Selection-Channel-Aware Rich Model for
Steganalysis of Digital Images

Toméas Denemark, Vahid Sedighi, Vojtéch Holub
Department of ECE
Binghamton University
Binghamton, NY 13902-6000
{tdenemal,vsedighl}@binghamton.edu
vojtech__holub@yahoo.com

Abstract—From the perspective of signal detection
theory, it seems obvious that knowing the probabilities
with which the individual cover elements are modified
during message embedding (the so-called probabilistic
selection channel) should improve steganalysis. It is,
however, not clear how to incorporate this information
into steganalysis features when the detector is built as a
classifier. In this paper, we propose a variant of the pop-
ular spatial rich model (SRM) that makes use of the se-
lection channel. We demonstrate on three state-of-the-
art content-adaptive steganographic schemes that even
an imprecise knowledge of the embedding probabilities
can substantially increase the detection accuracy in
comparison with feature sets that do not consider the
selection channel. Overly adaptive embedding schemes
seem to be more vulnerable than schemes that spread
the embedding changes more evenly throughout the
cover.

I. INTRODUCTION

Content-adaptive embedding schemes for digital images
change individual pixels with probabilities determined
from the local pixel neighborhood in order to execute the
embedding changes primarily in regions where they are
less detectable, such as textures and noisy areas. The first
adaptive methods described in the literature were designed
for palette images [11]. One could also argue that schemes
that hide message bits in non-zero DCT coefficients are
naturally content adaptive since the changes strongly cor-
relate with complex content. In 2010, the Edge Adaptive
scheme was designed to hide data in pixel pairs with large
differences [16]. The real boom of adaptive schemes started
with the advancement of coding schemes [9] capable of
embedding messages while nearly optimally minimizing
arbitrarily defined additive distortion functions. Examples
include HUGO [17], WOW [13], and the UNTWARD fam-
ily [14].

Detection of steganography that utilizes the knowledge
of the selection channel is much less developed. The very
first attack of this type was described by Bohme at the
rump session at the Information Hiding Workshop in 2005
(and officially published in 2014 [4]). This pertains, how-
ever, to a rather special case of public-key steganography
implemented using LSB replacement and a specific version
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of wet paper codes. While attacks derived using the theory
of statistical hypothesis testing (e.g., [21], [8], [5]) can
incorporate the knowledge of embedding probabilities they
are generally not as effective against modern adaptive
embedding schemes as machine-learning based methods
combined with rich statistical descriptors. Modifying the
latter approach to consider the knowledge of the selection
channel is, however, not easy as witnessed by the futile
effort of the BOSS competition participants [1] attacking
HUGO. In 2012, it was shown that an (approximate)
knowledge of embedding change probabilities can be used
to improve the accuracy of the weighted-stego attack
on naive content-adaptive LSB replacement [19]. In [7],
the authors managed to utilize rather strong artifacts in
the selection channel to mount a very accurate attack
on S-UNIWARD with an improperly chosen stabilizing
constant (also see [14] for more details). Recently, Tang
et al. [20] proposed the first general purpose feature set
that utilizes the selection channel and is effective against
modern content-adaptive steganography methods. Their
attack, which we call in this paper tSRM (thresholded
SRM), computes the residual co-occurrences from only
t percent of pixels with the highest embedding change
probabilities (lowest pixel costs). The value of ¢ that leads
to the best detection depends on the embedded payload
size and the steganographic scheme. The authors reported
the detection only for the WOW algorithm.

Modern content-adaptive embedding schemes men-
tioned above are all based on the same principle — the
sender specifies the costs of changing individual pixels and
then embeds the payload with the minimal total expected
cost. The costs are determined by the local content, which
means the Warden can estimate them from the stego
image. If the Warden knows the payload size or if she can
estimate it, she can also estimate the actual embedding
change probabilities used by the sender (the selection
channel) and hopefully mount an even more powerful
informed attack. For an ignorant Warden, who does not
know the sender’s embedding strategy, the interaction
between the Warden and the sender can be be formu-
lated as a non-cooperative strategic game with optimal



strategy at the Nash equilibrium, which is generally a
different strategy than the one that minimizes the KL
divergence between cover and stego objects [18], [6]. Other
formulations are certainly possible depending on the infor-
mation available to the Warden. Ultimately, the problem
of content-adaptive steganography and selection-channel-
aware steganalysis should be resolved within such a game-
theoretic framework with an accurate statistical model for
images and optimal Warden’s detector. Due to the high
complexity of empirical objects [2], such as digital images,
and the high complexity of solving the ensuing game, it
is however unlikely that optimal practical strategies will
ever be identified.

