Practical Methods for Minimizing Embedding Impact in
Steganography

Jessica Fridrich and Tomés Filler

Department of Electrical and Computer Engineering
SUNY Binghamton, Binghamton, NY 13902-6000, USA

ABSTRACT

In this paper, we propose a general framework and practical coding methods for constructing steganographic
schemes that minimize the statistical impact of embedding. By associating a cost of an embedding change with
every element of the cover, we first derive bounds on the minimum theoretically achievable embedding impact
and then propose a framework to achieve it in practice. The method is based on syndrome codes with low-density
generator matrices (LDGM). The problem of optimally encoding a message (e.g., with the smallest embedding
impact) requires a binary quantizer that performs near the rate-distortion bound. We implement this quantizer
using LDGM codes with a survey propagation message-passing algorithm. Since LDGM codes are guaranteed
to achieve the rate-distortion bound, the proposed methods are guaranteed to achieve the minimal embedding
impact (maximal embedding efficiency). We provide detailed technical description of the method for practitioners
and demonstrate its performance on matrix embedding.

Keywords: Steganography, embedding impact, low-density codes, survey propagation, matrix embedding

1. INTRODUCTION

In passive warden steganography, the goal is to communicate as many bits as possible without introducing
statistically detectable artifacts into the cover object. In practice, a steganographic scheme is considered secure
if no existing attack can distinguish between cover and stego objects with a success better than random guessing.
Formal definition of steganographic security was given by Cachin.?

The security of a steganographic scheme is a function of its attributes, which are (1) the cover object source
whose properties are known to the attacker (Kerckhoffs’ principle), (2) the embedding operation that is applied
to individual cover elements to embed a message, and (3) the selection rule according to which cover elements are
selected for embedding. For the sake of concreteness and without loss of generality, at times we will be referring
to the cover object as image and the cover elements as pixels.

The statistical impact of embedding at a given pixel depends on many factors, such as the character of
embedding modifications, their amplitude, local pixel neighborhood, etc. Assuming each pixel can be assigned
a number that measures the statistical impact of making an embedding change at that pixel, we are interested
in the minimal possible impact needed to embed m < m bits in a cover object consisting of n pixels. If the
embedding impact is defined simply as the number of embedding changes d, it is known® that d < nH~'(m/n),
where H~1(z) is the inverse of the binary entropy function H(z) = —xlogy z — (1 — z)logy(1 — x) on [0,1/2].
For a fixed relative message length o« = m/n, this bound is achievable using syndrome codes of length n and
dimension n —m as n — 00.® Practical codes were proposed in.!»% 671415 Unfortunately, their performance
is not very close to the bound. In this paper, we study the problem of minimizing the embedding impact, derive
appropriate bounds, and propose a general framework using which practical near-optimal embedding schemes
can be constructed.

The paper is structured as follows. After introducing some basic concepts, in Section 2 we define embedding
impact in steganography and give a precise problem formulation. In Section 3, we describe the building blocks
of the proposed framework for constructing embedding schemes with minimal embedding impact. We start
Section 4 with explaining the relationship between optimal embedding and achieving the rate-distortion bound

J.F.: E-mail: fridrich@binghamton.edu, Telephone: +1 607 777 6177, Fax: +1 607 777 4464

in source coding. Then, we introduce the central element of near-optimal embedding schemes—the binary
quantizer realized using LDGM codes with survey propagation message-passing algorithm. Section 5 explains
other missing elements of the embedding scheme and the extraction algorithm. In Section 6, we demonstrate the
performance of the proposed framework on matrix embedding. The paper is concluded in Section 7.

2. STEGANOGRAPHIC EMBEDDING SCHEME

Throughout the text, boldface symbols denote vectors or matrices while the caligraphic font is reserved for
sets. The cover object is a sequence of n elements g = (g1,...,9n) € G", where G = {0,...,2" — 1} and
r is the number of bits needed to describe each element. Most steganographic schemes work with a finite
field representation of g obtained through some symbol-assignment function symb : G — F,. For example,
symb(gi) = g; mod 2 (symb(g;) = ¢g; mod 3) assign a bit (ternary symbol) to each cover element. Thus, the cover
object g is represented as a vector x € Fp.

A steganographic scheme is a pair of embedding and extraction mappings Emb : Fy x M — Fy, Ext : Fjy — M
satisfying
Ext(Emb(x, M)) = M,Vx € Fj/,VM € M, (1)

where M is the set of all messages M that can be communicated. We say that the embedding capacity of the
scheme is log |[M| bits. Emb(x,M) = y is the finite field representation of the stego object g’ obtained by
modifying g so that symb(g;) = y;. For example, in LSB embedding with symb(g;) = g; mod 2, the LSB of the
binary representation of g; is flipped. In £1 embedding, g; is randomly changed by 1 or —1. We note that the
nature of the modification has a major impact on the security of the steganographic scheme.

The impact of making an embedding change at pixel 7 will be measured using a scalar value p; > 0. The total
embedding impact is then

n
D(x.y) = |x=ylp =Y pilzi = uil- (2)
i=1
We can interpret p; as the cost of making an embedding change at pixel ¢. This detectability measure should
be designed to correlate with the statistical detectability of the embedding changes. In practice, p; is usually
proposed using heuristic principles. For example, for a non-negative parameter o and weight factors w; > 0

pi = wilgi — g;|~. (3)

If the embedding change is probabilistic, then we understand (3) as the expected value. Below, we give a few
examples of (3) typically used in steganography.

