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ti
al 
oding methods for 
onstru
ting steganographi
s
hemes that minimize the statisti
al impa
t of embedding. By asso
iating a 
ost of an embedding 
hange withevery element of the 
over, we �rst derive bounds on the minimum theoreti
ally a
hievable embedding impa
tand then propose a framework to a
hieve it in pra
ti
e. The method is based on syndrome 
odes with low-densitygenerator matri
es (LDGM). The problem of optimally en
oding a message (e.g., with the smallest embeddingimpa
t) requires a binary quantizer that performs near the rate-distortion bound. We implement this quantizerusing LDGM 
odes with a survey propagation message-passing algorithm. Sin
e LDGM 
odes are guaranteedto a
hieve the rate-distortion bound, the proposed methods are guaranteed to a
hieve the minimal embeddingimpa
t (maximal embedding e�
ien
y). We provide detailed te
hni
al des
ription of the method for pra
titionersand demonstrate its performan
e on matrix embedding.Keywords: Steganography, embedding impa
t, low-density 
odes, survey propagation, matrix embedding1. INTRODUCTIONIn passive warden steganography, the goal is to 
ommuni
ate as many bits as possible without introdu
ingstatisti
ally dete
table artifa
ts into the 
over obje
t. In pra
ti
e, a steganographi
 s
heme is 
onsidered se
ureif no existing atta
k 
an distinguish between 
over and stego obje
ts with a su

ess better than random guessing.Formal de�nition of steganographi
 se
urity was given by Ca
hin.3The se
urity of a steganographi
 s
heme is a fun
tion of its attributes, whi
h are (1) the 
over obje
t sour
ewhose properties are known to the atta
ker (Ker
kho�s' prin
iple), (2) the embedding operation that is appliedto individual 
over elements to embed a message, and (3) the sele
tion rule a

ording to whi
h 
over elements aresele
ted for embedding. For the sake of 
on
reteness and without loss of generality, at times we will be referringto the 
over obje
t as image and the 
over elements as pixels.The statisti
al impa
t of embedding at a given pixel depends on many fa
tors, su
h as the 
hara
ter ofembedding modi�
ations, their amplitude, lo
al pixel neighborhood, et
. Assuming ea
h pixel 
an be assigneda number that measures the statisti
al impa
t of making an embedding 
hange at that pixel, we are interestedin the minimal possible impa
t needed to embed m ≤ n bits in a 
over obje
t 
onsisting of n pixels. If theembedding impa
t is de�ned simply as the number of embedding 
hanges d, it is known1 that d ≤ nH−1(m/n),where H−1(x) is the inverse of the binary entropy fun
tion H(x) = −x log2 x − (1 − x) log2(1 − x) on [0, 1/2].For a �xed relative message length α = m/n, this bound is a
hievable using syndrome 
odes of length n anddimension n −m as n → ∞.8 Pra
ti
al 
odes were proposed in.1, 2, 6, 7, 14, 15 Unfortunately, their performan
eis not very 
lose to the bound. In this paper, we study the problem of minimizing the embedding impa
t, deriveappropriate bounds, and propose a general framework using whi
h pra
ti
al near-optimal embedding s
hemes
an be 
onstru
ted.The paper is stru
tured as follows. After introdu
ing some basi
 
on
epts, in Se
tion 2 we de�ne embeddingimpa
t in steganography and give a pre
ise problem formulation. In Se
tion 3, we des
ribe the building blo
ksof the proposed framework for 
onstru
ting embedding s
hemes with minimal embedding impa
t. We startSe
tion 4 with explaining the relationship between optimal embedding and a
hieving the rate-distortion boundJ.F.: E-mail: fridri
h�binghamton.edu, Telephone: +1 607 777 6177, Fax: +1 607 777 4464



in sour
e 
oding. Then, we introdu
e the 
entral element of near-optimal embedding s
hemes�the binaryquantizer realized using LDGM 
odes with survey propagation message-passing algorithm. Se
tion 5 explainsother missing elements of the embedding s
heme and the extra
tion algorithm. In Se
tion 6, we demonstrate theperforman
e of the proposed framework on matrix embedding. The paper is 
on
luded in Se
tion 7.2. STEGANOGRAPHIC EMBEDDING SCHEMEThroughout the text, boldfa
e symbols denote ve
tors or matri
es while the 
aligraphi
 font is reserved forsets. The 
over obje
t is a sequen
e of n elements g = (g1, . . . , gn) ∈ Gn, where G = {0, . . . , 2r − 1} and
r is the number of bits needed to des
ribe ea
h element. Most steganographi
 s
hemes work with a �nite�eld representation of g obtained through some symbol-assignment fun
tion symb : G → Fq. For example,
symb(gi) = gi mod 2 (symb(gi) = gi mod 3) assign a bit (ternary symbol) to ea
h 
over element. Thus, the 
overobje
t g is represented as a ve
tor x ∈ Fnq .A steganographi
 s
heme is a pair of embedding and extra
tion mappings Emb : Fnq×M → Fnq , Ext : Fnq → Msatisfying

Ext(Emb(x,M)) = M, ∀x ∈ F
n
q , ∀M ∈ M, (1)where M is the set of all messages M that 
an be 
ommuni
ated. We say that the embedding 
apa
ity of thes
heme is log |M| bits. Emb(x,M) = y is the �nite �eld representation of the stego obje
t g′ obtained bymodifying g so that symb(g′i) = yi. For example, in LSB embedding with symb(gi) = gi mod 2, the LSB of thebinary representation of gi is �ipped. In ±1 embedding, gi is randomly 
hanged by 1 or −1. We note that thenature of the modi�
ation has a major impa
t on the se
urity of the steganographi
 s
heme.The impa
t of making an embedding 
hange at pixel i will be measured using a s
alar value ρi ≥ 0. The totalembedding impa
t is then

