partial cancellation of changes.

To mathematically analyze the proposed idea, we first cal-
culate the number of changes after consecutive embedding of
two messages in one image. Given a set of n integers, if we
randomly select a subset U consisting of u integers and flip
their LSBs and then do the same again with another randomly
chosen subset V with v integers, the number of integers with
flipped LSBs will be equal to |U ÷ V |, where “÷” denotes
the symmetric set difference and |A| the cardinality of A. This
is because the integers in U ∩ V will be flipped twice and
thus unchanged. Consequently, the total expected number of
integers with flipped LSBs will be u + v − 2uv/n.

Therefore, if we embed an additional message of size
2qaP , 0 ≤ q ≤ 1, into the image that already holds 2paP bits,
the expected values of changes for the values 2i and 2i+1 are

pah̄(2i) + qah̄(2i) − 2pqa2h̄(2i) = ah̄(2i)(p + q − 2pqa)

and

pah̄(2i) + qah̄(2i) − 2pqa2h̄2(2i)/h(2i + 1)
= ah̄(2i)(p + q − 2pqah̄(2i)/h(2i + 1))

respectively. Thus, the total number of expected changes in the
cover image after consecutive embedding of two independent
randomly spread messages of size 2paP and 2qaP bits, 0 ≤ p,
q ≤ 1, is

Tpq = 2a
∑

i �=0
h̄(2i)

(
p + q − apq

(
1 +

h̄(2i)
h(2i)

))
(5)

The measure of blockiness is calculated at the block
boundaries using the following formula:

B=
∑�(M−1)/8�

i=1

∑N

j=1
|g8i,j − g8i+1,j |

+
∑�(N−1)/8�

j=1

∑M

i=1
|gi,8j − gi,8j+1| (6)

where gij are pixel values in an M × N grayscale image and
|x| denotes the integer part of x.

4.2.2 Distinguishing statistics and parameter estimation

We have compelling experimental evidence that the blockiness
B increases linearly with the number of DCT coefficients with
flipped LSBs. The slope of this linear dependency is largest for
the cover image and becomes smaller for an image that already
contains a message. We use this slope as the distinguishing
statistics S to estimate the message length. It is shown below
using Eq. 5 that, assuming the blockinessB is a linear function
of p, the slope is again a linear function of p. Thus, we need to
determine two unknown parameters in this linear dependency,
which will be done by estimating the blockiness B for the
cover image and for the stego image with maximal embedded
message.

The detection consists of the following steps:

1. Decompress the stego image, calculate its blockiness, and
denote Bs(0).

2. Using OutGuess, embed the maximal length message in
the stego image (2aP bits), decompress, calculate the
blockiness, and denote Bs(1). Calculate the slope S =
Bs(1) − Bs(0).

3. Crop the decompressed stego image by four columns. This
image will be the baseline image that we will use to cal-
ibrate the slope. Compress the baseline image using the
same JPEG quantization matrix as that of the stego im-
age. Decompress to the spatial domain and calculate its
blockiness B(0).

4. Using OutGuess, embed the maximal length message in
the cropped image and calculate the blockiness B(1).

5. Use the embedded image from step 4 and, again using Out-
Guess, embed the maximal length message in it, denoting
its blockiness B1(1).

6. Calculate the secret message length using Eq. 7 (see the
derivation below).

The slope S0 = B(1)−B(0) is what we would expect for
the original cover image (p = 0). The slope S1 = B1(1) −
B(1) is what we would obtain for an image with maximal
embedded message (p = 1). The slope S = Bs(1) − Bs(0)
for the stego image will be somewhere in between these two
slopes, S ∈ [S1, S0] corresponding to an unknown message
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length p. We use linear interpolation to obtain the formula for
p, S = S0 − p(S0 − S1), which gives us

p =
S0 − S

S0 − S1
(7)

The linear interpolation and Eq. 7 can be justified using
Eq. 5 for the number of changes. Assuming the blockiness is a
linear function of the number of DCT coefficients with flipped
LSBs, we can write B(p) = c+ dT p, where Tp is the number
of coefficients with flipped LSBs after embedding a message
of length 2paP bits, and c and d are constants. Using Eq. 5:

S1=B1(1) − B(1) = d(T11 − T10)

=2ad
∑

i �=0
h̄(2i)

(
1 − a

(
1 +

h̄(2i)
h(2i)

))

S0=B(1) − B(0) = d(T10 − T00)

=2ad
∑

i �=0
h̄(2i)

S=Bs(1) − Bs(1) = d(Tp1 − Tp0)

=2ad
∑

i �=0
h̄(2i)

(
1 − ap

(
1 +

h̄(2i)
h(2i)

))

which, after simple algebra, confirms Eq. 7.