In this paper, we follow the established paradigm of
forming joint higher-order statistics of neighboring noise
residuals as statistical descriptors. Our approach is rem-
iniscent of the tSRM [20] but incorporates the selec-
tion channel in a different way. The four-dimensional co-
occurrences are formed from all residuals rather than its
proper subset, and, instead of populations, each bin holds
the sum of maximum values of the four embedding change
probabilities at the corresponding residuals. Since this
model, which we call maxSRM, uses the statistic from all
pixels, we obtain a more accurate detection. Additionally,
and in contrast to the tSRM, if the payload size is known
or can be estimated no other parameters need to be
determined to steganalyze with maxSRM. Furthermore,
the detection with maxSRM appears to suffer less when
the embedded payload size is unknown.

In the next section, we introduce the common core of
all experiments in this paper, including the image source,
the classifier used for detection, and three embedding al-
gorithms that will be used in our experiments: WOW [13],
S-UNIWARD [14], and its variant called S-UNIGARD.
The new maxSRM descriptor is explained in Section III.
All experimental results are listed and interpreted in
Section IV. Future directions and a summary appear in
the last Section V.

II. EXPERIMENTAL SETUP

All our experiments were carried out on BOSSbase
1.01 [1] containing 10,000 grayscale 512x512 images. The
detectors were trained as binary classifiers implemented
using the FLD ensemble [15] with default settings. As de-
scribed in the original publication, the ensemble by default
minimizes the total classification error probability under
equal priors Pg = minp,, (Pra + Pup)/2, where Ppa and
Pyp are the false-alarm of missed-detection probabilities.
The random subspace dimensionality and the number of
base learners is found by minimizing the out-of-bag (OOB)
estimate of the testing error, Foop, on bootstrap samples
of the training set as it is an unbiased estimate of the
testing error on unseen data [3]. We evaluate the security
using the Pg measured on the testing set averaged over ten
5000/5000 database splits denoted as Pg. The statistical
spread is the standard deviation.

We selected three adaptive steganographic techniques
that appear to be the state of the art as of writing
this paper (May 2014): the Wavelet Obtained Weights
(WOW) [13], S-UNIWARD implemented with the sta-
bilizing constant ¢ = 1 as described in [14], and its
variant that we call SSUNIGARD (described below). All
three algorithms follow the paradigm of steganography by
minimizing an additive distortion function. Assuming an
ny X ng grayscale cover image X = (x;;), the embedding
starts by computing the costs p;; of modifying pixel z;;
by 1 or by —1 (the costs of both modifications are equal).
An optimal embedding scheme hides the secret message
while minimizing the total cost of embedding (distortion)
D(X,Y) = Y2100 pijlwij # yig), where [P] is the Iverson
bracket [P] = 1 when P is true and [P] = 0 when
P is false, and Y is the stego image. Such an optimal
scheme would modify pixel z;; to z;; + 1 with proba-
bility £;; (and to x;; — 1 with the same probability),
where 3;; = (1 + e*i)~1 [9] with A > 0 determined
from the payload constraint, >2;"3""F H(B;;) = Rn, where
H(z) = —2zlogyx — (1 — Qm) 10g2(1 — 2x) is the ternary
entropy function in bits. In our tests, we used simulators of
the embedding that indeed executed the changes with the
probabilities /3;;. Practical embedding schemes that embed
messages with nearly minimal distortion can be built using
syndrome-trellis codes [9].

S-UNIGARD is built in the same way as S-UNIWARD
with the three Wavelet Daubechies kernels replaced with
Gabor filters (hence the letter 'G’ replacing "W’ in the
embedding scheme name), which are basically a set of
differently oriented sinusoidal patterns modulated by a
Gaussian kernel. Each kernel is obtained by sampling the
following continuous function in R? parametrized by the
wavelength A, the orientation angle 8, the phase offset ¢,
and the standard deviation o of the Gaussian modulation:

u? + 721)2 U
G 0,00 (T, y) = exp (W) cos <27TX + rb) (1)
u= xcosl+ysinb (2)
v = —xsinf + ycosb (3)