D(x,y) = ‖x − y‖D =
n
∑

i=1

ρi|xi − yi|. (2)We 
an interpret ρi as the 
ost of making an embedding 
hange at pixel i. This dete
tability measure shouldbe designed to 
orrelate with the statisti
al dete
tability of the embedding 
hanges. In pra
ti
e, ρi is usuallyproposed using heuristi
 prin
iples. For example, for a non-negative parameter α and weight fa
tors ωi ≥ 0

ρi = ωi|gi − g′i|
α. (3)If the embedding 
hange is probabilisti
, then we understand (3) as the expe
ted value. Below, we give a fewexamples of (3) typi
ally used in steganography.If ωi = 1 for all i and |gi − g′i| = 1, D is the total number of embedding 
hanges. For ωi = 1 and α = 2, Dis the energy of modi�
ations. Wet paper 
oding6 
an be modeled by setting ωi = 1 for i ∈ Dry and ωi = 0otherwise, for some index set Dry ⊂ {1, . . . , n}. In general, the weighting fa
tors may depend on the lo
al textureto re�e
t the fa
t that embedding 
hanges in textured (or noisy) areas are more di�
ult to dete
t than 
hangesin smooth segments of the 
over image.The impa
t ρi may also be determined from some side-information available to the sender as in PerturbedQuantization steganography (PQ).5 For example, let us assume that the 
over is a TIFF image sampled at 16bits per 
hannel. The sender wishes to embed a message while de
reasing the 
olor depth to a true-
olor 8-bitper 
hannel image while minimizing the 
ombined quantization and embedding distortion. Let zi be the 16-bit
olor value and let Q = 28 be the quantization step for the 
olor depth redu
tion. The quantization error is

ei = Q|zi/Q− [zi/Q]|, 0 ≤ ei ≤ Q/2, and the error when rounding zi to the opposite dire
tion is Q− ei leadingto embedding distortion as the di�eren
e between both errors ρi = Q − 2ei. In PQ, 
oe�
ients are sele
ted forwhi
h ei ≈ Q/2 be
ause for su
h 
oe�
ients, the embedding distortion is the smallest. Also note that in this
ase, sin
e the quantization error is approximately uniform on [−Q/2, Q/2], when sorting ρi by their values theresulting pro�le will be well modeled with a straight line.We point out that (2) impli
itly assumes that the embedding impa
t is additive be
ause it is de�ned as asum of dete
tability measures at individual pixels. In general, however, the embedding modi�
ations 
ould be



intera
ting among themselves, re�e
ting the fa
t that making two 
hanges to adja
ent pixels might be moredete
table than making the same 
hanges to two pixels far apart from ea
h other. A dete
tability measure thattakes intera
tion among pixels into a

ount would not be additive. If the density of embedding 
hanges is low,however, the additivity assumption is plausible be
ause the distan
es between modi�ed pixels will generally belarge and the embedding 
hanges will not interfere mu
h.2.1. Problem formulationThe 
entral problem investigated in this paper is design of steganographi
 s
hemes whose expe
ted embeddingimpa
t E[D(x,y)] is as small as possible for 
overs of length n, embedding 
apa
ity m, and dete
tability measure
ρi. The expe
ted value is taken over all 
over obje
ts x and messages of length m.From now on, we will 
onstrain ourselves to the binary 
ase Fq = GF(2) when the symbol-assignment fun
tionassigns a bit to ea
h 
over element. In Appendix A, we show that for the binary 
ase the minimal expe
tedembedding impa
t is

D(n,m, ρ) =

n
∑

i=1

piρi, (4)where
pi =

e−λρi

1 + e−λρi
, (5)and λ is given by the following 
onstraint

n
∑

i=1

H(pi) = m, (6)where H(x) is the binary entropy fun
tion. Moreover, the embedding operation will on average modify the i-thpixel with probability pi. Thus, if we design an embedding s
heme that modi�es pixels with these probabilitiesand 
ommuni
ates m bits, it will leave the minimal possible embedding impa
t.3. THE BASIC FRAMEWORKIn this se
tion, we des
ribe the framework for 
onstru
ting near-optimal embedding s
hemes using syndrome
odes. The individual elements from whi
h the framework is 
omposed are explained in detail in the next twose
tions. From now on, all ve
tors are 
olumn ve
tors and all arithmeti
 operations between binary ve
tors andmatri
es are 
arried in the GF(2). A good text on 
oding theory is.17Let us assume that the re
eiver knows the relative message length α = m/n and thus the number of se
retmessage bits m. Indeed, this 
an be either pre-agreed or a small, key-dependent portion of the 
over 
an bereserved to 
ommuni
ate a suitably quantized α en
oded using a few bits. Let C be an [n, n−m] binary 
ode Cwith an n× (n−m) generator matrix G and an m×n parity 
he
k matrix H. Both matri
es are shared betweenthe sender and the re
ipient. Let C(m) = {u ∈ {0, 1}n|Hu = m} be the 
oset 
orresponding to syndrome
m ∈ {0, 1}m (m is the se
ret message). The following embedding s
heme 
ommuni
ates m bits in an n-element
over x

y = Emb(x,m) , arg min
u∈C(m)

‖x − u‖D

Ext(y) = Hy = m. (7)Here, y are the bits assigned to the stego image. In other words, in an attempt to minimize the embeddingimpa
t, the sender sele
ts su
h a member y of the 
oset C(m) that is 
losest to x (
losest in metri
 ‖.‖D).Let vm ∈ C(m) arbitrary. Then,
min

u∈C(m)
‖x− u‖D = min

c∈C
‖x − (vm + c)‖D = D(x − vm, C) = min

w∈{0,1}n−m
‖x − vm − Gw‖D , (8)where we denoted by D(x − vm, C) the distan
e between x − vm and C. From (8), we see that embedding isa binary quantization problem. The sender needs to �nd w ∈ {0, 1}n−m su
h that Gw is 
losest to x − vm.