4.2.3 Correcting for double compression for OutGuess

Equation 7 generally provides an accurate estimate of the se-
cret message length. The exceptions are when the image sent
to OutGuess is already a JPEG file or when the stego image
exhibits spatial resonance (both the double compression effect
and spatial resonance are commented upon in Sect. 4.1.4). For-
tunately, OutGuess preserves the histogram, and this enables
us to recover Qc using a simpler method than for F5. To in-
corporate detection of double compression and correct for it,
step 3 is replaced with:

3′. Detect the primary quality factor Qc. Crop the decom-
pressed stego image by four columns. Compress the cropped
image using Qc, decompress, and recompress using Qs – a
process that effectively simulates what happens during the
embedding. Decompress to the spatial domain and calculate
its blockiness B(0).

We opted for the following simple algorithm to detect Qc.
Let hij(d) be the histogram of values of the (i, j)-th DCT
mode for the stego image, and let hij(d,Q) be the same for the
cropped stego image that has been compressed using the qual-
ity factor Q, decompressed, and recompressed using the stego
image quality factor Qs. We calculate Qc as the quality factor
that minimizes the difference between hij(d,Q) and hij(d)
for those DCT modes (i, j) that correspond to the lowest-
frequency DCTs (1,2), (2,1), (2,2):

Qc = arg min
Q

∑
(i,j)

∑
d
|hij(d) − hij(d,Q)|2

We have tested this algorithm on 70 test grayscale 600 ×
800 JPEG images with both quality factors ranging from 70 to
90. In all but four cases, we estimated the cover image quality
factor correctly.

4.2.4 Experimental results

The same database of 70 images was used for evaluation of the
performance of our detection method. Among the 70 test im-
ages, 24 were processed using OutGuess with message sizes
ranging from the maximal capacity to zero. Because all test
images were originally stored in the JPEG format, we ran our
double compression correction algorithm in all cases. Since
the detection algorithm contains randomization, we have re-
peated the detection ten times for each image and averaged
the p values (Eq. 7). The results are shown in Fig. 6. On the
y-axis is the relative number of changes due to embedding
Tp/aP (see Eq. 4), and on the x-axis is the image number.
Assuming the distribution of the difference between the esti-
mated and actual values is Gaussian, the estimation error is
−0.0032 ± 0.0406. From our experiments with Eq. 1 on test
images, we determined that the number of changes due to the
correction step is about 1/3 of the changes due to message em-
bedding. Thus, on average the total number of changes due to
embeddingm bits is Tp = m/2 (1+1/3). Thus, the error for the
estimated message length m is −0.48 ± 6% of total capacity.

One of the lessons that can be learned from this Sect. 4 is
that in order to develop a high-capacity steganographic method
for JPEGs, one needs to avoid making predictable changes to
macroscopic characteristics of the JPEG file. However, this
task seems to be quite difficult if we insist on embedding one
bit in each nonzero DCT coefficient. Also, another lesson is
that one should abandon the concept of LSB flipping for em-
bedding and instead use incrementing/decrementing the coef-
ficient values as already pointed out in [21].

5 LSB for uncompressed raw formats

The methods for JPEG images were based on the fact that it
was possible to define a macroscopic quantity that sensitively
reacted to the embedding process and whose values could be
estimated for the cover and fully embedded images (histogram
for F5 and blockiness increase for OutGuess). In the case of
LSB embedding in raw image formats, the modifications are
so small that one cannot obtain a similarly good and usable
approximation to the LSBs of the cover image as could be
done using cropping and recompressing for JPEG images. On
the other hand, LSB embedding creates an imbalance between
neighboring grayscales – during embedding the grayscale val-
ues 2i and 2i+1 are flipped into each other but never to 2i−1
or 2i + 2. Thus, it would be useful to find a distinguishing
statistics that is sensitive to LSBs but roughly invariant when
we add 1 to all pixels in the cover image. One sensitive mea-
sure that satisfies these requirements is the lossless capacity of
the LSB plane as defined in [12]. This quite sensitive quantity
captures the delicate (and quite weak) relationship between
the LSB plane and the remaining seven image bit planes. The
lossless capacity is a function of the number of “regular” and
“singular” pixel groups (see the definitions below). The num-
ber of regular groups is approximately the same if calculated
from the cover image or from the cover image after adding
1 to all pixels (the “shifted” image). However, with embed-
ding, these two values diverge as the LSB plane becomes more
randomized. Thus, the difference between the two numbers is
chosen as the distinguishing statistics.
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Fig. 6. The actual relative number of changes Tp/aP (circles) compared to the calculated number of changes (triangles) for 70 test JPEG
images resized to 600 × 800 pixels obtained using a digital Kodak DC 290 camera. The quality factors for the stego and cover image ranged
between 70 and 90. The results include correction for double compression

