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ABSTRACT

Without any assumption on the cover model, this paper ptesen
complete characterization of all perfectly secure stegesns that
employ mutually independent embedding operation. We shaiv t
for a fixed embedding operation, the only perfectly secuegast
systems are those whose cover distribution is an elemenlindéar
vector space with basis vectors determined by the embedugiag
ation. Finally, we show that for mutually independent entieg
operation, perfect security as defined by Cachin is equivabepos-
itivity of Fisher information with respect to the embeddidlgange
rate. This result is important for deriving steganograpsipacity of
covers modeled as Markov chains [1].

The paper is structured as follows. In Section 2, we intreduc
the notation and definitions and review some preliminarysfétat
will be put to use later. Section 3 contains the main resulthis
paper as well as examples of specific stego-systems tardteshe
theoretical contributions. Section 5 concludes this war#t further
elaborates on its importance.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We will represent am-element cover object with} £ (z1,...,z,) €
X", X ={1,...,N}, wherez? is a realization of a random vari-
able X' distributed according to some general distributi®rover

X™. The stego objecy? £ (y1,...,yn) € X™ is assumed to be

Index Terms— steganography, perfect security, mutually inde- 3 realization of random variablg;" distributed according to stego

pendent embedding

1. INTRODUCTION

In steganography, the sender and receiver communicatedayghi
their messages in generally trusted media, such as digitajes, so
that no warden can distinguish between the original (cosbjgct
and the object carrying the message—the stego object. Hgrtha
security of a stego-system is evaluated using the Kulldaskier
divergence between the distributions of cover and stegectd]2].
Systems with zero KL divergence are called perfectly secure

Formally, a stego-system is a combination of an embeddin%r c-securdf d

algorithm and a cover source. The vast majority of pracstedo-
systems hide messages by modifying individual elementshef t
cover using mutually independent embedding operationsis iEh
the case, for example, for stego-systems that use LSBdahd
embedding, the F5 algorithm [3] and its variations [4], pesed
quantization [4], MMXx [4], as well as for algorithms makinarder
modifications, such as variants of 2LSB embedding [5] ortsstic
modulation [6].

In this paper, we provide a complete characterization depdy
secure stego-systems for the class of embedding algorittiths
mutually independent (MI) embedding operations. The caligr
tributions of all perfectly secure systems form a linearteespace
spanned by distributions determined by the embedding tpara
Moreover, we show that perfect security (zero KL diverggnrse
equivalent to satisfying a simple condition related to Ersimfor-
mation.
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purposes notwithstanding any copyright notation there ©he views and
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terpreted as necessarily representing the official psli@éher expressed or
implied, of AFOSR or the U.S. Government.

distribution@ s, whereg is a scalar parameter capturing the extent
of embedding changes (e.g., it will be helpful to think®fs the
change rate).

The definition of steganographic security was given by Gafdji

Definition 1 Let P, Qs be probability distributions of cover, stego
objects withn elements embedded with parameterrespectively.
Steganography is said to Iperfectly securdf

P(yr)
Qs(yt)

d(B) = Dkr(P||Qs) = > P(yi)log

yrexn

:07

(B) <e.

We assume the impact of embedding with parameéter|0, 3]
on the k-th element can be captured using the matrix(3) £
Pr(Yr = j| X% = i) = d;,; + Bc,;, for some constants ; > 0 for
i # Jicii = — > cij, Whered; ; is the Kronecker delta. In a ma-
trix form, Bg = 14 BC, whereBs = (b; ;(3)), Lis the identity ma-
trix, andC = (c; ;). We further assume that the embedding opera-
tions are mutually independer® (Y7 | XT') = [ [, _, Pr(Yu| Xk).
By the definition ofb; ;, the matrixBy is stochasticy_, b;,; = 1.
Finally, we assume thdt; ;(8) > 0 for all 8 € [0, 5]. Many
embedding methods can be represented in this frameworkefsee
amples in Figure 1). We use matr; as a representation of an
embedding algorithm with Ml embedding operation (simply évi-
bedding).

To simplify the language in this paper, we will speak of ségur
of a cover source w.r.t. given Ml embedding meaning thatcthesr
model is perfectly secure w.r.BB, if the resulting stego-system is
perfectly secure. It does then make sense to inquire adqassible
perfectly secure cover sources w.r.t. Ml embedding withrixd.

In the rest of this section we review some results from the the
ory of ergodic classes [7] that will be later applied to theckias-
tic matrix Bs. For states,j € X, we callj a consequenof 4



LSB embedding: [l =1-0 =0 3. PERFECTLY SECURE COVER SOURCES UNDER
MUTUALLY INDEPENDENT EMBEDDING OPERATION

"( In this section, we let matri® represent an arbitrary Ml embed-
B = C@Q ding with & ergodic classe§, and invariant distributions(®), a ¢
C@D {1,...,k}. The following example describes a construction of per-
fectly secure cover models w.rk.