Alternatively, we 
an say that the sender is 
ompressing the sour
e bit sequen
e z = x−vm to n−m informationbits w so that the re
onstru
ted ve
tor Gw is as 
lose to the sour
e sequen
e as possible. Let us denote the
losest 
odeword Gw as cm,x.Assuming there exists an e�
ient algorithm for �nding both vm and cm,x, the stego obje
t y is
y = x + cm,x − z = cm,x + vm. (9)Four things need to be supplied to make the des
ription of this embedding s
heme 
omplete. We need todes
ribe the pro
ess by whi
h we generate the 
ode, the algorithm for �nding vm, and the algorithm for binaryquantization. We also need to explain why the distortion of this embedding s
heme is 
lose to the bound (4).The most di�
ult step in the proposed s
heme is the binary quantization. In fa
t, it di
tates the 
hoi
e of the
ode and determines the 
omputational 
omplexity. This is why we start with it in the next se
tion.4. BINARY QUANTIZATION USING LDGM CODESIn this se
tion, we give the implementation details for the binary quantizer, whi
h is the 
entral element inour embedding s
heme based on syndrome 
odes. Here, we intentionally fo
us on a pra
ti
al des
ription of themethod to enable the reader to implement the embedding s
heme without being ne
essarily familiar with allte
hni
al details of the underlying material. We refer the reader to the original publi
ations10, 16 for more details.We lay out the method for the spe
ial 
ase when all ρi are the same, postponing the non-
onstant dete
tabilitymeasure to our future work. In fa
t, we believe that the same framework 
an be used after some adjustments.The modi�
ations are pointed out in the text.When all ρi are the same, D is simply the number of embedding 
hanges and the problem of minimizing theembedding impa
t turns into what is known in steganography as Matrix Embedding.4 The quantization task(8) is equivalent to �nding the 
oset leader of C(m), whi
h is an NP hard problem. From the binary quantizationinterpretation, the rate-distortion theory implies that the rate R = 1 −m/n of any sour
e en
oding algorithmthat 
ompresses n bits into n−m bits is bounded by R = 1 −m/n ≤ 1 −H(d), where d = D/n is the averagedistortion per bit. Denoting the average number of message bits embedded per unit distortion by e = m/D andre
alling that α = m/n is the relative message length, the rate-distortion bound is re
ognized in its equivalentform as a bound on the maximal embedding e�
ien
y e of any Matrix Embedding s
heme

e ≤
α

H−1(α)
. (10)It is known8 that for �xed α and n → ∞ this bound is saturated for almost all linear 
odes. This explainswhy the proposed framework is near-optimal for n su�
iently large. The big problem, of 
ourse, is how to �nd
odes for whi
h e�
ient algorithms exist for large n. Stru
tured 
odes1, 2, 14, 15 and random 
odes6, 7 that werepreviously proposed do not perform too 
lose to the bound and their 
omplexity grows too qui
kly.Wainwright and Maneva16 re
ently showed that duals of LDPC 
odes 
alled Low Density Generator Matrix
odes (LDGM) 
ombined with Survey Propagation (SP) message-passing algorithms 
ould be used to 
onstru
tlow-
omplexity binary quantizers with performan
e very 
lose to the rate-distortion bound. Subsequent workproved that with n → ∞ 
ompound low density 
odes saturate the bound with matri
es whose number of onesin rows and 
olumns is bounded.11 We use the 
onstru
tion given in16 to implement near-optimal embeddings
hemes.We start with the des
ription of the generator matrix G. For a given message length α, we sele
t G as theparity 
he
k matrix of an LDPC 
ode optimized for the binary symmetri
 
hannel (BSC) with error probability

p = 1 − α. The matri
es are generated randomly but with a 
onstraint that the number of ones in ea
h rowfollows a prespe
i�ed optimized irregular distribution. Des
ription of algorithms for generating the distributionsis given in12 and an intera
tive pra
ti
al algorithm for their generation is available from http://lth
www.epfl.
h/resear
h/ldp
opt/. Furthermore, as explained in more detail in Se
tion 5, we additionally prepro
ess G bypermuting its rows and 
olumns to enable easy �nding of the 
oset member vm and fast message extra
tion.



ca cb cc cd ce cf

a b c d e f

wi wj wk

G =

















1 0 1
0 1 0
1 0 0
0 0 1
1 1 1
0 0 1

















ca + wi + wk = 0
cb + wj = 0
cc + wi = 0
cd + wk = 0

ce + wi + wj + wk = 0
cf + wk = 0Figure 1. Fa
tor graph representation of a linear 
ode with generator matrix G.4.1. Graph representation of a 
odeEa
h 
ode C 
an be represented as a fa
tor graph in the following manner. Assuming G is full rank, for ea
h
odeword c ∈ C there exists exa
tly one w ∈ {0, 1}n−m, c = Gw. Thus, ea
h 
odeword c 
an be uniquelyasso
iated with a ve
tor of 2n−m bits (c,w), 
alled extended 
odeword, satisfying

[I,G]

(

c

w

)

= 0, (11)where I is the n× n unity matrix. Therefore, (11) 
an be viewed as a de�nition of a 
ode via a bipartite graphwith two types of nodes�n 
he
k nodes and 2n−m variable nodes. Consider, for example, the 
ode de�ned inFigure 1 with generator matrix G. The bipartite graph on the left has 6 
he
ks a, . . . , f and 9 variable nodes.We now introdu
e the following terminology and notation for fa
tor graphs. The bits 
onne
ted to the 
he
ks�from above� ca, cb, cc, . . . will be 
alled sour
e bits and the bottom bits wi, wj , wk will be 
alled information bits.The set of all 
he
ks is denoted C and the set of all information bits V . The set of all 
he
ks 
onne
ted to aninformation bit i is denoted C(i) and the index set of all information bits 
onne
ted to 
he
k a is denoted V (a).We further denote V (a) = V (a) ∪ {a}, where index a is used for the sour
e bit za asso
iated with 
he
k a. Forour example above, C(i) = {a, c, e}, V (a) = {i, k}, V (a) = {i, k, a}.4.2. Belief-propagationOne way to look at the quantization problem (8) is that z = x − vm is a noisy 
odeword in a binary symmetri

hannel (BSC) with �ip probability p < 1/2 and we wish to perform maximum likelihood de
oding and �nd the
losest 
odeword cm,x to z. In LDPC 
odes, this problem is approa
hed using belief-propagation (BP) message-passing algorithm. It starts by forming the following probability distribution p(v,w) over the spa
e of all possiblebinary ve
tors (v,w) ∈ {0, 1}2n−m. Let φa(va, wV (a)) be the XOR of all bits from V (a). Then,
p(v,w) =