5.1 Distinguishing statistics

Let us assume that we have a cover image with M × N pix-
els and with pixel values from a set P . For example, for an
8-bit grayscale image, P = {0, . . . , 255}. We introduce a dis-
crimination function f that assigns a real number f(x1, . . . ,
xn) ∈R to a group of pixels G = (x1, . . . , xn). As in [12], we
use the function f defined as

f(x1, x2, ..., xn) =
n−1∑
i=1

|xi+1 − xi| (8)

The function f measures the smoothness of G – the nois-
ier the group G is, the larger the value of the discrimination
function becomes.

The LSB embedding increases the noisiness in the image,
and thus we expect the value of f to increase after LSB embed-
ding. Let us define the flipping function F1 as the following
permutation on P : 0 ↔ 1, 2 ↔ 3, . . . , 254 ↔ 255. Changing
the LSB of the gray level x is the same as applying F1 to x.
We also define a dual concept called shifted LSB flipping F−1
as −1 ↔ 0, 1 ↔ 2, 3 ↔ 4, . . . , 253 ↔ 254, 255 ↔ 256, or

F−1(x) = F1(x + 1) − 1,∀x ∈ P (9)

Finally, for completeness, we also defineF0 as the identity
permutation F (x) = x, ∀x ∈ P .

The discrimination function f and the flipping operation
F define three types of pixel groups: R, S, and U , depending
on how the flipping changes the value of the discrimination
function: group G is regular (R) if f(F (G)) > f(G), G is
singular (S) if f(F (G)) < f(G), and G is unchanged (U)
if f(F (G)) = f(G). Here, F (G) means that we apply the
flipping function F to the components of the vector G =
(x1, . . . , xn).

If we apply different flipping to different pixels in groupG,
we capture the assignment of flipping to pixels with a maskM ,
which is ann-tuple with values −1, 0, and 1. The flipped group
F (G) is defined as (FM(1)(x1), FM(2)(x2), . . . , FM(n)(xn)).

In typical images, flipping group G will more frequently
lead to an increase in the discrimination function f rather than
a decrease. Thus, the total number of regular groups will be
larger than the total number of singular groups. Let us denote
the relative number of regular groups for a nonnegative mask
M asRM (in percents of all groups) and let SM be the relative
number of singular groups. We have RM + SM ≤ 1 and

R−M + S−M ≤ 1. The values RM , SM , R−M , and S−M

will play the role of our distinguishing statistics. An important
hypothesis of our steganalytic method is that for typical cover
images, the value of RM is approximately equal to that of
R−M , and the same should be true for SM and S−M :

RM
∼= R−M and SM

∼= S−M (10)

We can justify this hypothesis heuristically by inspecting
Eq. 9. Using the flipping operationF−1 is the same as applying
F1 to an image whose colors have been shifted by one. Because
the discrimination function f captures the smoothness, adding
the value of 1 to all pixels should not influence the statistics
of regular and singular groups in any significant way. Indeed,
we have extensive experimental evidence that Eq. 10 holds
very accurately for images taken with a digital camera for both
JPEG and uncompressed formats. It also holds well for images
processed with common image-processing operations and for
scanned photographs. The relationship in Eq. 10, however, is
violated after randomizing the LSB plane (because of LSB
steganography, for example).

Randomization of the LSB plane forces the difference be-
tween RM and SM to zero as the length m of the embedded
message increases. After flipping the LSB of 50% of pixels
(which is what would happen after embedding a random mes-
sage bit into every pixel), we obtain RM

∼= SM . This is just a
reformulation of the fact that the lossless capacity of the LSB
plane after completely randomizing it must be zero [12]. What
may be surprising is that randomizing the LSB plane has the
opposite effect on R−M and S−M . Their difference increases
with the length m of the embedded message. The graph that
shows RM , SM , R−M , and S−M as functions of the number
of pixels with flipped LSBs appears in Fig. 7 (the RS diagram).
To be precise, the diagram actually shows the expected values
of RM and SM over the statistical sample of all possible LSB
randomizations, but to simplify the notation we use the same
symbols for the expected values.