Example 2 [Perfectly secure cover modelsgt P(?) be a probabil-
ity distribution on2-element cover objects defined B8 (X7 =
(i,5)) = 7 “7'? for somea,b € {1,...,k}. ThenP® is a per-
fectly secure cover model w.r&. This is because

QY (Y2 = (i,5)) = (sz,iP(Xl = i)) (ij,jP(X2 = j))
? J

= (n“'B),(=""B), = = “=" = PP (X} = (i, )),
and thus both distribution®(®, and Qg) are identical, which im-
plies perfect security. Since this construction does npedd on the
particular choice ofa,b € {1,...,k}, we can create:* perfectly
secure cover models w.r. The probability distributions”‘® ob-
tained from this construction are linearly independent dadn a
k2-dimensional linear vector space. By a similar constructioe
can constructk™ n-element linearly independent perfectly secure
cover models w.r.tB.

We next show that there are no other linearly independeriieqiér
[] transient state (O non-transient state secure cover models w.r.

heorem 3 [Mutually independent embeddind]here are exactly

" linearly independent perfectly secure probability distiions P
onn-element covers. Every perfectly secure probability thistion
P w.rt. B can be obtained by a convex linear combinationktf
linearly independent perfectly secure distributions dibsadl in Ex-
ample 2.

Fig. 1. Examples of several embedding methods and their ergodi
classes.

(i — j)iff 3k, (BS):; # 0. We classify each statec X' astran- Proof It is sufficient to prove that there cannot be more tién

sientif it has a consequent of which it is not itself a consequent,linearly independent perfectly secure probability disitions P on
ie,3j € X suchthatli — j) = (j 4 i). Wesayi € Xis n-€lementcovers. We show the proof for= 2 and later present its

non-transientf it is a consequent of every one of its consequents,9eneralization.

Vj e X, (i — j) = (j — i). The setX is decomposed as We defineAthe following matricg[@ 2 (pig)s Pi = P(Xl2 =
X = FU&E U---U &, whereF is the set of all transient states (7)), andQ = (gi5), ¢i,; = @s(Y1 = (4,7)). By defininition of
and&,,a € {1,...,k}, are called ergodic classes. We put two non-MI embedding, we have
transient states into one ergodic class if they are consggjoéeach
other. g = Y, Qs(Y?=(0)XT = (v,w)P(X] = (v,w))
(v,w)EX2
Let matrix Bs havek ergodic classes. Then, there existin- = Z buibuwjDow-
early independent left eigenvectors, denotedrds, ..., ), of v wEX
matrix Bg corresponding to eigenvalug calledinvariant distribu-

tions If 7¥Bs = =), for somea € {1,...,k}, thens(® >  Define matrixD é (dyz ) Of 5'291\_]2 x N?, whered,z ,» =

Oforalli € &, andn® = 0 otherwise. Every other sat-  u1.vibus.v,. If 7S defined as one big row vector of elemepis

isfying 7Bs —= = is obtained by a convex linear combination of and similarlyg, then assuming perfect secyrlty of.cover model w.r.t.
B (P = Q), we have; = pID = p'and thugy'is left eigenvector ob

(a)
;{;T§2]|a .?héls’ét' 'O’fkgr}'O;(érja(;(;zspIfitrer;eaf%eng:’ Zﬁgs[i;n?higtercorresponding to 1. Matri® is stochastic and thus it is sufficient to
s g %, dep Y show that it hag? ergodic classes.

set{ (4, j)|bi,;(B) = 0}. Sinceb; ;(8) = 0iff ¢;; = 0fori # j .

andb;;(8) > 0 for g € (0, fo], the structure of ergodic classes We first show that
dc()ae)s. n.oF depqu ofi (we are nqt interested in particular values of w? (m DN (s (m) v1) and (us (m) va), wi? e X2, 1)
;" if it is positive). Moreover, ifrBs = 7 for somes3 > 0, then

mC = 0 and thus all invariant distributions are independent dfe- 5 5 5. 5 )
causerB = 7l + §'nC = 71 = 7. By this reason, we frequently By ui — wvi we mean that{ is a consequent afi of orderm in
omit the indexg. terms of matrixD. If u2 (m) v#, then there existy — 1 intermediate

(m)



states;w?, . . . ,m—1 wi, such thaidy ,wd,wqw - d,,_jww > 0.
Sincedu%ulz = buy v bus, e, thisimplies the existence of both paths

U; (m) v; of orderm, i« = 1,2. The converse is true by the same
reason.
We show that, x &, a,b € {1,...,k} are the only ergodic

+
classes. 1 ™ v andus 72 s, thenu? " 2 for all

ui,v1 € E andug,v2 € &, because the path from to v; can
be arbitrarily extended by adding self loops of tyjpe- j since all

diagonal terms,_; are positive and thus by (1) we haw@ "™ 5"

vi. Finally by ui,v1 € £, andua,ve € &, vi — u; and by the
same argument? — «?, and therefore, x &, are ergodic classes.
Any other state:? € £, x FUF x £, UF x F must be transient
w.r.t. D, otherwise by (1) we obtain contradiction withh € F for
somei.