1

Z

∏

i∈V

ψi(wi)
∏

a∈C

ψa(va)
∏

a∈C

(1 − φa(va, wV (a))), (12)where Z is the normalization fa
tor, ψi(wi) = 1/2, ∀i, and ψa(va) = 1 − p when va = za and ψa(va) = p when
va 6= za. Note that p(v,w) = 0 for extended 
odewords not satisfying the XOR-SAT problem [I,G]

(

v

w

)

= 0.Also note that the 
hoi
e of information bits wi does not in�uen
e the probability while the mismat
h betweensour
e bits za and va is penalized a

ording to the probability of bit �ipping in the BSC. We denote by pi(0) themarginal probability
pi(wi = 0) =

1

Z

∑

v∈{0,1}n

∑

w∈{0,1}n−m

wi=0

p(v,w),where Z is a normalization fa
tor. A similar expression 
an be obtained for pi(1). The information bits are setto either 0 or 1 based on whi
h marginal probability is larger. When the 
ode graph is 
y
le-free (a tree) the



marginal probabilities 
an be 
al
ulated e�
iently using the belief-propagation algorithm. The algorithm is alsoused on graphs with 
y
les (su
h as our bipartite graph) and gives good results.The BP algorithm is of iterative nature and 
onsists of rounds in whi
h 
he
ks pro
ess the messages theyre
eive from their neighboring information bits and send ba
k messages to the information bits. The informationbits pro
ess the messages re
eived from their 
he
ks and send messages ba
k to their 
he
ks. The message sentby 
he
k a to information bit i in the ℓ-th iteration is the ordered pair (M
(ℓ)
a→i(0),M

(ℓ)
a→i(1)) and the message frominformation bit i to 
he
k a in the ℓ-th iteration is (M

(ℓ)
i→a(0),M

(ℓ)
i→a(1)). The update formulas are

M
(ℓ)
i→a(wi) =

∏

b∈C(j)\a

M
(ℓ−1)
b→i (wi)

M
(ℓ)
a→i(wi) =

∑

wV (a)\i

(1 − φa(va, wV (a)))
∏

j∈V (a)\i

M
(ℓ)
j→a(wj).After normalizing the messages so that in ea
h round M (ℓ)

i→a(0) +M
(ℓ)
i→a(1) = 1, the messages have the followingprobabilisti
 interpretation. Che
k a sends to its neighboring information bit i the probability that it is satis�edgiven the sour
e sequen
e z and the messages re
eived from all information bits other than i in the previousround. Information bit i sends to its neighboring 
he
k a the probability that it is 0 (or 1) given the informationre
eived from its neighboring 
he
ks other than a in the previous round. The sour
e bits always send the samemessage to their 
he
ks: (Pr{va = 0|za}, P r{va = 1|za}), whi
h is either (p, 1−p) or (1−p, p). The whole pro
essis initialized by starting with sour
e bits sending their messages to the 
he
ks who forward the messages to theinformation bits (the initial message is denoted (M

(0)
i→a(0),M

(0)
i→a(1))). The BP algorithm is run till it 
onverges(message ve
tors do not di�er in two 
onse
utive iterations) and the marginals are then 
omputed from the �xedpoint message M̂ in the ℓ̂-th iteration as

p(wi) =
∏

b∈C(i)

M̂
(ℓ̂)
b→i(wi).The information bits are �nally determined by 
hoosing the value of wi with a larger pi(wi).4.3. Survey propagationThe problem with the BP is that it 
onverges only when z is already 
lose (within the error-
orre
ting distan
eof the asso
iated LDPC 
ode with parity 
he
k matrix G), otherwise it does not 
onverge. This is known asthe folklore statement �LDPCs are poor quantizers.� Be
ause z is determined by the (random) message m, itis unlikely to be 
lose to a 
odeword. As a result, the BP algorithm 
annot be used for embedding. The spa
eof all 
odewords essentially breaks up into disjoint 
lusters inside whi
h the BP will �nd the 
losest 
odeword.Survey propagation is an algorithm for �nding the 
losest 
luster to z. It is again a message-passing algorithmin whi
h information bits are set to their values through a series of de
imation and message-passing steps.Similar to BP, in the SP algorithm the sour
e and information bits send messages to 
he
ks and then 
he
kspro
ess the re
eived messages and send messages to information bits. The bits again pro
ess the re
eived messagesand send messages ba
k to 
he
ks, et
. The pro
ess stops when the messages sent by information bits intwo 
onse
utive passes di�er by less than a small predetermined bound. After the message-passing algorithm
onverged, sele
ted information bits are set to spe
i�
 bits and the bipartite graph is simpli�ed. The message-passing pro
eeds again on the simpli�ed graph till 
onvergen
e, a portion of the information bits are set to bits,the graph is again simpli�ed, and the whole pro
edure repeats till all information bits are determined. Onepass of the message-passing updates in both dire
tions will be 
alled iteration. The pro
ess of assigning the bitsand simplifying the graph is 
alled de
imation. The whole pro
ess of running the message-passing updates till
onvergen
e followed by de
imation is one round.The messages ex
hanged by bits and 
he
ks are �ve-dimensional ve
tors of non-negative real numbers. In the ℓ-th iteration, the i-th information bit sends to 
he
k a the ve
torM(ℓ)

i→a = (M
0f (ℓ)
i→a ,M

1f (ℓ)
i→a ,M

0w (ℓ)
i→a ,M

1w (ℓ)
i→a ,M

∗ (ℓ)
i→a )