If w; =1 for all 4 and |g; — ¢g}| = 1, D is the total number of embedding changes. For w; = 1 and a = 2, D
is the energy of modifications. Wet paper coding® can be modeled by setting w; = 1 for 4 € Dry and w; = 0
otherwise, for some index set Dry C {1,...,n}. In general, the weighting factors may depend on the local texture
to reflect the fact that embedding changes in textured (or noisy) areas are more difficult to detect than changes
in smooth segments of the cover image.

The impact p; may also be determined from some side-information available to the sender as in Perturbed
Quantization steganography (PQ).% For example, let us assume that the cover is a TIFF image sampled at 16
bits per channel. The sender wishes to embed a message while decreasing the color depth to a true-color 8-bit
per channel image while minimizing the combined quantization and embedding distortion. Let z; be the 16-bit
color value and let Q = 2% be the quantization step for the color depth reduction. The quantization error is
e; = Qlz:/Q — [2:/Q]], 0 < e; < Q/2, and the error when rounding z; to the opposite direction is Q — e; leading
to embedding distortion as the difference between both errors p; = Q — 2e;. In PQ, coefficients are selected for
which e; ~ (/2 because for such coefficients, the embedding distortion is the smallest. Also note that in this
case, since the quantization error is approximately uniform on [—Q/2,Q /2], when sorting p; by their values the
resulting profile will be well modeled with a straight line.

We point out that (2) implicitly assumes that the embedding impact is additive because it is defined as a
sum of detectability measures at individual pixels. In general, however, the embedding modifications could be

interacting among themselves, reflecting the fact that making two changes to adjacent pixels might be more
detectable than making the same changes to two pixels far apart from each other. A detectability measure that
takes interaction among pixels into account would not be additive. If the density of embedding changes is low,
however, the additivity assumption is plausible because the distances between modified pixels will generally be
large and the embedding changes will not interfere much.

2.1. Problem formulation

The central problem investigated in this paper is design of steganographic schemes whose expected embedding
impact F[D(x,y)] is as small as possible for covers of length n, embedding capacity m, and detectability measure
pi- The expected value is taken over all cover objects x and messages of length m.

From now on, we will constrain ourselves to the binary case F; = GF(2) when the symbol-assignment function
assigns a bit to each cover element. In Appendix A, we show that for the binary case the minimal expected
embedding impact is

=1
where
6_>‘pi
P = T, 5
Pi= T oo (5)

and A is given by the following constraint
S H(p) =m, 6)

where H(x) is the binary entropy function. Moreover, the embedding operation will on average modify the i-th
pixel with probability p;. Thus, if we design an embedding scheme that modifies pixels with these probabilities
and communicates m bits, it will leave the minimal possible embedding impact.

3. THE BASIC FRAMEWORK

In this section, we describe the framework for constructing near-optimal embedding schemes using syndrome
codes. The individual elements from which the framework is composed are explained in detail in the next two
sections. From now on, all vectors are column vectors and all arithmetic operations between binary vectors and
matrices are carried in the GF(2). A good text on coding theory is.!”

Let us assume that the receiver knows the relative message length « = m/n and thus the number of secret
message bits m. Indeed, this can be either pre-agreed or a small, key-dependent portion of the cover can be
reserved to communicate a suitably quantized « encoded using a few bits. Let C be an [n,n — m] binary code C
with an n X (n —m) generator matrix G and an m x n parity check matrix H. Both matrices are shared between
the sender and the recipient. Let C(m) = {u € {0,1}"|Hu = m} be the coset corresponding to syndrome
m € {0,1}™ (m is the secret message). The following embedding scheme communicates m bits in an n-element
cover x

= Emb £ i -
y = Emb(x, m) arg min [x —ullp
Ext(y) =Hy = m. (7)

Here, y are the bits assigned to the stego image. In other words, in an attempt to minimize the embedding
impact, the sender selects such a member y of the coset C(m) that is closest to x (closest in metric ||.|| ;).
Let viy € C(m) arbitrary. Then,

i [— = min e = (vin +6) [= DG~ Vin.€) = _auin_x— Ve — Gl (8)

where we denoted by D(x — vy, C) the distance between x — vy, and C. From (8), we see that embedding is
a binary quantization problem. The sender needs to find w € {0,1}™ ™ such that Gw is closest to x — vp,.

Alternatively, we can say that the sender is compressing the source bit sequence z = x — vy, to n—m information
bits w so that the reconstructed vector Gw is as close to the source sequence as possible. Let us denote the
closest codeword Gw as cm x-

Assuming there exists an efficient algorithm for finding both vy, and cm x, the stego object y is
Y=X+Cmx —2=Cmx+ Vm. (9)

Four things need to be supplied to make the description of this embedding scheme complete. We need to
describe the process by which we generate the code, the algorithm for finding vy, and the algorithm for binary
quantization. We also need to explain why the distortion of this embedding scheme is close to the bound (4).
The most difficult step in the proposed scheme is the binary quantization. In fact, it dictates the choice of the
code and determines the computational complexity. This is why we start with it in the next section.

4. BINARY QUANTIZATION USING LDGM CODES

In this section, we give the implementation details for the binary quantizer, which is the central element in
our embedding scheme based on syndrome codes. Here, we intentionally focus on a practical description of the
method to enable the reader to implement the embedding scheme without being necessarily familiar with all
technical details of the underlying material. We refer the reader to the original publications'® 16 for more details.