We provide a simple explanation for the peculiar in-
crease in the difference between R−M and S−M for the mask
M = [010]. Similar arguments could be used for other masks.
We define sets Ci = {i, 2i + 1}, i = 0, . . . , 127, and cliques
of groups Crst = {G|G ∈ Cr × Cs × Ct}. There are 1283

cliques, each clique consisting of eight groups (triples). The
cliques are closed under LSB randomization. For the purpose
of our analysis, we recognize four different types of cliques,
ignoring horizontally and vertically symmetrical cliques. Ta-
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Table 1. Four types of cliques

Clique F1 F−1

type flipping flipping

r = s = t 2R, 2S, 4U 8R
r = s > t 2R, 2S, 4U 4R, 4U
r < s > t 4R, 4S 4R, 4S
r > s > t 8U 8U

ble 1 shows the four clique types and the number of R, S,
and U groups under F1 and F−1 after randomization. From
the table one can see that while randomization of LSBs has a
tendency to equalize the number of R and S groups in each
clique under F1, it will increase the number of R groups and
decrease the number of S groups under F−1.

5.2 Parameter estimation

As the next step, we estimate the four curves of the RS diagram.
Experimental evidence indicates that the R−M and S−M

curves are well modeled with straight lines, while second-
degree polynomials are appropriate for the “inner” curvesRM

and SM . We can determine the parameters of the curves from
the points marked in Fig. 7. We note that Dumitrescu et al.
[6] have found a different method of arriving at essentially the
same detection method and were able to prove under fairly
general assumptions that for the special mask M=[0 1] the
curves indeed must be straight lines and parabolas. This result
somewhat justifies our assumptions about the functional form
of the curves for other masks.

If we have a stego image with a message of an unknown
relative length p (p = 1 for one bit per pixel) embedded in the
LSBs of randomly scattered pixels, our initial measurements
of the number of R and S groups correspond to the values
RM (p/2), SM (p/2), R−M (p/2), and S−M (p/2) (Fig. 7). The
factor of one half is because, assuming the message is a random
bit stream, on average only one half of the pixels will be flipped
by message embedding. If we flip the LSBs of all pixels in the
image and calculate the number of R and S groups, we will
obtain the four values RM (1-p/2), SM (1-p/2), R−M (1-p/2),
and S−M (1-p/2) (Fig. 7).

By randomizing the LSB plane of the stego image, we can
calculate the valuesRM (1/2) and SM (1/2). Because these two
values depend on the particular randomization of the LSBs,
we could repeat the process many times and estimateRM (1/2)
and SM (1/2) from the statistical samples. However, it is pos-
sible to avoid this time-consuming statistical estimation and
simultaneously make the message length estimation more el-
egant by accepting two more (natural) assumptions: (1) The
point of intersection of the curves RM and R−M has the same
x coordinate as the point of intersection for the curves SM and
S−M (this is essentially Eq. 10). (2) RM (1/2) = SM (1/2).

We have experimentally verified the first assumption for
a large database of images with unprocessed raw BMPs and
JPEGs and processed images. The second assumption essen-
tially says that the lossless capacity in the LSBs of a fully
embedded image is zero, which is a well-founded statement
[12].

Fig. 7. RS diagram of an image taken by a digital camera. The x-axis
is the percentage of pixels with flipped LSBs, and the y-axis is the
relative number of regular and singular groups with masks M and
−M , M = [0110]

The number of R and S groups at p/2 and 1-p/2 define the
straight lines and, together with the assumptions (1) and (2)
above, also provide enough constraints to uniquely determine
the parabolas and their intersections. After rescaling the x-
axis so that p/2 becomes 0 and 100 − p/2 becomes 1, which
is obtained by the linear substitution z = (x − p/2)/(1 − p),
the x-coordinate of the intersection point can be calculated
from the root of the following quadratic equation:

2(d1 + d0)z2 + (d−0 − d−1 − d1 − 3d0)z + d0 − d−0 = 0

where

d0=RM (p/2) − SM (p/2), d1

=RM (1 − p/2) − SM (1 − p/2), d−0

=R−M (p/2) − S−M (p/2), d−1

=R−M (1 − p/2) − S−M (1 − p/2)

We calculate the message length p from the root z whose
absolute value is smaller by

p = z/(z − 1/2) (11)

There are three main factors that influence the accuracy of
the estimated message length: the initial bias, the noise level
or quality of the cover image, and the placement of message
bits in the image.