Bits to checks update rules

M
0f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i

M
1f (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
b→i +M

1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i

M
0w (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
0f (ℓ−1)
b→i +M

0w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
0w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
0f (ℓ−1)
c→i

∏

b∈C(i)\{a,c}

M
0w (ℓ−1)
b→i

M
1w (ℓ)
i→a =

∏

b∈C(i)\{a}

[

M
1f (ℓ−1)
b→i +M

1w (ℓ−1)
b→i

]

−
∏

b∈C(i)\{a}

M
1w (ℓ−1)
b→i −

∑

c∈C(i)\{a}

M
1f (ℓ−1)
c→i

∏

b∈C(i)\{a,c}

M
1w (ℓ−1)
b→i

M
∗ (ℓ)
i→a = winfo

∏

b∈C(i)\{a}

M
∗ (ℓ−1)
b→i

(13)
∏

Checks to bits update rules

M
0f (ℓ)
a→i =

1

2

(

∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a +M

1f (ℓ)
j→a

]

+
∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a −M

1f (ℓ)
j→a

]

)

M
1f (ℓ)
a→i =

1

2

(

∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a +M

1f (ℓ)
j→a

]

−
∏

j∈V̄ (a)\{i}

[

M
0f (ℓ)
j→a −M

1f (ℓ)
j→a

]

)

M
0w (ℓ)
a→i =

∏

j∈V̄ (a)\{i}

[

M
∗ (ℓ)
j→a +M

1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

− wsou

∏

j∈V (a)\{i}

[

M
1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

M
1w (ℓ)
a→i = M

0w (ℓ)
a→i

M
∗ (ℓ)
a→i =

∏

j∈V̄ (a)\{i}

[

M
∗ (ℓ)
j→a +M

1w (ℓ)
j→a +M

0w (ℓ)
j→a

]

(14)
∏

∈ \{ }

[ ]

Bias equations calculated in ℓ-th iteration

µi(0) =
∏

a∈C(i)

[

M
0f (ℓ)
a→i +M

0w (ℓ)
a→i

]

−
∏

a∈C(i)

M
0w (ℓ)
a→i −

∑

b∈C(i)

M
0f (ℓ)
b→i

∏

a∈C(i)\{b}

M
0w (ℓ)
a→i µi(∗) = winfo

∏

a∈C(i)

M
∗ (ℓ)
a→i

µi(1) =
∏

a∈C(i)

[

M
1f (ℓ)
a→i +M

1w (ℓ)
a→i

]

−
∏

a∈C(i)

M
1w (ℓ)
a→i −

∑

b∈C(i)

M
1f (ℓ)
b→i

∏

a∈C(i)\{b}

M
1w (ℓ)
a→i

(15)
Figure 2. Update equations for message-passing in the SP algorithm.and the a-th 
he
k sends to the i-th information bit the ve
torM(ℓ)

a→i = (M
0f (ℓ)
a→i ,M

1f (ℓ)
a→i ,M

0w (ℓ)
a→i ,M

1w (ℓ)
a→i ,M

∗ (ℓ)
a→i ).The sour
e bits always send the same message to their 
he
ks :

M(ℓ)
za→a =

(

ψa(0), ψa(1), 0, 0, wsou
)

, (16)where wsou is a 
onstant, typi
ally wsou = 1.1, and ψa(1) = zae
γ + (1 − za)e

−γ , ψa(0) = 1
ψa(1) . We note that

γ > 0 is a 
onstant and za is the a-th 
omponent of ve
tor z(r) to be 
ompressed in the r-th round, z(1) = z.The parameter γ re�e
ts the e�ort of the message-passing algorithm to �nd a 
odeword cm,x as 
lose to z aspossible. The larger the γ, the stronger is the e�ort. On the other hand, the stru
ture of the 
ode C imposes alimit on how strong this e�ort 
an be. By assigning to ea
h sour
e bit za its own parameter γa, we 
ould 
ontrolthe probability of ea
h sour
e bit being preserved and thus 
ontrol the probability of making an embedding
hange at that pixel. This should enable us to 
onstru
t embedding s
hemes for an arbitrarily de�ned (e.g.,non-
onstant) dete
tability measure ρ. We leave this dire
tion to our future work.4.4. Detailed des
ription of SP algorithmWe now give a detailed des
ription of the SP algorithm. As a template, we will use the pseudo
ode from Figure 3.It de�nes two pro
edures: the main fun
tion SP() and SP_iter() that implements the message-passing iterations.



pro
edure w = SP(G, z)while not all_bits_fixed(w)bias = SP_iter(z, G)bias = sort(bias)if max(bias)>tnum = min(num_max, num_of_bits(bias>t))elsenum = num_min[G,z,w℄ = de
_most_biased_bits(G,z,w,num)endend
pro
edure bias = SP_iter(z, G)M_zaa = normalize(
al
_sour
e_message(z))M_ai = send_sr
_message(G, M_zaa)while |M_ai_old-M_ai|<e OR iter<max_iterM_ai_old = M_aiM_ia = normalize(
al
_ia(M_ai))M_ai = normalize(
al
_ai(M_ia, M_zaa))if iter>start_damp then M_ai = normalize(damp(M_ai))iter = iter+1endbias = 
al
_bias(M_ai)endFigure 3. Pseudo
ode for the SP algorithm. This 
ode is dis
ussed in detail in Se
tion 4.4.The SP algorithm (SP() fun
tion) starts its �rst round with a bipartite graph G(1) representing the fa
torgraph of the linear 
ode with generator matrix G and a ve
tor of sour
e bits z(1) = z. Using these parameters,we run SP_iter() to 
al
ulate the bias Bi = |µi(1) − µi(0)| for ea
h free info bit (in the beginning, all info bitsare free). The bias Bi expresses the tenden
y of ea
h free info bit to be set to a spe
i�
 value. In the next step,we use this information to sort the free info bits a

ording to their bias and we sele
t num most biased info bitsto be set by de
imation in this round. We use the following de
imation strategy: set num to the number of freeinfo bits with Bi > t (
onstant threshold), but no more than num_max. If there are no Bi > t, set num to somesmall 
onstant num_min. The �nal step is the de
imation fun
tion de
_most_biased_bits(). The values of the
onstants num, num_max, num_min will be dis
ussed in Se
tion 6.The purpose of the de
imation fun
tion is to set a given number of the most biased info bits, redu
e the graph