We lay out the method for the special case when all p; are the same, postponing the non-constant detectability
measure to our future work. In fact, we believe that the same framework can be used after some adjustments.
The modifications are pointed out in the text.

When all p; are the same, D is simply the number of embedding changes and the problem of minimizing the
embedding impact turns into what is known in steganography as Matrix Embedding.* The quantization task
(8) is equivalent to finding the coset leader of C(m), which is an NP hard problem. From the binary quantization
interpretation, the rate-distortion theory implies that the rate R = 1 — m/n of any source encoding algorithm
that compresses n bits into n — m bits is bounded by R =1 —m/n < 1 — H(d), where d = D/n is the average
distortion per bit. Denoting the average number of message bits embedded per unit distortion by e = m/D and
recalling that & = m/n is the relative message length, the rate-distortion bound is recognized in its equivalent
form as a bound on the maximal embedding efficiency e of any Matrix Embedding scheme

e < m- (10)

It is known® that for fixed o and n — oo this bound is saturated for almost all linear codes. This explains
why the proposed framework is near-optimal for n sufficiently large. The big problem, of course, is how to find
codes for which efficient algorithms exist for large n. Structured codes! 2 %15 and random codes® 7 that were
previously proposed do not perform too close to the bound and their complexity grows too quickly.

Wainwright and Maneva'® recently showed that duals of LDPC codes called Low Density Generator Matrix

codes (LDGM) combined with Survey Propagation (SP) message-passing algorithms could be used to construct
low-complexity binary quantizers with performance very close to the rate-distortion bound. Subsequent work
proved that with n — oo compound low density codes saturate the bound with matrices whose number of ones
in rows and columns is bounded.!* We use the construction given in!® to implement near-optimal embedding
schemes.

We start with the description of the generator matrix G. For a given message length a, we select G as the
parity check matrix of an LDPC code optimized for the binary symmetric channel (BSC) with error probability
p = 1 — «. The matrices are generated randomly but with a constraint that the number of ones in each row
follows a prespecified optimized irregular distribution. Description of algorithms for generating the distributions
is given in'? and an interactive practical algorithm for their generation is available from http://1thcwww.epfl.
ch/research/1ldpcopt/. Furthermore, as explained in more detail in Section 5, we additionally preprocess G by
permuting its rows and columns to enable easy finding of the coset member v,, and fast message extraction.

Co+w; +wp =0
cp+w; =0

Ce +w; =
cqg+wr =0
Ce+wi+wj+w;g:0
cf—l—wk:O

O = OO ~=O
R ==, O O

O = O = O =

Figure 1. Factor graph representation of a linear code with generator matrix G.

4.1. Graph representation of a code

Each code C can be represented as a factor graph in the following manner. Assuming G is full rank, for each
codeword ¢ € C there exists exactly one w € {0,1}" ™ ¢ = Gw. Thus, each codeword ¢ can be uniquely
associated with a vector of 2n — m bits (¢, w), called extended codeword, satisfying

1,G| (VCV) =0, (11)

where I is the n X n unity matrix. Therefore, (11) can be viewed as a definition of a code via a bipartite graph
with two types of nodes—n check nodes and 2n — m variable nodes. Consider, for example, the code defined in
Figure 1 with generator matrix G. The bipartite graph on the left has 6 checks a, ..., f and 9 variable nodes.

We now introduce the following terminology and notation for factor graphs. The bits connected to the checks
“from above” cq, cp, Cc, ... Will be called source bits and the bottom bits w;, w;, wy will be called information bits.
The set of all checks is denoted C' and the set of all information bits V. The set of all checks connected to an
information bit ¢ is denoted C'(7) and the index set of all information bits connected to check a is denoted V'(a).
We further denote V(a) = V(a) U {a}, where index a is used for the source bit z, associated with check a. For
our example above, C(i) = {a,c,e},V(a) = {i,k},V(a) = {i, k,a}.

4.2. Belief-propagation

One way to look at the quantization problem (8) is that z = x — v,y is a noisy codeword in a binary symmetric
channel (BSC) with flip probability p < 1/2 and we wish to perform maximum likelihood decoding and find the
closest codeword cm x to z. In LDPC codes, this problem is approached using belief-propagation (BP) message-
passing algorithm. It starts by forming the following probability distribution p(v, w) over the space of all possible
binary vectors (v, w) € {0,1}?"~™. Let ¢q(va, wy/(q)) be the XOR of all bits from V(a). Then,

p(V,W) = % H wi(wi) H %(Ua) H (1 - (ba(vavw\/(a)))v (12)

eV acC acC

where Z is the normalization factor, 1;(w;) = 1/2,Vi, and 1, (v,) = 1 — p when v, = z, and ¥,(v,) = p when
Vg # 2q. Note that p(v, w) = 0 for extended codewords not satisfying the XOR-SAT problem [I, G] :V > =0.
Also note that the choice of information bits w; does not influence the probability while the mismatch between
source bits z, and v, is penalized according to the probability of bit flipping in the BSC. We denote by p;(0) the

marginal probability
1

ve{0,1}" we{o,1}" ™
wi:()

where Z is a normalization factor. A similar expression can be obtained for p;(1). The information bits are set
to either 0 or 1 based on which marginal probability is larger. When the code graph is cycle-free (a tree) the

marginal probabilities can be calculated efficiently using the belief-propagation algorithm. The algorithm is also
used on graphs with cycles (such as our bipartite graph) and gives good results.