This proof can be generalized far > 3 by proper definition
of matricesP, Q, andD. In general, matriXD has sizeN™ x N™.
By similar construction we obtaik™ ergodic classes of generalized
matrix D, however we knowk™ linearly independent distributions.
[ |

4. PERFECT SECURITY AND FISHER INFORMATION

In the next theorem, we show that the FI condition (2) is equiv
alent with perfect security for stego-systems with Ml entiad.
Besides providing a simpler condition of perfect secufiig result
plays a key role in proving the square root law of steganducap
capacity for covers modeled as Markov chains [1].

Theorem 5 [Fisher information conditionThere are exactly™ lin-
early independent probability distribution8 on n-element covers
satisfying the FI conditiorf2). These distributions are perfectly se-
cure w.r.t. B. Every other probability distributior” satisfying(2)
can be obtained by a convex linear combinatiok®finearly inde-
pendent perfectly secure distributions.

Proof From Example 2, we know™ linearly independent perfectly
secure distributions. By Taylor expansion &f3), these distribu-
tions satisfy the FI condition, becaugé3) = 0 = f(0) = 0. It
is sufficient to show that there cannot be more linearly iedejent
distributions satisfying the FI condition.

Similarly as in the previous proof, we reformulate the ttesor
as eigenvector problem and use ergodic class theory tolyivexact
number of left eigenvectors correspondingltoAgain, we present
the proof for the case = 2 and then show how to generalize it.

If P satisfies (2), then the linear term in the Taylor expan-
sion of Qs(y?) w.rt. 3 is zero. By the independence prop-

It is well known ([2, Sec. 2]) that the KL divergence imposes aerty, @Q(y1'lz7) = []', Q(yi|z:)), and the form of matrixB

bound on the performance of the best possible detector. rkall s
3, the leading term in the Taylor expansion of the KL divergenc
is the quadratic term with a constant equal to one half of ibbedf
information w.r.t.3, f(0) = 20%d(8)/98%|s=o. If for some stego-
systemd(3) = 0 for 8 € [0, Bo], then f(0) = 0 from the Taylor
expansion. Even though the opposite does not hold in geriaral
this section we prove that for Ml embedding zero Fisher imi@tion
implies perfect security. In other words, a stego-systertin M|
embedding is perfectly secure fére [0, 5o] if and only if the Fisher
information w.r.t. the parametét is zero, f(0) = 0. This provides
us with a simpler condition for verifying perfect securityanh the
KL divergence. Moreover, the Fisher information is a funéatal
quantity that bounds the variance of minimum variance extns
of B8 (quantitative steganalyzers).

We start by reformulating the conditigf{0) = 0.

Proposition 4 Let P, Qs be probability distributions of cover, stego
objects withn elements embedded with parameterrespectively,
then the Fisher information is zero if and only if the so calfel-
condition is satisfied

Yyl e X" (P(X? =) > 0) = (%Qﬁ(ymﬁzo - O)'
2

Proof The second derivative ef(3) at 3, d” (3), can be written as
prm [ Q8WE)  (Qs(ui) 2) 3
2 (y1)<Qﬁ(y?> (Gan) ) ©®

yhemn QoY1)
whereQj(y1') = #5Qs(yl). By P(yi') = Qp=o(yi), the first
term in the bracket in (3) sums to zero @t= 0, and thusf(0)

is zero iff Q’ﬁ(yil)|/3:0 = 0 is zero for allyy € X" for which

f(8)

(Bg = I + BC), condition (2) has the following form

dQﬁ(y%)’ . oo d £
— = lim P(x?)— ey
W oo =i 2 P g5 [TQatuke
"1/‘1 =
- Z Cayn P(21,y2) + E : Cagya P(y1,22) = 0. (4)
r1EX o €X

We define matril® £ (p; ;) asp;; = P(X? = (i,7)) and repre-
sent it as a row vectgp. If we define matrixd £ (qu?m%) of size
N? x N? as

Cuywy  1Fur # v andug = vo
du%w% = Cug,wy I ur = w1 andus # va (5)
0 otherwise

and diagonal matri; £ (g,z2 ,2) of size N? x N? asg,z2 ,» =
—Cu,,u; — Cus,uy, then equation (4) can be written in a compact
form aspD = p'G. Both matricesD andG are non-negative by
their definitions.