In S-UNIGARD, we use A = 2, two offsets ¢ € {0, 7/2},
16 directions 6 € {0,7/16,...,157/16}, v = 0.5, and 0 =
1. The kernels are obtained by sampling G 9.4.0.~(2,y)
at x,y € {—5,—4,...,4,5} giving the filters a support of
11 x 11 pixels (see all 32 Gabor filters in Figure 1). All
kernels are made zero mean (high-pass) by subtracting the
kernel mean from all its elements. Assuming the cover is an
ny X ng grayscale image X = (x;5), 1 <i<nqy, 1 < j < ng,
the cost of changing pixel z;; to z;;%1 (obtaining an image
X{;,5)) and leaving all other pixels intact is computed in
the exact same manner as in S-UNIWARD,
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where Féﬁ)(X) = (X « G(¥)),, is the uvth elements of
the mirror-padded convolution between X and the kth
Gabor filter G*) | and s is a positive stabilizing constant.
This constant affects the selection channel and needs to
be chosen carefully to avoid introducing artifacts into the
selection channel [7]. We determined it by a grid search
on the grid ¢ = {1071°,1071,...,10°} as the value
that minimizes the out-of-bag (OOB) detection error on
BOSSbase 1.01 [10] when steganalyzing with the 12,753-
dimensional SRMQ1 model [12] and the ensemble classi-
fier. The optimum was rather flat around s ~ 1072,

Figure 1. A set of 32 Gabor filters used in S-UNIGARD.

III. MAXSRM

The proposed feature set is a variant of the so-called
spatial rich model (SRM) described in [12]. The maxSRM
is built in the same manner as the SRM but the process of
forming the co-occurrence matrices is modified to consider
the embedding change probabilities Bij estimated from
the analyzed image. The SRM consists of multiple co-
occurrence matrices formed by four neighboring quantized
noise residual samples. Let us assume that R = (7))
is one such noise residual, for example, one that was
obtained by predicting the pixel value z;; as the average
of its horizontal neighbors, r;; = x;; — (@i j—1 + i j+1)/2,
quantized to Q@ = {—2,-1,0,1,2}. The SRM uses 4D co-
occurrences, which are 4D arrays defined as’

nl,n2—3

> [rij=dp,Vk=0,...,3. (5

i,j=1

Clodydads =

In maxSRM, we modify this definition to
nl,n2—3

3 nlris = de,VE = 0,...,3].
ki%%ﬁgﬁi,j—i—k[rz,j dkav 0, 73]

(6)

In other words, instead of adding a 1 to the corre-
sponding co-occurrence bin, we add the maximum of
the embedding change probabilities taken across the four
residuals. This way, those groups of four of pixels with
small probability of being changed will not affect the co-
occurrence values much, while those where at least one

Caodidads =
1,7=1

IThis is an example of a horizontal co-occurrence.
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Figure 2. Four types of co-occurrence scan direction.

Table 1
_EFFECT OF THE CO-OCCURRENCE SCANS ON THE DETECTION ERROR
Pgr. WOW AT 0.4 BPP, THE 338-DIMENSIONAL SQUARE SUBMODEL

OoF SRM.
Type Pg
hv 22.14+0.26
dm 22.2240.33

d2 21.7140.44
dd 21.66+0.29

pixel is likely to change will. We note that the rest of
the process of forming the SRM stays exactly the same,
including the symmetrization by sign and direction and
merging into SRM submodels (see [12] for details). The
proposed maxSRM has thus the same dimensionality as
the SRM, which is 34,671.

To further boost the detection, we investigated another
design component of the SRM, which is the co-occurrence
scan direction. The original SRM uses horizontal and
vertical scans (see the case 'hv’ in Figure 2). In this paper,
we studied three other possibilities shown in the same
figure — diagonal and minor-diagonal directions ('dm’),
and two ’oblique’ directions marked ’d2’ and ’dd’. Because
the oblique directions do not have a mirror symmetry,
they allow collecting twice as much data for the co-
occurrences, making them better populated. We observed
in our experiments that the oblique directions do provide
better detection across all tested algorithms. In Table I,
we give a small example of this positive effect with the
SQUARE SRM submodel (dimension 338) for the WOW
algorithm at 0.4 bpp. The diagonal directions are the worst
while the oblique directions are very similar and give (in
this case) an improvement of 0.4% in the detection error
w.r.t. the ’hv’ scan used in SRM. Thus, we decided to
include in our tests the version of the maxSRM with all
co-occurrence scan directions replaced with the oblique
direction ’d2’. We will call this version of the rich model
the maxSRMd2.