G(1) and the ve
tor z(1), and obtain a new graph G(2) and ve
tor z(2) for the next round. The pro
ess of graphredu
tion is as follows: set the num most biased info bits to one if µi(1) > µi(0), otherwise set them to zero.For ea
h info bit i and its set value wseti , do the following operation: z(2)
a = XOR(z

(1)
a , wseti ), ∀a ∈ C(i), where

z
(2)
a = z

(1)
a for ea
h un
hanged 
he
k. This operation 
reates an equivalent sour
e ve
tor for the next round.Finally, the graph G

(2) is obtained from G
(1) by removing all info bits that were set in
luding their in
identedges.After the de
imation step, we obtain a new pair of input parameters G

(2) and z(2) prepared for the nextround of the SP_iter() fun
tion. Applying these steps again, we obtain a smaller graph G(3) and a new sour
eve
tor z(3). The SP algorithm ends in the r-th round when the graph G(r) does not 
ontain any edges (all infobits were set).To �nalize the des
ription of the algorithm, we need to des
ribe the SP_iter() fun
tion in some round r.This fun
tion takes the sour
e ve
tor z(r) and graph G(r) and returns a ve
tor of biases for ea
h free info bit.The 
ore of this fun
tion is the message-passing iteration pro
ess. This pro
ess is initiated by sending messages
M

(0)
za→a, de�ned in (16), from sour
e bits in graph G(r) to their 
he
ks. Che
ks forward these messages totheir neighboring info bits and the pro
ess 
ontinues by applying the update equations from Figure 2. Ea
hiteration 
onsists of applying equations (13) for updating messages M

(ℓ)
i→a using messages M

(ℓ−1)
a→i from theprevious iteration and applying equations (14) to obtain new M

(ℓ)
a→i messages from M

(ℓ)
i→a. In (14), the 
onstantmessage M

(ℓ)
za→a = M

(0)
za→a is used. All messages are always normalized so that the sum of all elements of the�ve-dimensional message ve
tor is equal to 1. This is expressed using the normalize() pseudofun
tion. To speedup the iterations, after a few initial iterations (start_damp), the damping pro
ess is used. This pro
ess adjuststhe M

(ℓ)
a→i messages using the the following equation: M

(ℓ)
a→i =

(

M
(ℓ)
a→i · M

(ℓ−1)
a→i

)1/2, where the produ
t andsquare root are elementwise operations. The adjusted messages must be again normalized.After the message-passing algorithm 
onverged or the maximum number of iteration was rea
hed, the biases
Bi = |µi(1)−µi(0)| are 
al
ulated for ea
h free info bit i, where the three-dimensional ve
tor (µi(0), µi(1), µi(∗))de�ned in (15) is normalized to sum to 1.
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(a) (b)Figure 4. (a) Stru
ture of matrix G
T after row and 
olumn permutation. Matrix T is lower triangular, D should be assmall as possible. (b) The result after applying 'Greedy Algorithm A'.13 The size of matrix D is 0.033 · n.Stepping ba
k for a while, the SP algorithm when run for the sour
e ve
tor z = x − vm gives us the ve
torof info bits w and thus the 
odeword cm,x = Gw needed for embedding (9). The next se
tion explains the lastmissing ingredient�how to obtain an arbitrary 
oset member vm.5. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMESDuring embedding, the sender needs to �nd an arbitrary member of the 
oset C(m) for the message m. Thisrequires knowledge of the parity 
he
k matrix H. The extra
tion mapping (7) also needs the parity 
he
kmatrix to obtain the message. The problem is that we only have the (sparse) generator matrix G and not H.Finding H using Gaussian elimination would have 
ubi
 
omplexity and H would be
ome dense along the pro
ess.Fortunately, sin
e we are dealing here with a dual LDPC 
ode, our task is in essen
e equivalent to en
oding usingLDPC 
odes for whi
h e�
ient algorithms exist. In this paper, we brie�y des
ribe the approa
h based on partialdiagonalization of sparse matri
es using permutations of rows and 
olumns.13Suppose that G 
an be brought into the following form by permuting its rows and 
olumns

GT =

(

A B T

C D E

)

,where T is regular lower diagonal. Here, we hope that the square matrix D is relatively small. The dimensionsof the matri
es are shown in Figure 4. Denoting Φ−1 = (−ET−1B + D)−1, the matrix
H =

(

I,Φ−1(−ET−1A + C),T−1[A + BΦ−1(−ET−1A + C)]
)is a parity 
he
k matrix of the 
ode in systemati
 form. This 
an be easily seen by verifying that GTHT = 0.Be
ause H is in systemati
 form, one easily �nd one member of the 
oset C(m) as vm = (m,0)T , where the zerove
tor has length n−m.We now turn our attention to the extra
tion mapping and obtaining the syndrome m (message). A

ordingto (7), the message extra
tion amounts to 
al
ulating the produ
t Hy for the stego obje
t y, whi
h is a
hievedby multiplying

m = y1 + Φ−1(−ET−1A + C)y2 + T−1[A + BΦ−1(−ET−1A + C)]y3, (17)where we de
omposed y into three shorter ve
tors y = (y1,y2,y3) with lengths n−m, g, and m−g, respe
tively.Be
ause T is regular, lower-triangular, and sparse, 
al
ulating T−1u for some ve
tor u 
an be a
hieved e�
ientlyby ba
k-substitution. Also, all matri
es are sparse with the ex
eption of Φ−1. The inverse of Φ 
an be pre-
al
ulated and is only a one-time 
ost. Moreover, Φ is g × g, where g is small, and the multipli
ation by Φ−1has a low 
omplexity proportional to g2. Thus, the two multipli
ations in (17) have the following 
omplexity
O(n + g2) and O(n).
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14Figure 5. Results of running the SP algorithm for Matrix Embedding. (b) and (
) are for relative message length 1