LetH = I+ +(D — G). If we puty = (max,2cx2 ¢,2.u2)
then matrixH is stochastic ang’™ = p'iff pID = p'G and thus (2)
is equivalent with an eigenvalue problem for maffix

First, we observe that far# j ci; > 0iff h(; 4),(5,4) > 0forall
a € X, because by (5)(i,a),(j,a) = Vd(i,a),(j,a) = VCis (the first
case whems = v2). Similarly, fori # j ci; > 0iff k(a4 (a,j) > 0
for all a € X (the second case when = v;). This means that
i — jiff (i,a) — (j,a) wrt. Hfor all a € X and similarly
i — jiff (a,i) — (a,j) w.rt. Hfor all a € X. This can be
proved by using the previous statement. By this rule used gwven
u? € £, x &, we obtainu? — v? andv? — u? forallv? € £, x &
and thust, x & is an ergodic class w.r.H. We show that there can

P™(y?) > 0 as was to be proved. Here, we assume the KLnot be more ergodic classes and thus we have?af them. Ifu?} €

divergenced(3) to be continuous w.r.t.5 which is valid by the
construction of the matri®. [ |

F x &, thenu? has to be transient w.rH, otherwise we will obtain
contradiction withu; € F. This is because the only consequents



of order1 are of type(i,a) — (j,a) or (a,i) — (a,j), therefore
if u € F x &, we choose? € X x &, such that; 4 w1 (u1
is transient and thus sueh must exist). State? must be transient
otherwiseu? «— v# impliesu; < v; which results in contradiction
with v /£ u;. Similarly foru? € £ x FUF x F.

This proof can be generalized far > 3 by assuming larger
matricesP, D, G, andH, obtaining exactly™ linearly independent
perfectly secure distributions satisfying the FI conditio [ |

By the proof of both theorems, the set of all possible peffect
secure cover models w.r.tB is a linear vector space. By Theo-
rem 2.1 from [7, Chapter V, page 175] and by the constructiomf
Example 2, this space is generatedidybasis vectors, where each
basis vector is obtained from some invariant distributiéBo By
Theorem 2.1 from [7, Chapter V, page 175], ergodic clagses €
{1,..., k}, of the stochastic matri& can be obtained from positive
elements of the following matrix imiM = lim, .. = 3" | B
In other words, if we reorder the sét so that the states frody are

first, then the states froif, etc., and as the last the set of transient

states,F, then the matriXM will be block-diagonal, where the-th

block is a positive matrix of sizé,| x |E.| for a € {1,...,k}.

By this fact, the invariant distribution belonging to ergodlasst.,,

7(®) is zero except for indices,, i.e.x* > 0if i € £, and zero
otherwise.

For the F5 embedding algorithm [3], the set of stafés=
{—1024,...,1024}. By the nature of the embedding changes (flip
towards0), there is only one ergodic s€t = {0} andF = X'\ {0}.
Thus, there is only one invariant distribution, which isgitar, 7o =
1 and zero otherwise. By the form of the invariant distribatio no
message can be embedded in such covers.

For the case of LSB embedding ov&t = {0,...,255}, we
have&, = {2a,2a + 1} fora € {0,...,127}, F =0 andwéj) =
Toa+1 —
that LSB embedding evens out the histogram bins. Thus, esurc
realized as a sequence of mutually independent randombiesia
with such a distribution are the only possible perfectlyusesources
w.r.t. LSB embedding. Figure 1 shows examples of matiteasd
ergodic classes of several known algorithms with MI embegldip-
eration.

5. CONCLUSION

The theory of ergodic classes, originally developed for hdar
chains, allows us to gain insight into perfectly securestegstems
with mutually independent embedding operations. We kneat th
some i.i.d. cover sources are perfectly secure w.r.t. samzed-
ding algorithm, however it was not immediately clear, ifstisiet of
perfectly secure sources cannot be larger. An importardlleoy
can be obtained from both theorems if we constrain oursétvst-
tionary cover sources. In this case, for a given embeddiggrishm
we have exactlyt (instead ofk™) perfectly secure stationary cover
sources, which are i.i.d. sources with some invariantidistion.

source completely. This conjecture was proved in [1] ford¢ase of
Markov cover sources under the Ml embedding operation. & tiee
FI condition was used to eliminate all perfectly securest®gstems
from analysis, because it is known that capacity of suchesystis
linear inn.
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