IV. EXPERIMENTS

As our first experiment, we provide the detection re-
sults for all three embedding algorithms (see Section II)
when steganalyzing with SRM, maxSRM, and maxSRMd2
under the ideal case when the steganalyst knows the
embedded payload size. The results, shown in Table II,



Table II
AVERAGE DETECTION ERROR Pg FOR THREE EMBEDDING ALGORITHMS AND FOUR STEGANALYSIS FEATURE SETS.

Algorithm Features 0.05 0.1 0.2 0.3 0.4 0.5
SRM 4572 £ .0026  .4026 £ .0028  .3210 £ .0038  .2553 &+ .0028  .2060 £ .0022  .1683 £ .0023
WOW maxSRM .3595 £ .0017  .3025 £ .0033  .2383 £ .0022 .1943 + .0015 .1623 £ .0038  .1371 £ .0028
maxSRMd2  .3539 4+ .0024 .2997 £ .0023  .2339 £ .0041 .1886 &+ .0036  .1543 £ .0036 .1306 + .0021
tSRM 3765 £ .0035 .3160 £ .0032  .2574 £ .0035 .2143 + .0027  .1815 &£ .0026 .1517 £ .0027
SRM 4533 £ .0026  .4024 £ .0019  .3199 £ .0027 .2571 + .0016  .2037 £ .0032  .1640 £ .0024
S_UNIWARD maxSRM 4209 + .0032  .3684 £ .0033  .2981 £ .0032 .2431 + .0016  .1992 £ .0022 .1633 £ .0028
maxSRMd2  .4180 £ .0025 .3660 &+ .0040 .2886 + .0025 .2360 4 .0022 .1908 + .0025 .1551 £ .0019
tSRM 4391 +.0033  .3935 £ .0013  .3199 £+ .0027 .2571 + .0016  .2037 £ .0032  .1640 + .0024
SRM 4667 £ .0020 4214 £ .0035  .3384 £+ .0015  .2774 + .0024  .2278 £ .0033  .1811 £ .0027
S.UNIGARD maxSRM 4195 £ .0030  .3712 £ .0027  .3002 £ .0022  .2466 + .0022  .2062 £ .0025 .1702 £ .0027
maxSRMd2 4170 4+ .0024 .3673 £ .0018  .2957 £ .0024  .2409 + .0035 .1985 £ .0027 .1647 £ .0028
tSRM 4335 + .0022  .3867 £ .0041  .3205 £+ .0045 .2660 + .0029 .2183 £ .0033 .1782 £ .0025
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Figure 3. Embedding probability for payload 0.4 bpp using WOW
(top right), S-UNIWARD (bottom left), and S-UNIGARD (bottom
right) for a 128 x 128 grayscale cover image shown in top left (a
128 x 128 crop of '1013.pgm’ from BOSSbase).

point out several rather interesting facts. First, while the
security of WOW and S-UNIWARD appears almost the
same under the SRM, when the selection channel infor-
mation is utilized, WOW becomes much more detectable
(for small payloads by more than 10%). This is most likely
because WOW'’s adaptivity is stronger in the sense that
embedding probabilities of S-UNITWARD are more “spread
out” (see Figure 3). Obviously, the difference between
SRM and maxSRM will diminish with a decreasing degree
of adaptivity of the embedding algorithm. Also notice
that while S-UNIGARD appears more secure than S-
UNIWARD under SRM, this difference (=~ 2%) becomes
negligible when the selection channel is utilized. Finally,
the maxSRM is always better than SRM, pointing to the
fact that utilizing the selection channel in the proposed
manner indeed helps steganalysis. Moreover, the compari-
son between maxSRM ans maxSRMd2 shows that the ’d2’
co-occurrence scan is always better than the default "hv’

0.4

. 1 | |
0 0.2 0.3
Payload (bpp)

L
0 0.050.1

Figure 4. Detection error for all three algorithms when steganalyzing
with maxSRMd2 with a fixed test payload (& = 0.1 for WOW and
& = 0.2 for SS-UNIWARD), versus the test payload set to the real
payload, & = a.

making the detection error smaller by as much as ~ 1%.
Since the dimensionality of both models is the same, there
is no reason not to use maxSRMd2 over maxSRM.