Initial bias: The RS steganalysis may indicate a small nonzero
message length due to random variations even for the original
cover image. This initial nonzero bias could be both positive
and negative, and it puts a limit on the achievable accuracy
of RS steganalysis. Smaller images tend to have higher vari-
ation in the initial bias due to a smaller number of R and S
groups. Scans of half-toned images and noisy images exhibit
larger variations in the bias as well. On the other hand, the
bias is typically very low for JPEG images, uncompressed
images obtained by a digital camera, scans of photographs,
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Fig. 8. Estimated message length (in % of maximal message length)
for a database of 180 grayscale images

Fig. 9. Distribution of estimated message length compared to the true
message length (vertical lines) for the same database of 180 grayscale
images

and images processed with typical image-processing filters.
As another rule of thumb, we state that color images exhibit
larger variations in the initial bias than grayscales.

Noise: For very noisy images, the difference between the num-
ber of regular and singular pixels in the cover image is small.
Consequently, the lines in the RS diagram intersect at a small
angle and the accuracy of RS steganalysis decreases. The same
is true for low-quality images, overcompressed images, and
small images (due to insufficient statistics).

Message placement: The RS steganalysis is more accurate for
messages that are randomly scattered in the stego image than
for messages concentrated in a localized area of the image.
To address this issue, we could apply the same algorithm to a
sliding rectangular region of the image. Another possibility is
described in the work of Dumitrescu et al. [7], who extend their
approach, which originated from RS steganalysis, to messages
that are spread nonuniformly in the stego image.

 
Fig. 10. Estimated message length (in % of maximal message length)
for a database of 180 color images

 
Fig. 11. Distribution of estimated message length compared to the
true message length (vertical lines) for the same database of 180 color
images

5.3 Experimental results

We have performed tests on a database of 180 grayscale im-
ages and another database of 180 24-bit color images. The
images were obtained using four different digital cameras and
were originally stored as high-quality JPEG images. For our
test purposes, we resampled them to 800 × 600 pixels using
Corel PhotoPaint 9 (with the antialias option).All images were
embedded with 0%, 10%, 20%, 40%, 60%, 80%, and 100%
messages and processed using RS steganalysis (100% corre-
sponds to one bit per pixel for 8-bit images and one bit per
channel for 24-bit images). The results are shown in Figs. 8
(grayscales) and 10 (24-bit color). Figures 9 and 11 show the
distribution of detected message length around the true mes-
sage length (assuming the distribution is Gaussian).

Simple visual analysis of Figs. 8–11 tells us that the RS
steganalysis estimates the secret message length extremely ac-
curately and reliably. For grayscale images we can easily sep-
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arate cover images from stego images with a 10% embedded
message. The color case is equally good with a few outliers
with slightly larger initial bias than the majority of images.

The RS steganalysis is applicable to most commercial
steganographic software products. Examples of vulnerable
programs include, for example, Steganos, Windstorm, S-
Tools, and Hide4PGP (Steganography software for Windows
2002).

6 Palette images

In this section, we apply the principles outlined in Sect. 3 to one
general embedding paradigm for palette images – LSB embed-
ding in randomly selected indices to an ordered palette. The
EzStego algorithm [15], Steganos, and Hide&Seek (Steganog-
raphy software for Windows 2002) are examples of this em-
bedding archetype. EzStego first orders the palette to minimize
color differences between consecutive colors by finding an ap-
proximate solution to the traveling salesman problem. Then
the message bits are embedded as the LSBs of color indices
to the sorted palette. The original EzStego algorithm embeds
bits sequentially, but in our version we proceed along a pseu-
dorandom key-dependent walk to make the detection harder.
For a more detailed description of the algorithm, see [15].

Because EzStego preserves the original palette order, one
needs to inspect the image data to mount an attack. Before we
describe our approach, we briefly cite previous attacks appli-
cable to this embedding algorithm. Westfeld [23] generalized
his chi-square attack [21] for bit-exchanging algorithms with
random straddling and reports the ability to detect messages
as small as 33% of the total image capacity. Provos and Hon-
eyman [17] introduced a different generalized version of the
chi-square attack. While this method proves quite powerful for
LSB embedding in quantized JPEG coefficients, according to
our experiments, this attack does not give as reliable results for
palette images. Finally, Farid and Siwei [8] has also reported a
successful detection for EzStego. For a false detection rate less
than 1%, he detects about 45% of all stego images with a close
to 100% message length embedded. With shorter messages,
the detection rate quickly falls to zero. Given the fact that this
algorithm is blind to the stego method, this is a remarkable
result. However, targeted approaches such as the one reported
in this section provide significantly higher detection rate while
giving an accurate estimate of the secret message length. Be-
fore we describe our approach, we give a brief description of
the EzStego algorithm and introduce the terminology.

