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ABSTRACT

Without any assumption on the cover model, this paper presents a
complete characterization of all perfectly secure stego-systems that
employ mutually independent embedding operation. We show that
for a fixed embedding operation, the only perfectly secure stego-
systems are those whose cover distribution is an element of alinear
vector space with basis vectors determined by the embeddingoper-
ation. Finally, we show that for mutually independent embedding
operation, perfect security as defined by Cachin is equivalent to pos-
itivity of Fisher information with respect to the embeddingchange
rate. This result is important for deriving steganographiccapacity of
covers modeled as Markov chains [1].

Index Terms— steganography, perfect security, mutually inde-
pendent embedding

1. INTRODUCTION

In steganography, the sender and receiver communicate by hiding
their messages in generally trusted media, such as digital images, so
that no warden can distinguish between the original (cover)object
and the object carrying the message–the stego object. Formally, the
security of a stego-system is evaluated using the Kullback-Leibler
divergence between the distributions of cover and stego objects [2].
Systems with zero KL divergence are called perfectly secure.

Formally, a stego-system is a combination of an embedding
algorithm and a cover source. The vast majority of practicalstego-
systems hide messages by modifying individual elements of the
cover using mutually independent embedding operations. This is
the case, for example, for stego-systems that use LSB and±1
embedding, the F5 algorithm [3] and its variations [4], perturbed
quantization [4], MMx [4], as well as for algorithms making larger
modifications, such as variants of 2LSB embedding [5] or stochastic
modulation [6].

In this paper, we provide a complete characterization of perfectly
secure stego-systems for the class of embedding algorithmswith
mutually independent (MI) embedding operations. The coverdis-
tributions of all perfectly secure systems form a linear vector space
spanned by distributions determined by the embedding operation.
Moreover, we show that perfect security (zero KL divergence) is
equivalent to satisfying a simple condition related to Fisher infor-
mation.
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The paper is structured as follows. In Section 2, we introduce
the notation and definitions and review some preliminary facts that
will be put to use later. Section 3 contains the main results of this
paper as well as examples of specific stego-systems to illustrate the
theoretical contributions. Section 5 concludes this work and further
elaborates on its importance.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We will represent ann-element cover object withxn
1 , (x1, . . . , xn) ∈

Xn, X = {1, . . . , N}, wherexn
1 is a realization of a random vari-

ableXn
1 distributed according to some general distributionP over

Xn. The stego objectyn
1 , (y1, . . . , yn) ∈ Xn is assumed to be

a realization of random variableY n
1 distributed according to stego

distributionQβ , whereβ is a scalar parameter capturing the extent
of embedding changes (e.g., it will be helpful to think ofβ as the
change rate).

The definition of steganographic security was given by Cachin [2].

Definition 1 Let P , Qβ be probability distributions of cover, stego
objects withn elements embedded with parameterβ, respectively.
Steganography is said to beperfectly secureiff

d(β) , DKL(P ||Qβ) =
X

yn

1
∈Xn

P (yn
1 ) log

P (yn
1 )

Qβ(yn
1 )

= 0,

or ǫ-secureif d(β) ≤ ǫ.

We assume the impact of embedding with parameterβ ∈ [0, β0]

on thek-th element can be captured using the matrixbi,j(β) ,

Pr(Yk = j|Xk = i) = δi,j +βci,j , for some constantsci,j ≥ 0 for
i 6= j, ci,i = −P

j
ci,j , whereδi,j is the Kronecker delta. In a ma-

trix form, Bβ = I+βC, whereBβ , (bi,j(β)), I is the identity ma-
trix, andC , (ci,j). We further assume that the embedding opera-
tions are mutually independent,Pr(Y n

1 |Xn
1 ) =

Qn

k=1 Pr(Yk|Xk).
By the definition ofbi,j , the matrixBβ is stochastic,

P

j
bi,j = 1.

Finally, we assume thatbi,i(β) > 0 for all β ∈ [0, β0]. Many
embedding methods can be represented in this framework (seeex-
amples in Figure 1). We use matrixBβ as a representation of an
embedding algorithm with MI embedding operation (simply MIem-
bedding).

To simplify the language in this paper, we will speak of security
of a cover source w.r.t. given MI embedding meaning that thecover
model is perfectly secure w.r.t.B, if the resulting stego-system is
perfectly secure. It does then make sense to inquire about all possible
perfectly secure cover sources w.r.t. MI embedding with matrix B.