Our next experiment was aimed at finding a fixed testing
payload, &, used for computing the embedding probabili-
ties that would provide an overall good performance when
the real payload « is unknown. This will necessarily be
a trade off between losing the detection for small versus
large payloads. Based on tests with all three algorithms,
it appears that a reasonable trade off is achieved when
the test payload is fixed to a medium value of & = 0.2
bpp for S-UNIWARD and S-UNIGARD and to & = 0.1
bpp for WOW. Figures 4 and 5 show the detection error
Pg and its increase when steganalyzing with a fixed test
payload as opposed to the true payload. The performance
drop averaged over payloads is below 1% and exhibits
similar values and similar trends across the three tested
algorithms.

In Figure 6, we compare the maxSRMd2 with the
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Figure 5. Detection error increase when steganalyzing with the

test payload & chosen as in the text and the true payload «. The
payload (z coordinates) were shifted by a small amount to prevent
the markers and error bars from overlapping.

previously proposed tSRM by showing the improvement in
detection error over the SRM under the assumption that
the real payload is known (& = «). The threshold ¢ in
tSRM was optimized for each tested payload and stego
algorithm. While the maxSRMd2 feature set provides
better detection for all three algorithms, the tSRM fails to
improve detection of S-UNIWARD for all payloads larger
than 0.1 bpp and is only marginally effective against S-
UNIGARD for large payloads. The maxSRMd2 consis-
tently outperforms tSRM, sometimes by more than 3%.
Moreover, when the embedded payload size is known or
can be estimated, the maxSRM can be readily used while
applying the tSRM requires running potentially expensive
experiments to determine the best threshold for each pay-
load. Also, we found out that setting a fixed value of the
threshold ¢ in tSRM when the true payload is not known is
much trickier. It appears that one needs to either settle for
a smaller improvement over the entire range of payloads or
sacrifice the improvement (or even take a penalty) for large
payloads (see Figure 5 in [20]). Finally, we wish to point
out that the maxSRM is a generalization of tSRM because
the tSRM feature vector can be computed using maxSRM
by preprocessing the embedding change probabilities, 5;;,
and setting 3;; = 1 when the cost of pixel 4,7 is within
the top t% of costs using and setting it to 0 otherwise.

V. CONCLUSION
While content-adaptive steganography is nowadays a
mature subject, steganalysis that utilizes the probabilistic
selection channel is much less developed. Even though de-
tectors built from tractable cover models using the theory
of statistical hypothesis testing can incorporate Bayesian
priors in a relatively straightforward manner, it is unclear
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Figure 6. Improvement in detection error when steganalyzing with
SRM versus maxSRMd2 or tSRM. The threshold in tSRM was
optimized for each payload. From top down: WOW, S-UNIWARD,
and S-UNIGARD.

how to adapt the detectors built by training classifiers
in heuristically assembled feature spaces. This topic is
relevant as such detectors are indispensable for detecting
modern content-adaptive steganographic schemes.

In this paper, we propose a variant of the spatial rich
model (the so-called maxSRM) modified to incorporate
the knowledge of embedding change probabilities. Even
though the proposed approach is heuristic, it does bring
quite an improvement over features that do not consider
the selection channel and it provides an interesting insight
into the design of steganographic schemes. While the
WOW and S-UNIWARD algorithms exhibit an essentially
identical level of statistical detectability when tested with
SRM, WOW is much more detectable with the selection-
channel-aware maxSRM than S-UNIWARD. This is at-
tributed to the varying degree of adaptivity of both algo-
rithms. Apparently, WOW’s selection channel is “overly
adaptive,” which makes this algorithm more vulnerable to
maxSRM than the other algorithms. Moreover, while S-
UNIGARD appears more secure than S-UNITWARD under



SRM, this difference (= 2%) becomes negligible when the
selection channel is utilized. Steganography designers thus
need to be aware of how the properties of the selection
channel affect statistical detectability when designing fu-
ture steganographic schemes.

The maxSRM also offers the following three important
advantages over the previously proposed thresholded SRM
(tSRM): 1) the detection error is always lower, 2) there is
no need to determine any parameters when the embedded
payload is known or can be estimated, 3) the loss of
detection is less severe when the real payload is unknown.

The code for all tested steganographic algorithms
as well as maxSRM and maxSRMd2 is available from
http://dde.binghamton.edu/download/.
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