6.1 EzStego algorithm

EzStego first sorts the palette colors c0, c1, . . . , cP−1, P ≤
256 in a cycle cπ(0), cπ(1), . . . , cπ(P−1), π(P ) = π(0), so

that the sum of distances
∑P−1

i=0

∣∣cπ(i) − cπ(i+1)
∣∣ is small. In

the last expression, π is the sorting permutation. The set of
pairs whose colors will be exchanged for each other during
embedding is

E = {(cπ(0), cπ(1)), (cπ(2), cπ(3)), . . . , (cπ(P−2), cπ(P−1))}
(12)

Using the stego key, generate a pseudorandom walk
through image pixels. For each pixel along the walk, replace
its color cπ(k) with the color cπ(j), where j is the index k with
its LSB replaced by b, where b is the message bit: LSB(j) = b.
Repeat the embedding steps until all message bits are embed-
ded or the end of the image file is reached.

The message extraction algorithm first determines the
same palette ordering π and then generates the pseudoran-
dom walk from the stego key. The message bits are read out
from LSBs of indices to the sorted palette, b = LSB(k), where
cπ(k) is the pixel color visited along the random walk.

6.2 Distinguishing statistics

Before we define the distinguishing statistics and estimate its
parameters, we analyze the impact of EzStego embedding on
the cover image.

Let (c1, c2) be a color pair from E. We extract the colors
c1, c2from the whole image, for example, by scanning it by
rows or columns. This sequence of colors is then converted to a
binary vector by associating c1 with a “0” and c2 with a “1.”We
denote this vectorZ(c1, c2) and call it the color cut for the pair
(c1, c2). In palette images, Z will show considerable structure
because palette images have a small number of colors. The
embedding process will disturb this structure and increase the
entropy of Z. Finally, when the maximal length message has
been embedded in the cover image (one bit per pixel), the
entropy of Z will be maximal, corresponding to a random
binary sequence. Now we will look at what happens during
embedding to color cuts for “shifted” color pairs from the set
E′:

E′ = {(cπ(1), cπ(2)), (cπ(3), cπ(4)), . . . , (cπ(P−1), cπ(0))}
(13)

Let us look at one fixed color pair (cπ(2k−1), cπ(2k)) from
E′. During embedding, the colors cπ(2k−1) and cπ(2k−2)
are exchanged for each other and so are the colors cπ(2k)
and cπ(2k+1). Even after embedding the maximal message
(each pixel modified with probability 1/2), the color cut
Z(cπ(2k−1), cπ(2k)) will still show some residual structure.
To see this, imagine a binary sequence W formed from the
cover image by scanning it by rows and associating a “0”
with the colors cπ(2k−1) and cπ(2k−2) and a “1” with the col-
ors cπ(2k) and cπ(2k+1). Convince yourself that the color cut
Z(cπ(2k−1), cπ(2k)) after embedding a maximal pseudoran-
dom message in the image is the same as starting with the
sequence W and skipping each element of W with probabil-
ity 1/2. Now, becauseW showed structure in the cover image,
most likely long runs of 0s and 1s, we see that randomly cho-
sen subsequences of W will show some residual structure as
well.

Having presented our arguments in the paragraph above,
we describe our new detection method. We concatenate color
cuts for all pairs in E into one vector Z = Z(cπ(0), cπ(1))
& Z(cπ(2), cπ(3)) & . . . & Z(cπ(P−2), cπ(P−1)) and then
all color cuts for shifted pairs E’ into the vector Z’ =
Z(cπ(1), cπ(2)) & Z(cπ(3), cπ(4)) & . . . & Z(cπ(P−1), cπ(0)).
Next we define the distinguishing statistics that will be used to
measure the structure in the bit streams Z and Z ′. Let E2(Z)
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Fig. 12. Typical pairs diagram showing the relative number of ho-
mogenous bit pairs in Z and Z′ as functions of the number of pixels
p with flipped color indices

be the second-order entropy

E2(Z) =
4∑

i=1

−pi log pi

where pi are the probabilities of occurrence of the bit pairs
“00,” “01,” “10,” and “11” in Z. To simplify the calculations,
instead of using E2 directly, we simply count the number of
“homogenous” bit pairs (“00,” “11”) in Z. Let R(p) denote
the number of homogeneous bit pairs in Z after flipping the
LSBs of indices of 100p percent of randomly chosen pixels,
0 ≤ p ≤ 1, divided by n – the length of Z. Similarly, let
R′(p) be the relative number of homogeneous bit pairs in Z ′.
For p < 1/2, this number of modifications corresponds to
embedding a message of length 2pMN bits (2p bits per pixel),
where M and N are image dimensions.