In the rest of this section we review some results from the the-
ory of ergodic classes [7] that will be later applied to the stochas-
tic matrix Bβ . For statesi, j ∈ X , we call j a consequentof i
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Fig. 1. Examples of several embedding methods and their ergodic
classes.

(i → j) iff ∃k, (Bk
β)i,j 6= 0. We classify each statei ∈ X astran-

sient if it has a consequent of which it is not itself a consequent,
i.e., ∃j ∈ X such that(i → j) ⇒ (j 6→ i). We sayi ∈ X is
non-transientif it is a consequent of every one of its consequents,
∀j ∈ X , (i → j) ⇒ (j → i). The setX is decomposed as
X = F ∪ E1 ∪ · · · ∪ Ek, whereF is the set of all transient states
andEa, a ∈ {1, . . . , k}, are called ergodic classes. We put two non-
transient states into one ergodic class if they are consequents of each
other.

Let matrix Bβ havek ergodic classes. Then, there existk lin-
early independent left eigenvectors, denoted asπ(1), . . . , π(k), of
matrix Bβ corresponding to eigenvalue1, calledinvariant distribu-

tions. If π(a)Bβ = π(a), for somea ∈ {1, . . . , k}, thenπ
(a)
i >

0 for all i ∈ Ea, and π
(a)
i = 0 otherwise. Every otherπ sat-

isfying πBβ = π is obtained by a convex linear combination of
{π(a)|a ∈ {1, . . . , k}}. For a complete reference, see [7, Chapter
V, §2]. The set of ergodic classes for matrixBβ , depends only on
set{(i, j)|bi,j(β) = 0}. Sincebi,j(β) = 0 iff ci,j = 0 for i 6= j
and bi,i(β) > 0 for β ∈ (0, β0], the structure of ergodic classes
does not depend onβ (we are not interested in particular values of
π

(a)
i if it is positive). Moreover, ifπBβ = π for someβ > 0, then

πC = 0 and thus all invariant distributions are independent ofβ, be-
causeπBβ′ = πI + β′πC = πI = π. By this reason, we frequently
omit the indexβ.

3. PERFECTLY SECURE COVER SOURCES UNDER
MUTUALLY INDEPENDENT EMBEDDING OPERATION

In this section, we let matrixB represent an arbitrary MI embed-
ding with k ergodic classesEa and invariant distributionsπ(a), a ∈
{1, . . . , k}. The following example describes a construction of per-
fectly secure cover models w.r.t.B.

Example 2 [Perfectly secure cover models]LetP (2) be a probabil-
ity distribution on2-element cover objects defined asP (2)(X2

1 =

(i, j)) = π
(a)
i π

(b)
j for somea, b ∈ {1, . . . , k}. ThenP (2) is a per-

fectly secure cover model w.r.t.B. This is because

Q
(2)
β

`

Y 2
1 = (i, j)

´

=
“

X

î

bî,iP (X1 = î)
”“

X

ĵ

bĵ,jP (X2 = ĵ)
”

=
`

π(a)
B

´

i

`

π(b)
B

´

j
= π

(a)
i π

(b)
j = P (2)`X2

1 = (i, j)
´

,

and thus both distributionsP (2), andQ
(2)
β are identical, which im-

plies perfect security. Since this construction does not depend on the
particular choice ofa, b ∈ {1, . . . , k}, we can createk2 perfectly
secure cover models w.r.t.B. The probability distributionsP (2) ob-
tained from this construction are linearly independent andform a
k2-dimensional linear vector space. By a similar construction, we
can constructkn n-element linearly independent perfectly secure
cover models w.r.t.B.

We next show that there are no other linearly independent perfectly
secure cover models w.r.t.B.

Theorem 3 [Mutually independent embedding]There are exactly
kn linearly independent perfectly secure probability distributionsP
onn-element covers. Every perfectly secure probability distribution
P w.r.t. B can be obtained by a convex linear combination ofkn

linearly independent perfectly secure distributions described in Ex-
ample 2.

Proof It is sufficient to prove that there cannot be more thankn

linearly independent perfectly secure probability distributionsP on
n-element covers. We show the proof forn = 2 and later present its
generalization.