2
.For example, for (3, 6) regular LDPC 
odes, the average 
omplexity for 
al
ulating the syndrome (extra
tingthe message) is 0.0172n2 +O(n), where n is the 
ode length.In pra
ti
e, we ran the 'Greedy Algorithm A' many times (ea
h time for a slightly di�erent value of theparameter α, see13 for details) and found a row and 
olumn permutation that gave us the smallest size of thematrix D. The output of the greedy algorithm is our generator matrix G that is used in the binary quantizer.An example of the permuted matrix is in Figure 4(b).6. RESULTSWe have implemented the whole framework for the spe
ial 
ase of a 
onstant dete
tability measure ρi = const.(Matrix Embedding) to be able to 
ompare the results with previously published pra
ti
al 
odes.



The SP algorithm was implemented in C++ using Intel C++ 9.0 
ompiler. Ea
h update equation wasmanually optimized for using �oat data type with SSE instru
tions. The following results were obtained usingan Intel Core2 X6800 2.93GHz CPU ma
hine with 64bit Linux, where both CPU 
ores were utilized.We now give the exa
t values for ea
h parameter mentioned in Se
tion 4.4. The following parameters donot depend on the 
ode or the message length: start_damp=4, t=0.8, wsou=1.1, and winfo=1. The numberof iterations 
an be 
ontrolled using the parameter e (we used e=0.001) or by limiting the maximal number ofiterations. Limiting the number of iterations max_iter to 40�100 produ
ed very similar results while providing aspeed up linear in max_iter. We have experimentally determined the parameter γ to maximize the performan
efor ea
h relative message length α, for example, γ0.63 = 0.94, γ0.5 = 1.13, γ0.35 = 1.37, γ0.25 = 1.65. Theparameters num_max and num_min were set to 1% and 0.1% of the total number of pixels in the 
over obje
t.These values did not 
hange during runtime. We have also experimented with a general de
imation strategyde�ned as the per
entage of the total number of free bits while setting num_min as 0.1× num_max. The algorithm
an be sped up by enlarging num_max at the 
ost of losing some embedding e�
ien
y. For pra
ti
al usage, thistrade o� should be 
onsidered and further explored.We evaluate the performan
e of the 
odes by their embedding e�
ien
y. Figure 5(a) shows the 
omparisonwith other previously proposed 
odes. Our results are labeled as 'LDGM 
odes' and ea
h embedding e�
ien
ywas obtained by averaging over 20 randomly generated messages. For ea
h relative message length, we ran theSP algorithm for two di�erent 
ode lengths n = 10000 and n = 100000. The 
odes labeled as 'random 
odes'are obtained from6 and.7 The remaining 
odes were taken from2 and 
onsist primarily of blo
k-wise dire
t sum(BDS) of non-linear fa
tor 
odes 
onstru
ted using Preparata 
odes.The generator matrix of ea
h 
ode G was generated randomly, where the number of ones in ea
h row and
olumn was given by a spe
i�
 (degree) probability distribution. We have tested degree distributions optimizedfor ordinary message-passing over the BSC and the binary erasure 
hannel (BEC). While 
odes for both 
hannelsgave satisfa
tory results, degree distributions optimized for the BSC provided higher embedding e�
ien
y. Thus,all results reported here are for 
odes with matri
es optimized for the BSC 
hannel.As an example, in Figures 5(b) and (
), we show the performan
e and speed for 
odes obtained for thefollowing degree distribution
λ(x) = 0.44676014278323x+ 0.2936700938561x2 + 0.085704194057476x5 + 0.0819921690616x6+

+0.004693193807623312 + 0.017115184041391x13 + 0.038637012348276x14 + 0.0314280100443x39

ρ(x) = x9.Figure 5(b) shows how the proposed embedding algorithm with random 
odes based on this distribution ap-proa
hes the upper bound on embedding e�
ien
y as the 
ode length grows (for relative message length α = 1
2 ).The �nal gap in embedding e�
ien
y between the theoreti
al bound and 
odes based on the 
ode length n = 105is less than 0.1 bits per 
hange.To illustrate the 
omputational 
omplexity of our implementation, we de�ne throughput as a number ofembedded bits per se
ond and plot this variable for di�erent 
ode lengths and α = 1

2 in Figure 5(
). The
omplexity grows linearly with the 
ode length. The de
rease in throughput for 
ode lengths larger than 104 is
aused by the limited size of the CPU 
a
he and not by the nature of the SP algorithm.7. CONCLUSIONS AND FUTURE WORKIn this paper, we present a general approa
h for minimizing embedding impa
t in steganography. We startby de�ning the dete
tability measure at ea
h element of the 
over obje
t and derive theoreti
al bounds on theminimal embedding impa
t needed to embed a given payload. Then, we study embedding s
hemes realized usingsyndrome 
odes and show that the problem of minimizing embedding impa
t is equivalent to binary quantizationusing appropriately weighted distan
e. We use the binary quantizer based on low density generator matri
esand the survey propagation algorithm re
ently proposed by Wainwrigth and Maneva.16 The performan
e of theproposed embedding algorithm is 
ompared to previous art on Matrix Embedding where the embedding impa
tis the same for all elements of the 
over obje
t. The algorithm performan
e a
hieves near-optimal embeddinge�
ien
y (within 0.1 bits per 
hange) with the speed of embedding at 1000 bits per se
ond. Another important