The BP algorithm is of iterative nature and consists of rounds in which checks process the messages they
receive from their neighboring information bits and send back messages to the information bits. The information
bits process the messages received from their checks and send messages back to their checks. The message sent
by check a to information bit ¢ in the ¢-th iteration is the ordered pair (M(Z) .(0), MY .(1)) and the message from

information bit ¢ to check a in the ¢-th iteration is (MZ(QG(0), Mi(ﬁa(l)). The update formulas are
1)
Mz—>a H Mlg—n)
beC(H)\a
¢
M(S,ll(wz) = Z (1 - (ba(vllu wV(a) H JHG,
Wy (a)\i JEV (a)\i

After normalizing the messages so that in each round Mi(ﬁ (0) + ija(1) = 1, the messages have the following
probabilistic interpretation. Check a sends to its neighboring information bit ¢ the probability that it is satisfied
given the source sequence z and the messages received from all information bits other than ¢ in the previous
round. Information bit ¢ sends to its neighboring check a the probability that it is 0 (or 1) given the information
received from its neighboring checks other than a in the previous round. The source bits always send the same
message to their checks: (Pr{v, = 0|24}, Pr{v, = 1|z4}), which is either (p, 1—p) or (1—p, p). The whole process
is initialized by starting with source bits sending their messages to the checks who forward the messages to the
information bits (the initial message is denoted (Ml@a(O) Ml@a(l))). The BP algorithm is run till it converges

(message vectors do not differ in two consecutive iterations) and the marginals are then computed from the fixed
point message M in the ¢-th iteration as

=TI 24

beC(i)
The information bits are finally determined by choosing the value of w; with a larger p;(w;).

4.3. Survey propagation

The problem with the BP is that it converges only when z is already close (within the error-correcting distance
of the associated LDPC code with parity check matrix G), otherwise it does not converge. This is known as
the folklore statement “LDPCs are poor quantizers.” Because z is determined by the (random) message m, it
is unlikely to be close to a codeword. As a result, the BP algorithm cannot be used for embedding. The space
of all codewords essentially breaks up into disjoint clusters inside which the BP will find the closest codeword.
Survey propagation is an algorithm for finding the closest cluster to z. It is again a message-passing algorithm
in which information bits are set to their values through a series of decimation and message-passing steps.

Similar to BP, in the SP algorithm the source and information bits send messages to checks and then checks
process the received messages and send messages to information bits. The bits again process the received messages
and send messages back to checks, etc. The process stops when the messages sent by information bits in
two consecutive passes differ by less than a small predetermined bound. After the message-passing algorithm
converged, selected information bits are set to specific bits and the bipartite graph is simplified. The message-
passing proceeds again on the simplified graph till convergence, a portion of the information bits are set to bits,
the graph is again simplified, and the whole procedure repeats till all information bits are determined. One
pass of the message-passing updates in both directions will be called iteration. The process of assigning the bits
and simplifying the graph is called decimation. The whole process of running the message-passing updates till
convergence followed by decimation is one round.

The messages exchanged by bits and checks are five-dimensional vectors of non-negative real numbers. In the /-
th iteration, the i-th information bit sends to check a the vector M = (M7 O a7 (O a0 O pple O ppe ()

1—a 1—a ? 1—a ? 1—a

Bits to checks update rules

R | AR O e
beC(i)\{a} bEC(z)\{a}
IR | (AR VE I | (PTG
beC(i)\{a} beC(i)\{a}
M70i>ﬂa(l) H All?izz 1)+ (l 1)] H]\/[l?zzl 1)7 Z]\/[‘(‘JLZ(Z K H All?iz(z_l) (13)
beC()\{a} beC()\{a} ceC(i)\{a} beC()\{a,c}
UATEE I | RV v/l EE | (S VA S VA | (S Vi
beC()\{a} beC()\{a} ceC(i)\{a} beC()\{a,c}
M =wne [MY
beC(i)\{a}
Checks to bits update rules
0f (6) _ 0f (£) 1f (0) 0f (£) 1f (0)
]V[u—n 2(7]__[|iM]—>u +]\/[J—>a]Jr H {Mj—m 7MJ—>a })
JEV (a)\{i} V(a)\{i}
1
1f (¢ of (¢ 1f (¢ of (£) 1 (e
=5 T [0 eanZ0]- T {Mﬁa)
eV (@\{} €V (a (14)
M= T [a0 0] TT [0 5 0]
JEV(a)\{i} J€V<a \{i}
]\/flw) _ A{Ow)
(€ (« 1w (¢ 0w (£)
M D=] [e O arge O]
jeV(a)\{i}
Bias equations calculated in /-th iteration
¢) (¢ ‘ ¢ {4 ‘
/’Ll(o) = H []Vf(?ii) + J\/jgiz()] - H Aftgiz() Z Ml?if) H J\/[((z)iz() = Winfo H ail) (15)
acC(i) acC(i) beC(i) acC(i)\{b} aeC(i)
4 w (€ w (£ 1f (¢ w (€
w = T (20 e = I a0 - 3 a0 [
acC(i) acC(i) beC(i) acC(i)\{b}

Figure 2. Update equations for message-passing in the SP algorithm.

and the a-th check sends to the i-th information bit the vector Mffli = (Mgigé) Miigg), MSZZ—“), Miii(g), M:L?)
The source bits always send the same message to their checks:

M, = (¥a(0),%a(1),0,0,ws0u), (16)

where wgo, is a constant, typically wge, = 1.1, and ¥, (1) = 247 + (1 — 2z4)e” 7, 1,(0) = %(1) We note that
v > 0 is a constant and z, is the a-th component of vector z(") to be compressed in the r-th round, z(") = z.