We define the following matricesP , (pi,j), pi,j = P (X2
1 =

(i, j)), andQ , (qi,j), qi,j = Qβ(Y 2
1 = (i, j)). By defininition of

MI embedding, we have

qij =
X

(v,w)∈X2

Qβ(Y 2
1 = (i, j)|X2

1 = (v, w))P (X2
1 = (v, w))

=
X

v,w∈X

bvibwjpvw.

Define matrixD , (du2

1
,v2

1

) of sizeN2 × N2, wheredu2

1
,v2

1

=

bu1,v1
bu2,v2

. If ~p is defined as one big row vector of elementspi,j

and similarly~q, then assuming perfect security of cover model w.r.t.
B (P = Q), we have~q = ~p D = ~p and thus~p is left eigenvector ofD
corresponding to 1. MatrixD is stochastic and thus it is sufficient to
show that it hask2 ergodic classes.

We first show that

u2
1

(m)→ v2
1 ⇔ (u1

(m)→ v1) and(u2
(m)→ v2), u2

1, v
2
1 ∈ X 2. (1)

By u2
1

(m)→ v2
1 we mean thatv2

1 is a consequent ofu2
1 of orderm in

terms of matrixD. If u2
1

(m)→ v2
1 , then there existm− 1 intermediate



states1w2
1, . . . ,m−1 w2

1 , such thatdu,1wd
1w,2w · · · d

m−1w,v > 0.
Sincedu2

1
,v2

1

= bu1,v1
bu2,v2

, this implies the existence of both paths

ui
(m)→ vi of orderm, i = 1, 2. The converse is true by the same

reason.
We show thatEa × Eb, a, b ∈ {1, . . . , k} are the only ergodic

classes. Ifu1
(m1)→ v1 andu2

(m2)→ v2, thenu2
1

(m1+m2)→ v2
1 for all

u1, v1 ∈ Ea andu2, v2 ∈ Eb, because the path fromui to vi can
be arbitrarily extended by adding self loops of typej → j since all

diagonal termsbj,j are positive and thus by (1) we haveu2
1

(m1+m2)→
v2
1 . Finally by u1, v1 ∈ Ea andu2, v2 ∈ Eb, vi → ui and by the

same argumentv2
1 → u2

1, and thereforeEa × Eb are ergodic classes.
Any other stateu2

1 ∈ Ea × F ∪ F × Ea ∪ F × F must be transient
w.r.t. D, otherwise by (1) we obtain contradiction withui ∈ F for
somei.

This proof can be generalized forn ≥ 3 by proper definition
of matricesP, Q, andD. In general, matrixD has sizeNn × Nn.
By similar construction we obtainkn ergodic classes of generalized
matrix D, however we knowkn linearly independent distributions.

4. PERFECT SECURITY AND FISHER INFORMATION

It is well known ([2, Sec. 2]) that the KL divergence imposes a
bound on the performance of the best possible detector. For small
β, the leading term in the Taylor expansion of the KL divergence
is the quadratic term with a constant equal to one half of the Fisher
information w.r.t.β, f(0) = 2∂2d(β)/∂β2|β=0. If for some stego-
systemd(β) = 0 for β ∈ [0, β0], thenf(0) = 0 from the Taylor
expansion. Even though the opposite does not hold in general, in
this section we prove that for MI embedding zero Fisher information
implies perfect security. In other words, a stego-system with MI
embedding is perfectly secure forβ ∈ [0, β0] if and only if the Fisher
information w.r.t. the parameterβ is zero,f(0) = 0. This provides
us with a simpler condition for verifying perfect security than the
KL divergence. Moreover, the Fisher information is a fundamental
quantity that bounds the variance of minimum variance estimators
of β (quantitative steganalyzers).

We start by reformulating the conditionf(0) = 0.

Proposition 4 LetP , Qβ be probability distributions of cover, stego
objects withn elements embedded with parameterβ, respectively,
then the Fisher information is zero if and only if the so called FI-
condition is satisfied

∀yn
1 ∈ Xn

“

P (Xn
1 = yn

1 ) > 0
”

⇒
“ d

dβ
Qβ(yn

1 )
˛

˛

β=0
= 0

”

.