6.3 Parameter estimation

In Theorem 1, we prove that R(p) is a parabola with its vertex
at p = 1/2 and R(1/2) = 1/2 (Fig. 12). Because we can
calculate R(q) from the stego image with an unknown mes-
sage length q, the points (q, R(q)) and (1/2, R(1/2)) uniquely
determine R(q). Note that R(q) = R(1 − q).

It appears that R′(p) is well modeled using a parabola
as well, although we have no formal proof of this statement.
The value ofR′(1/2) can be derived fromZ ′ (see Theorem 2),
while the valuesR′(q) andR′(1−q) can be calculated from the
stego image and the stego image with all colors flipped, respec-
tively. Thus, we can fit a second-degree polynomial through
the points (q,R′(q)), (1/2, R′(1/2)), and (q,R′(1 − −q)) to
obtain R′(p).

Finally, we accept one additional assumption R(0) =
R′(0), which says that the number of homogenous pairs in
Z and Z ′ must be the same if no message has been embed-
ded. This is indeed intuitive because there is no reason why the
color cuts of pairs inE andE′ should have different structures.

Figure 12 shows R(p) and R′(p) as functions of p –
the pairs diagram – for a typical test image. After denoting

D(p) = R(p) − R′(p) = ap2 + bp + c, with a, b, and c
yet undetermined constants, we can write D(0) = c = 0
and D(1/2) = R(1/2) − R′(1/2) = a/4 + b/2. Also,
D(q) = aq2 + bq and D(1 − q) = a(1 − q)2 + b(1 − q).
Eliminating the unknown parameters a and b leads after sim-
ple algebra to a quadratic equation for q:

4D(1/2)q2 + [D(1 − q) − D(q) − 4D(1/2)]q + D(q) = 0
(14)

The coefficients of this quadratic equation are known, so
we can solve it for the unknown q. The root that is smaller is
our approximation to the unknown message length q.

Theorem 1. The expected value of R(p), p ∈ [0, 1] is a
parabola with its minimum at 0.5. In particular, R(1/2) =
(n − 1)/2n ≈ 1/2 for large n.

Proof: We repeat that R(p) is the relative number of homoge-
nous pairs in Z after embedding a message of relative length
p. We can write Z as a concatenation of binary segments con-
sisting of consecutive 0s or 1s with lengths of the segments
k1, k2, . . . , kr, k1 + k2 + . . . + kr = n, ki > 0, where n
is the length of Z. For example, for Z = 001110110. . . , we
have k1 = 2, k2 = 3, k3 = 1, . . .. For p = 0, we have
nR(0) =

∑r
i=1 (ki − 1) = n−r.After embedding a message

of relative length p, in a segment consisting of k bits, the prob-
ability that a given pair of consecutive bits will be homogenous
is p2 + (1 − p)2 (both are changed or neither is changed). Be-
cause we have k − 1 consecutive pairs, the expected number
of homogenous pairs is [p2 + (1 − p)2](k − 1) + 2p(1 − p),
where the last term comes from the right end of the segment
(an additional pair will be formed at the boundary if the last bit
in the segment flips and the first bit of the next segment does
not flip, or vice versa). Thus, the total number of homogenous
pairs is a sum over all segments except for the last one, which
lacks the boundary term 2p(1 − p):

nR(p)=
r∑

i=1

[(ki − 1)(p2 + (1 − p)2)

+2p(1 − p)] − 2p(1 − p)
=2p2(n − 2r) − 2p(n − 2r) + n − r − 2p(1 − p)

We see that R(p) is a parabola in p with its vertex at p =
1/2, R(0) = R(1) = (n − r)/n, and R(1/2) = (n − 1)/2,
which concludes the proof. ��
Theorem 2. Let Z ′ = {bi}n

i=1 be the binary vector defined in
the text above. The expected value ofR′(1/2) is

∑n−1
k=1 2−khk,

where hk is the number of homogeneous pairs in the sequence
of pairs b1b1+k, b2b2+k, b3b3+k, . . . , bn−kbn.

Proof: Let W = W1&W2& . . .&WP/2 be the concatenation
of binary sequencesWj formed from the stego image by scan-
ning it by rows and associating a “0” with the colors cπ(2j−1)
and cπ(2j−2) and a “1” with the colors cπ(2j) and cπ(2j+1).
The color cut Z ′(cπ(2j−1), cπ(2j)) after embedding a maximal
message in the cover image is the same as starting with the se-
quence Wj and skipping each element of W with probability
1/2. Imagine you are going throughZ ′ while skipping each el-
ement with probability 1/2. Then, the probability of skipping
exactly k − 1 elements in a row is 2−k, k = 1, 2, . . .. Be-
cause there are hk homogenous pairs in the sequence of pairs
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Fig. 13. Estimated message length (in percentage of maximal mes-
sage length) for a database of 180 GIF images

Fig. 14. Distribution of estimated message length q compared to
the true message length (vertical lines) for the database of 180 GIF
images

b1b1+k, b2b2+k, b3b3+k, . . . , bn−kbn, the expected number of
homogenous pairs separated by k− 1 elements is 2−khk. The
formula of Theorem 2 is obtained by summing these contri-
butions from k = 1 to the maximal separation k− 1 = n− 2.