The parameter +y reflects the effort of the message-passing algorithm to find a codeword ¢y, x as close to z as
possible. The larger the ~y, the stronger is the effort. On the other hand, the structure of the code C imposes a
limit on how strong this effort can be. By assigning to each source bit z, its own parameter v,, we could control
the probability of each source bit being preserved and thus control the probability of making an embedding
change at that pixel. This should enable us to construct embedding schemes for an arbitrarily defined (e.g.,
non-constant) detectability measure p. We leave this direction to our future work.

4.4. Detailed description of SP algorithm

We now give a detailed description of the SP algorithm. As a template, we will use the pseudocode from Figure 3.
It defines two procedures: the main function SP() and SP_iter () that implements the message-passing iterations.

procedure w = SP(G, z) procedure bias = SP_iter(z, G)

while not all_bits_fixed(w) M_zaa = normalize(calc_source_message(z))
bias = SP_iter(z, G) M_ai = send_src_message (G, M_zaa)
bias = sort(bias) while |M_ai_old-M_ail<e OR iter<max_iter
if max(bias)>t M_ai_old = M_ai
num = min(num_max, num_of_bits(bias>t)) M_ia = normalize(calc_ia(M_ai))
else M_ai = normalize(calc_ai(M_ia, M_zaa))
num = num_min if iter>start_damp then M_ai = normalize(damp(M_ai))
[G,z,w] = dec_most_biased_bits(G,z,w,num) iter = iter+1
end end
end bias = calc_bias(M_ai)
end

Figure 3. Pseudocode for the SP algorithm. This code is discussed in detail in Section 4.4.

The SP algorithm (SP() function) starts its first round with a bipartite graph G() representing the factor
graph of the linear code with generator matrix G and a vector of source bits z(!) = z. Using these parameters,
we run SP_iter () to calculate the bias B; = |u;(1) — 1;(0)] for each free info bit (in the beginning, all info bits
are free). The bias B; expresses the tendency of each free info bit to be set to a specific value. In the next step,
we use this information to sort the free info bits according to their bias and we select num most biased info bits
to be set by decimation in this round. We use the following decimation strategy: set num to the number of free
info bits with B; >t (constant threshold), but no more than num_max. If there are no B; >t, set num to some
small constant num_min. The final step is the decimation function dec_most_biased_bits(). The values of the
constants num, num_max, num_min will be discussed in Section 6.

The purpose of the decimation function is to set a given number of the most biased info bits, reduce the graph
G™ and the vector z(), and obtain a new graph G and vector z(?) for the next round. The process of graph
reduction is as follows: set the num most biased info bits to one if p;(1) > w;(0), otherwise set them to zero.
For each info bit ¢ and its set value w$®, do the following operation: 2D = XOR(zél),wfet)7 Va € C(i), where
z((f) = zt(ll) for each unchanged check. This operation creates an equivalent source vector for the next round.
Finally, the graph G(® is obtained from G by removing all info bits that were set including their incident

edges.

After the decimation step, we obtain a new pair of input parameters G2 and z(® prepared for the next
round of the SP_iter () function. Applying these steps again, we obtain a smaller graph G®) and a new source
vector z(®). The SP algorithm ends in the r-th round when the graph G(") does not contain any edges (all info
bits were set).

To finalize the description of the algorithm, we need to describe the SP_iter () function in some round r.
This function takes the source vector z(") and graph G(") and returns a vector of biases for each free info bit.
The core of this function is the message-passing iteration process. This process is initiated by sending messages
Mgg)_,a, defined in (16), from source bits in graph G(") to their checks. Checks forward these messages to
their neighboring info bits and the process continues by applying the update equations from Figure 2. Each

iteration consists of applying equations (13) for updating messages Mgﬁa using messages Ml(f__j) from the
previous iteration and applying equations (14) to obtain new Mffli messages from Mgﬁa. In (14), the constant

message M,(zi)ﬂa = ME‘ZLG is used. All messages are always normalized so that the sum of all elements of the
five-dimensional message vector is equal to 1. This is expressed using the normalize () pseudofunction. To speed
up the iterations, after a few initial iterations (start_damp), the damping process is used. This process adjusts

1/2
the M) messages using the the following equation: MY = (M(e) -M(lfl)) , where the product and

a—1 a—1 a—1 a—1

square root are elementwise operations. The adjusted messages must be again normalized.

After the message-passing algorithm converged or the maximum number of iteration was reached, the biases
B; = |pi(1) — p1;(0)] are calculated for each free info bit 4, where the three-dimensional vector (41;(0), p1;(1), pi())
defined in (15) is normalized to sum to 1.

—
I \\\
AN
A 'B ! Y m-—g
m A N
C 'D E Ig
n
(a) (b)

Figure 4. (a) Structure of matrix G” after row and column permutation. Matrix T is lower triangular, D should be as
small as possible. (b) The result after applying *Greedy Algorithm A’.*® The size of matrix D is 0.033 - n.

Stepping back for a while, the SP algorithm when run for the source vector z = x — vy, gives us the vector
of info bits w and thus the codeword cm x = Gw needed for embedding (9). The next section explains the last
missing ingredient—how to obtain an arbitrary coset member vy,.