(2)

Proof The second derivative ofd(β) atβ, d′′(β), can be written as

f(β) = −
X

yn

1
∈Xn

P (yn
1 )

„

Q′′
β(yn

1 )

Qβ(yn
1 )

−
“Q′

β(yn
1 )

Qβ(yn
1 )

”2
«

, (3)

whereQ′
β(yn

1 ) = ∂
∂β

Qβ(yn
1 ). By P (yn

1 ) = Qβ=0(y
n
1 ), the first

term in the bracket in (3) sums to zero atβ = 0, and thusf(0)
is zero iff Q′

β(yn
1 )

˛

˛

β=0
= 0 is zero for allyn

1 ∈ Xn for which

P (n)(yn
1 ) > 0 as was to be proved. Here, we assume the KL

divergenced(β) to be continuous w.r.t.β which is valid by the
construction of the matrixB.

In the next theorem, we show that the FI condition (2) is equiv-
alent with perfect security for stego-systems with MI embedding.
Besides providing a simpler condition of perfect security this result
plays a key role in proving the square root law of steganographic
capacity for covers modeled as Markov chains [1].

Theorem 5 [Fisher information condition]There are exactlykn lin-
early independent probability distributionsP on n-element covers
satisfying the FI condition(2). These distributions are perfectly se-
cure w.r.t. B. Every other probability distributionP satisfying(2)
can be obtained by a convex linear combination ofkn linearly inde-
pendent perfectly secure distributions.

Proof From Example 2, we knowkn linearly independent perfectly
secure distributions. By Taylor expansion ofd(β), these distribu-
tions satisfy the FI condition, becaused(β) = 0 ⇒ f(0) = 0. It
is sufficient to show that there cannot be more linearly independent
distributions satisfying the FI condition.

Similarly as in the previous proof, we reformulate the theorem
as eigenvector problem and use ergodic class theory to give the exact
number of left eigenvectors corresponding to1. Again, we present
the proof for the casen = 2 and then show how to generalize it.

If P satisfies (2), then the linear term in the Taylor expan-
sion of Qβ(y2

1) w.r.t. β is zero. By the independence prop-
erty, (Q(yn

1 |xn
1 ) =

Qn

i=1 Q(yi|xi)), and the form of matrixB
(Bβ = I + βC), condition (2) has the following form

dQβ(y2
1)

dβ

˛

˛

˛

β=0
= lim

β→0

X

x2

1
∈X2

P (x2
1)

d

dβ

2
Y

i=1

Qβ(yi|xi)

=
X

x1∈X

cx1,y1
P (x1, y2) +

X

x2∈X

cx2,y2
P (y1, x2) = 0. (4)

We define matrixP , (pi,j) aspi,j = P (X2
1 = (i, j)) and repre-

sent it as a row vector~p. If we define matrixD , (qu2

1
,v2

1

) of size

N2 × N2 as

du2

1
,v2

1

=

8

>

<

>

:

cu1,v1
if u1 6= v1 andu2 = v2

cu2,v2
if u1 = v1 andu2 6= v2

0 otherwise,

(5)

and diagonal matrixG , (gu2

1
,v2

1

) of sizeN2 × N2 asgu2

1
,u2

1

=

−cu1,u1
− cu2,u2

, then equation (4) can be written in a compact
form as~p D = ~p G. Both matricesD andG are non-negative by
their definitions.

Let H = I + γ(D − G). If we putγ = (maxu2

1
∈X2 gu2

1
,u2

1

)−1,
then matrixH is stochastic and~p H = ~p iff ~p D = ~p G and thus (2)
is equivalent with an eigenvalue problem for matrixH.

First, we observe that fori 6= j cij > 0 iff h(i,a),(j,a) > 0 for all
a ∈ X , because by (5)h(i,a),(j,a) = γd(i,a),(j,a) = γcij (the first
case whenu2 = v2). Similarly, for i 6= j cij > 0 iff h(a,i),(a,j) > 0
for all a ∈ X (the second case whenu1 = v1). This means that
i → j iff (i, a) → (j, a) w.r.t. H for all a ∈ X and similarly
i → j iff (a, i) → (a, j) w.r.t. H for all a ∈ X . This can be
proved by using the previous statement. By this rule used fora given
u2