��

6.4 Experimental results

We have performed tests on a database of 180 color GIF im-
ages. The images were obtained using four different digital
cameras and were originally stored as high quality JPEG im-
ages. For our test purposes, we resampled them to 800 × 600
pixels using Corel PhotoPaint 9 (with antialias option) and
converted to palette images using with the following options:
optimized palette, ordered dithering. All images were embed-
ded with 0%, 10%, 20%, 40%, 60%, 80%, and 100% messages
(100% message corresponding to one bit per pixel) and pro-

cessed using our detection method. The results are shown in
Fig. 13. Figure 14 shows the distribution of detected message
length around the true message length (assuming the distribu-
tion is Gaussian).

The accuracy is mostly influenced by the “initial bias,”
which is the message length (in percent) detected in the cover
image. The fact that this initial bias may not be exactly zero
reflects the fact that the assumption R(0) = R′(0) in Sect. 6.3
is an approximate experimental fact.

Images with low numbers of unique colors, such as car-
toons and computer-generated images, may have some sin-
gular structure that could occasionally introduce a large er-
ror into our detection. For example, some dithering patterns
between two colors (e.g., in a uniform background) may be
misinterpreted as a false message. A histogram with a very
high number of pixels for one or two colors next to each other
may also in some exceptional cases negatively influence the
detection accuracy. Fortunately, the method as described in
this section can be adjusted to eliminate such outliers. More
details are given in [10].

7 Conclusions

In this paper, we describe a new paradigm for steganalysis.
The methods developed under this paradigm can estimate the
length of the secret embedded message with very good ac-
curacy. This approach does not use thresholds or a training
database to infer the message presence or its length. It is based
on identifying a macroscopic quantity S that sensitively de-
pends on the number of embedded bits m, estimating or de-
riving the functional form of S(m) as a function of m, and
deriving the parameters of S either analytically or from exper-
iments. Having achieved this, we can calculate the unknown
message length q by solving the equation S(q) = Sstego,
where Sstego is the value of S measured for the stego image.
The quantity S is called the distinguishing statistics.

We show what quantities S are useful for JPEG images,
palette images, and uncompressed raw formats. In particular,
we apply the detection methodology to F5, OutGuess, EzStego
with random straddling, and generic LSB embedding with
random straddling. The performance is always interpreted and
evaluated on a test database of images.

In the future, we intend to use the proposed detection
paradigm for determination of upper bounds on stegano-
graphic capacity. As elaborated on in Sect. 2, steganographic
capacity is the maximum number of bits that can be embed-
ded in a given image using a specific method that cannot be
detected with a better algorithm than random guessing.

One of our future goals is to estimate the relative stegano-
graphic capacity CR that would be independent of the cover
image. On the one hand, this is a formidable task because
“natural” images exhibit such a wide spectrum of statistical
properties that developing a mathematical model becomes im-
possible. On the other hand, it seems plausible to estimate CR

for a given image source Ω, such as images taken with a spe-
cific digital camera under specified conditions. In this case, the
relative steganographic capacity CR is the function of the em-
bedding methodΣ and the image sourceΩ:CR = CR(Ω,Σ).
To derive an estimate for the relative steganographic capacity
CR, we use a large test database of images from the source Ω
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and apply the proposed detection methods to all cover images
from this database, obtaining the distribution P0 of relative
message length p detected in cover images. Then we embed
messages with a fixed relative message size q into all database
images and calculate its distributionPq. The next step is to test
the statistical hypothesis that both distributions are equal. If
we model the distributionP0 as Gaussian, it is then possible to
test whether the samples fromPq fitP0 using the Kolmogorov-
Smirnov test [5]. The smallest value of q that does not pass this
test determines an estimate for the upper bound for stegano-
graphic capacity for the image source Ω. If the database is
large and contains a wide diversity of images, the estimate
for the steganographic capacity will likely be valid for other
images from Ω as well.

In another interpretation of our results, we can use the
distribution P0 to estimate the threshold Ta for the message
length that would limit the probability of false positives below
a certain specified limit a. This threshold Ta can then be used
to determine the probability of missed detections assuming a
message of relative length of q has been embedded.
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