5. DETERMINING THE COSET MEMBER AND CALCULATING SYNDROMES

During embedding, the sender needs to find an arbitrary member of the coset C(m) for the message m. This
requires knowledge of the parity check matrix H. The extraction mapping (7) also needs the parity check
matrix to obtain the message. The problem is that we only have the (sparse) generator matrix G and not H.
Finding H using Gaussian elimination would have cubic complexity and H would become dense along the process.
Fortunately, since we are dealing here with a dual LDPC code, our task is in essence equivalent to encoding using
LDPC codes for which efficient algorithms exist. In this paper, we briefly describe the approach based on partial
diagonalization of sparse matrices using permutations of rows and columns.'3

Suppose that G can be brought into the following form by permuting its rows and columns

r (A B T
G_(CDE’

where T is regular lower diagonal. Here, we hope that the square matrix D is relatively small. The dimensions
of the matrices are shown in Figure 4. Denoting ®~! = (~ET " 'B + D)~!, the matrix

H= (L& '(-ET'A+C), T '[A+B>'(-ET 'A + C)))

is a parity check matrix of the code in systematic form. This can be easily seen by verifying that GTH? = 0.
Because H is in systematic form, one easily find one member of the coset C(m) as vi, = (m,0)7, where the zero
vector has length n —m.

We now turn our attention to the extraction mapping and obtaining the syndrome m (message). According
to (7), the message extraction amounts to calculating the product Hy for the stego object y, which is achieved
by multiplying

m=y; +® (-ET'A+C)y, + T 'A+Bd (-ET 'A + Q)lys, (17)

where we decomposed y into three shorter vectors y = (y1,y2,ys) with lengths n —m, g, and m — g, respectively.
Because T is regular, lower-triangular, and sparse, calculating T~ 'u for some vector u can be achieved efficiently
by back-substitution. Also, all matrices are sparse with the exception of ®~!. The inverse of ® can be pre-
calculated and is only a one-time cost. Moreover, ® is g x g, where ¢ is small, and the multiplication by ®~!
has a low complexity proportional to g2. Thus, the two multiplications in (17) have the following complexity
O(n + ¢%) and O(n).

(a) - comparison to known codes
6.5 T \ T

e~ ot
& SISy

Embeding efficiency (bits/change)
S

3.5 |
3 |
2.5 -
2 | ! ! ! ! ! !
1 1.5 2 2.5 3 3.5 4 4.5 5
é (v relative message length)
(b) (©) Legend for upper graph:
777777777777777777777 1100 ‘ ‘ theoretical bound
} . + Hamming code?
451 th al 1 - ==
theoretical bound - T >, linear < Golay code?
Ay 10001 N ‘..., complexity O GDT(1)?
£ 44) Te--T ¢ BDS(3)?
E o * BDS(4)2
£ 4.35 3 2
S H x BDS(5)
& 43 £ . A BDS(6)2
5 S \\ \Y4 BDS(7) 2
% 425 ES ' > BDS(8)2
€ 12 % N - Sum(9)(10)2
e g 70 throughput decrease | 1 * Random codes (codim. 20)°
5 415 = due to CPU cache size , * ¢ Random codes (dim. 14)7
é 4.1 600 - N v Non-primitive Golay code 14
A ’ AN » Non-prim. BCH code (35,11,2) 14
1051 \ < Non-prim. BCH code (45,29,2) 14
4 ; : 500 L— : : * LDGM codes n = 100 000
10° 10° 108 10° 101 10°
Code length n Code length n »w LDGM codes n = 10 000

Figure 5. Results of running the SP algorithm for Matrix Embedding. (b) and (c) are for relative message length 1.

For example, for (3,6) regular LDPC codes, the average complexity for calculating the syndrome (extracting
the message) is 0.017?n% + O(n), where n is the code length.

In practice, we ran the ’Greedy Algorithm A’ many times (each time for a slightly different value of the
parameter a, see'3 for details) and found a row and column permutation that gave us the smallest size of the
matrix D. The output of the greedy algorithm is our generator matrix G that is used in the binary quantizer.
An example of the permuted matrix is in Figure 4(b).

6. RESULTS

We have implemented the whole framework for the special case of a constant detectability measure p; = const.
(Matrix Embedding) to be able to compare the results with previously published practical codes.

The SP algorithm was implemented in C++ using Intel C++ 9.0 compiler. Each update equation was
manually optimized for using float data type with SSE instructions. The following results were obtained using
an Intel Core2 X6800 2.93GHz CPU machine with 64bit Linux, where both CPU cores were utilized.

We now give the exact values for each parameter mentioned in Section 4.4. The following parameters do
not depend on the code or the message length: start_damp=4, t=0.8, wsou=1.1, and winfo=1. The number
of iterations can be controlled using the parameter e (we used e=0.001) or by limiting the maximal number of
iterations. Limiting the number of iterations max_iter to 40-100 produced very similar results while providing a
speed up linear in max_iter. We have experimentally determined the parameter v to maximize the performance
for each relative message length «, for example, 7963 = 0.94, 795 = 1.13, Y035 = 1.37, Y9.25 = 1.65. The
parameters num_max and num_min were set to 1% and 0.1% of the total number of pixels in the cover object.
These values did not change during runtime. We have also experimented with a general decimation strategy
defined as the percentage of the total number of free bits while setting num_min as 0.1 x num_max. The algorithm
can be sped up by enlarging num_max at the cost of losing some embedding efficiency. For practical usage, this
trade off should be considered and further explored.