1 ∈ Ea×Eb, we obtainu2
1 → v2

1 andv2
1 → u2

1 for all v2
1 ∈ Ea×Eb

and thusEa ×Eb is an ergodic class w.r.t.H. We show that there can
not be more ergodic classes and thus we have allk2 of them. Ifu2

1 ∈
F ×E , thenu2

1 has to be transient w.r.t.H, otherwise we will obtain
contradiction withu1 ∈ F . This is because the only consequents



of order1 are of type(i, a) → (j, a) or (a, i) → (a, j), therefore
if u2

1 ∈ F × E , we choosev2
1 ∈ X × E , such thatv1 6→ u1 (u1

is transient and thus suchv1 must exist). Stateu2
1 must be transient

otherwiseu2
1 ↔ v2

1 impliesu1 ↔ v1 which results in contradiction
with v1 6→ u1. Similarly for u2

1 ∈ E × F ∪ F ×F .
This proof can be generalized forn ≥ 3 by assuming larger

matricesP, D, G, andH, obtaining exactlykn linearly independent
perfectly secure distributions satisfying the FI condition.

By the proof of both theorems, the set of all possible perfectly
secure cover models w.r.t.B is a linear vector space. By Theo-
rem 2.1 from [7, Chapter V, page 175] and by the construction from
Example 2, this space is generated bykn basis vectors, where each
basis vector is obtained from some invariant distribution of B. By
Theorem 2.1 from [7, Chapter V, page 175], ergodic classesEa, a ∈
{1, . . . , k}, of the stochastic matrixB can be obtained from positive
elements of the following matrix limitM = limn→∞

1
n

Pn

i=1 Bi.
In other words, if we reorder the setX so that the states fromE1 are
first, then the states fromE2 etc., and as the last the set of transient
states,F , then the matrixM will be block-diagonal, where thea-th
block is a positive matrix of size|Ea| × |Ea| for a ∈ {1, . . . , k}.
By this fact, the invariant distribution belonging to ergodic classEa,
π(a), is zero except for indicesEa, i.e.,π(a)

i > 0 if i ∈ Ea and zero
otherwise.

For the F5 embedding algorithm [3], the set of statesX =
{−1024, . . . , 1024}. By the nature of the embedding changes (flip
towards0), there is only one ergodic setE1 = {0} andF = X \{0}.
Thus, there is only one invariant distribution, which is singular,π0 =
1 and zero otherwise. By the form of the invariant distribution π, no
message can be embedded in such covers.

For the case of LSB embedding overX = {0, . . . , 255}, we
haveEa = {2a, 2a + 1} for a ∈ {0, . . . , 127}, F = ∅ andπ

(a)
2a =

π
(a)
2a+1 = 1

2
and zero otherwise. This leads to the well known fact

that LSB embedding evens out the histogram bins. Thus, sources
realized as a sequence of mutually independent random variables
with such a distribution are the only possible perfectly secure sources
w.r.t. LSB embedding. Figure 1 shows examples of matricesB and
ergodic classes of several known algorithms with MI embedding op-
eration.

5. CONCLUSION

The theory of ergodic classes, originally developed for Markov
chains, allows us to gain insight into perfectly secure stego-systems
with mutually independent embedding operations. We knew that
some i.i.d. cover sources are perfectly secure w.r.t. some embed-
ding algorithm, however it was not immediately clear, if this set of
perfectly secure sources cannot be larger. An important corollary
can be obtained from both theorems if we constrain ourselvesto sta-
tionary cover sources. In this case, for a given embedding algorithm
we have exactlyk (instead ofkn) perfectly secure stationary cover
sources, which are i.i.d. sources with some invariant distribution.

Perfect security of stego-systems with MI embedding is com-
pletely captured using Fisher information formulated in Section 4 as
the FI condition. This result not only provides a simpler andequiva-
lent condition for perfect security, but it finds applications in theoret-
ical steganalysis. For example, in [8], Ker et al. introduced the prob-
lem of steganographic capacity w.r.t. the number of cover elements.
While the capacity of noisy channels is proportional ton, the authors
proposed and practically verified that the capacity of steganographic
channels is only proportional to

√
n if the sender doesn’t know the

source completely. This conjecture was proved in [1] for thecase of
Markov cover sources under the MI embedding operation. There, the
FI condition was used to eliminate all perfectly secure stego-systems
from analysis, because it is known that capacity of such systems is
linear inn.
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