advantage of the proposed approa
h over stru
tured 
odes is that it provides an essentially 
ontinuous family of
odes for arbitrarily 
hosen relative message length α.We postpone pra
ti
al appli
ation of this framework to non-
onstant embedding impa
t pro�les to our futurework. We believe that the proposed framework will provide near-optimal performan
e in this 
ase as well afterappropriately adjusting the parameter γ for ea
h element of the 
over. Our results were obtained using degreedistributions optimized for the BSC 
hannel, but it is not 
lear whether these distributions are optimal in anysense. Optimization of the degree distribution is another interesting future dire
tion we plan to pursue.APPENDIX A.In this appendix, we derive the expression for the minimal embedding impa
t for any steganographi
 s
heme that
ommuni
ates m bits in n pixels with dete
tability measure ρi, i = 1, . . . , n. We do so for the more general 
asewhen the embedding impa
t is an arbitrary (i.e., not ne
essarily additive) fun
tion of the dete
tability measure
ρi. For x,y ∈ {0, 1}n, we de�ne the modi�
ation pattern s ∈ {0, 1}n as si = δ(xi, yi), where δ(a, b) = 1 when
a = b and δ(a, b) = 0, otherwise. Furthermore, we de�ne D(s) = D(x,y) as the embedding impa
t of makingembedding 
hanges at pixels with si = 1. Let us assume that the re
ipient also knows the 
over x. By theGelfand-Pinsker theorem,9 the 
on
lusions rea
hed here do not depend on this assumption. The sender thenbasi
ally 
ommuni
ates the modi�
ation pattern s. Assuming the sender sele
ts ea
h pattern s with probability
p(s), the amount of information that 
an be 
ommuni
ated is the entropy of p(s)

H(p) = −
∑

s

p(s) log2 p(s).Our problem is now redu
ed to �nding the probability distribution p(s) on the spa
e of all possible �ippingpatterns s that minimizes the expe
ted value of the embedding impa
t
∑

s

D(s)p(s)subje
t to the 
onstraints
H(p) =

∑

s

p(s) log2 p(s) = m,
∑

s

p(s) = 1,This problem 
an be solved using Lagrange multipliers. Let
F (p(s)) =

∑

s

p(s)D(s) + µ1

(

m−
∑

s

p(s) log2 p(s)

)

+ µ2

(

∑

s

p(s) − 1

)

.Then,
∂F

∂p(s)
= D(s) − µ1(log2 p(s) + 1/ ln(2)) + µ2 = 0if and only if p(s) = Ae−λD(s), where A−1 =

∑

s
e−λD(s) and λ is determined from

−
∑

s

p(s) log2 p(s) = m.Thus, the probabilities p(s) follow an exponential distribution with respe
t to the embedding impa
t D(s).If the embedding impa
t of the pattern s is an additive fun
tion of �singleton� patterns (patterns for whi
honly one pixel is modi�ed), then D(s) = s1ρ1 + · · · + snρn and p(s) a

epts the form
p(s) = Ae−λ

Pn
i=1 siρi = A

n
∏

i=1

e−λsiρi , A−1 =
∑

s

n
∏

i=1

e−λsiρi =

n
∏

i=1

(1 + e−λρi),
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h further implies
p(s) =

n
∏

i=1

pi(si),where pi(1) and pi(0) are the probabilities that the i-th pixel is (is not) modi�ed during embedding
pi(0) =

1

1 + e−λρi
, pi(1) =

e−λρi

1 + e−λρi
.Of 
ourse, this further implies that the joint probability distribution p(s) 
an be fa
torized and thus we onlyneed to know the marginal probabilities pi that the i-th pixel is modi�ed. It also enables us to write for theentropy

H(p) =
n
∑

i=1

H(pi),where in the sum the fun
tion H applied to a s
alar is the binary entropy fun
tion.Note that when ρi = 1, ∀i, we obtain
m =

n
∑

i=1

H(pi) =

n
∑

i=1

H

(

e−λ

1 + e−λ

)

, E

(

n
∑

i=1

piρi

)

=
ne−λ

1 + e−λ
.Thus, in agreement with the result derived in1 we obtain the following relationship between the embedding impa
tper pixel d/n and the relative message length m/n

d

n
= H−1

(m

n

)

.



Let us sort ρi from the smallest to the largest and normalize so that ∑i ρi = 1. Let ρ be a Riemann-integrable non-de
reasing fun
tion on [0, 1] su
h that ρ(i/n) = ρi. Then for n → ∞, the average distortion perelement d = D/n = 1
n

∑n
i=1 piρi →

∫ 1

0 p(x)ρ(x)dx, where p(x) = e−λρ(x)

1+e−λρ(x) . By the same token, α = m/n =
1
n

∑n
i=1H(pi) →

∫ 1

0 H(p(x))dx. By dire
t 
al
ulation
ln 2×

∫ 1

0

H(p(x))dx = λ

∫ 1

0

ρ(x)e−λρ(x)

1 + e−λρ(x)
dx+

∫ 1

0

ln(1+e−λρ(x))dx = λ

∫ 1

0

(ρ(x) + xρ′(x))e−λρ(x)

1 + e−λρ(x)
dx+ln(1+e−λρ(1)).The se
ond equality is obtained by integrating the se
ond integral by parts. Thus, we 
an obtain the embedding
apa
ity-distortion relationship in a parametri
 form

d(λ) =Gρ(λ)

α(λ) =
1

ln 2

(

λFρ(λ) + ln(1 + e−λρ(1))
)

,where λ is a non-negative parameter and
Gρ(λ) =

∫ 1

0

ρ(x)e−λρ(x)

1 + e−λρ(x)
dx

Fρ(λ) =

∫ 1

0

(ρ(x) + xρ′(x))e−λρ(x)

1 + e−λρ(x)
dx.A
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