We evaluate the performance of the codes by their embedding efficiency. Figure 5(a) shows the comparison
with other previously proposed codes. Our results are labeled as 'LDGM codes’ and each embedding efficiency
was obtained by averaging over 20 randomly generated messages. For each relative message length, we ran the
SP algorithm for two different code lengths n = 10000 and n = 100000. The codes labeled as 'random codes’
are obtained from® and.” The remaining codes were taken from? and consist primarily of block-wise direct sum
(BDS) of non-linear factor codes constructed using Preparata codes.

The generator matrix of each code G was generated randomly, where the number of ones in each row and
column was given by a specific (degree) probability distribution. We have tested degree distributions optimized
for ordinary message-passing over the BSC and the binary erasure channel (BEC). While codes for both channels
gave satisfactory results, degree distributions optimized for the BSC provided higher embedding efficiency. Thus,
all results reported here are for codes with matrices optimized for the BSC channel.

As an example, in Figures 5(b) and (c), we show the performance and speed for codes obtained for the
following degree distribution

AMz) = 0.44676014278323x + 0.293670093856122 4 0.0857041940574762° + 0.081992169061 625+

+0.0046931938076233'2 + 0.0171151840413912"% + 0.0386370123482762:'* + 0.031428010044323°

p(x) = a°.

Figure 5(b) shows how the proposed embedding algorithm with random codes based on this distribution ap-
proaches the upper bound on embedding efficiency as the code length grows (for relative message length o = %)
The final gap in embedding efficiency between the theoretical bound and codes based on the code length n = 10°
is less than 0.1 bits per change.

To illustrate the computational complexity of our implementation, we define throughput as a number of

embedded bits per second and plot this variable for different code lengths and a = 3 in Figure 5(c). The
complexity grows linearly with the code length. The decrease in throughput for code lengths larger than 10 is

caused by the limited size of the CPU cache and not by the nature of the SP algorithm.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we present a general approach for minimizing embedding impact in steganography. We start
by defining the detectability measure at each element of the cover object and derive theoretical bounds on the
minimal embedding impact needed to embed a given payload. Then, we study embedding schemes realized using
syndrome codes and show that the problem of minimizing embedding impact is equivalent to binary quantization
using appropriately weighted distance. We use the binary quantizer based on low density generator matrices
and the survey propagation algorithm recently proposed by Wainwrigth and Maneva.'® The performance of the
proposed embedding algorithm is compared to previous art on Matrix Embedding where the embedding impact
is the same for all elements of the cover object. The algorithm performance achieves near-optimal embedding
efficiency (within 0.1 bits per change) with the speed of embedding at 1000 bits per second. Another important

advantage of the proposed approach over structured codes is that it provides an essentially continuous family of
codes for arbitrarily chosen relative message length a.

We postpone practical application of this framework to non-constant embedding impact profiles to our future
work. We believe that the proposed framework will provide near-optimal performance in this case as well after
appropriately adjusting the parameter v for each element of the cover. Our results were obtained using degree
distributions optimized for the BSC channel, but it is not clear whether these distributions are optimal in any
sense. Optimization of the degree distribution is another interesting future direction we plan to pursue.

APPENDIX A.

In this appendix, we derive the expression for the minimal embedding impact for any steganographic scheme that
communicates m bits in n pixels with detectability measure p;,i = 1,...,n. We do so for the more general case
when the embedding impact is an arbitrary (i.e., not necessarily additive) function of the detectability measure
pi. For x,y € {0,1}", we define the modification pattern s € {0,1}" as s; = §(z;,y;), where §(a,b) = 1 when
a = b and 6(a,b) = 0, otherwise. Furthermore, we define D(s) = D(x,y) as the embedding impact of making
embedding changes at pixels with s; = 1. Let us assume that the recipient also knows the cover x. By the
Gelfand-Pinsker theorem,’ the conclusions reached here do not depend on this assumption. The sender then
basically communicates the modification pattern s. Assuming the sender selects each pattern s with probability
p(s), the amount of information that can be communicated is the entropy of p(s)

Zp s)log, p(s)

Our problem is now reduced to finding the probability distribution p(s) on the space of all possible flipping
patterns s that minimizes the expected value of the embedding impact

> D(s)p(s)
S
subject to the constraints

H(p) = p(s)log, p(s) = m, ZP

This problem can be solved using Lagrange multipliers. Let

ZP +H1< Zp s)log, p(s)4—#2(25:1)(5)—1).

Then,
oF

9p(s)
if and only if p(s) = Ae) where A7t = 3" e *P®) and X is determined from

= D(s) — m(logy p(s) +1/1In(2)) + p2 = 0

—Zp s) log, p(s) = m.

Thus, the probabilities p(s) follow an exponential distribution with respect to the embedding impact D(s).

If the embedding impact of the pattern s is an additive function of “singleton” patterns (patterns for which
only one pixel is modified), then D(s) = s1p1 + - - + sppn and p(s) accepts the form

n

p(s) = Ae A Xizisipi _AHe Asipi g1 ZHe Asipi :H(l_’_e*)\l’i),

i=1 s i=1 i=1

0.5 T T T T T T T T T

Constant profile (ME)
— — — Linear profile (PQ)
04| — — Square root profile : . . . : . A

0.45r

"""" Square profile : : : : :]

0.35f

0.3F

0.25F

0.2

Minimal embedding impact

e
[
T

0 0.1 02 03 04 05 06 07 08 09 1
Relative message length

Figure 6. Minimal embedding impact vs. relative message length for four detectability profiles p.

which further implies
i=1

where p;(1) and p;(0) are the probabilities that the i-th pixel is (is not) modified during embedding
1 e AP
(0) = —— pi(1) = ———.
p() 1+67>\Pip() 1+67)\pi

Of course, this further implies that the joint probability distribution p(s) can be factorized and thus we only
need to know the marginal probabilities p; that the i-th pixel is modified. It also enables us to write for the
entropy

H(p) = Z H(p;),

where in the sum the function H applied to a scalar is the binary entropy function.

Note that when p; = 1, Vi, we obtain
m = i) —) 1) - N
i=1 8 i=1 L+e™ i=1 e 1+e™

Thus, in agreement with the result derived in' we obtain the following relationship between the embedding impact
per pixel d/n and the relative message length m/n

Let us sort p; from the smallest to the largest and normalize so that >, p; = 1. Let p be a Riemann-
integrable non-decreasing function on [0, 1] such that p(i/n) = p;. Then for n — oo, the average distortion per

element d = D/n = 137" pip; — fol p(x)p(x)dr, where p(z) = 1_?%1(:&)
LSV H(pi) — fol H(p(z))dz. By direct calculation

1 1 —Ap(x) 1 1 / —Xp(z)
1n2></ H(p(x))dz =)\/ p(x)ei)dﬁ/ In(14e @) gy —)\/ (p(z) + xp/(x))e da-+In(14+e=>(D),
0 0 0 0

By the same token, « = m/n =

1+ e Arole 1+ e (@)

The second equality is obtained by integrating the second integral by parts. Thus, we can obtain the embedding
capacity-distortion relationship in a parametric form

d(A) = Gp(N)
1 —Xp(1)
a(A):E(/\Fp(A)+1n(1+e o)),

where A is a non-negative parameter and

1 ()e=Mo(@)
_ [plx)e
GPW—/O Tt ool 0

1 / —Ap(x)
_ [(p(z) +xp'(x))e7”
F,(\) = /0 vy dz.

Acknowledgements

The work on this paper was supported by Air Force Research Laboratory, Air Force Material Command, USAF,
under the research grant FA8750-04-1-0112 and AFOSR grant number FA9550-06-1-0046. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation there on. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Air Force Research
Laboratory, or the U.S. Government. Special thanks belong to Martin Wainwright for fruitful discussions and
Emin Martinian for directing our attention to quantizers based on LDGM codes.

REFERENCES

1. J. Bierbrauer. On Crandall’s problem. Personal Communication, (available from http://www.ws.binghamton.
edu/fridrich/covcodes.pdf), 1998.

2. J. Bierbrauer and J. Fridrich. Constructing good covering codes for applications in Steganography. In prepa-
ration, preprint available from hitp://www.ws.binghamton.edu/fridrich/stegocovsurveyOct06.pdf), 2006.

3. C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information Hiding,
2nd International Workshop, volume 1525 of LNCS, pages 306 318. Springer-Verlag, New York, 1998.

4. R. Crandall. Some notes on steganography. Awvailable from hitp://os.inf.tu-dresden.de/~westfeld/crandall.
pdf, 1998.

5. J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. ACM Multimedia and Security
Journal, 11(2):98-107, 2005.

6. J. Fridrich, M. Goljan, and D. Soukal. Wet paper codes with improved embedding efficiency. IEEE Trans-
actions on Information Security and Forensics, 1(1):102-110, 2006.

7. J. Fridrich and D. Soukal. Matrix embedding for large payloads. IEEE Transactions on Information Security
and Forensics, 1(3):390 394, 2006.

8. F. Galand and G. Kabatiansky. Information hiding by coverings. In Proceedings ITWZ2003, Paris, France,
2003, pages 151 154.

9. S. I. Gel’fand and M. S. Pinsker. Coding for channel with random parameters. Probl. Pered. Inform. (Probl.
Inform. Trans.), 9(1):19-31, 1980.

10

11.

12.

13.

14.

15.

16.

17.

. E. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propagation and its generalizations. In
Proceedings of the 16th Annual Symposium on Discrete Mathematics (SODA), pages 1089-1098, 2005.

E. Martinian and M. J. Wainwright. Analysis of LDGM and compound codes for lossy compression and
binning. In Workshop on Information Theory and its Applications, San Diego, February 2006.

T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching irregular low-density parity
check codes. IEEE Transactions on Information Theory, 47:619 637, February 2001.

T. Richardson and R. Urbanke. Efficient encoding of low-density parity check codes. IEEE Transactions on
Information Theory, 47(2):638-656, February 2001.

A. Schneidewind and D. Schonfeld. Embedding with syndrome coding based on BCH codes. In J. Dittman
and J. Fridrich, editors, Proceedings ACM Multimedia and Security Workshop, Geneva, Switzerland, Septem-
ber 26 27, 2006, pages 214 223. ACM Press, New York.

M. van Dijik and F. Willems. Embedding information in grayscale images. In Proceedings of the 22nd
Symposium on Information and Communication Theory in the Beneluz, Enschede, The Netherlands, May
15-16, 2001, pages 147-154.

M. J. Wainwright and E. Maneva. Lossy source encoding via message-passing and decimation over generalized
codewords of LDGM codes. In Proceedings of the International Symposium on Information Theory, Adelaide,
Australia, September 2005.

F. J. M. Williams and N. J. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam,
1977.

