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Matrix Embedding for Large Payloads
Jessica Fridrich and David Soukal

Abstract— Matrix embedding is a previously introduced coding
method that is used in steganography to improve the embedding
efficiency (increase the number of bits embedded per embed-
ding change). Higher embedding efficiency translates into better
steganographic security. This gain is more important for long
messages than for shorter ones because longer messages are
in general easier to detect. In this paper, we present two new
approaches to matrix embedding for large payloads suitable
for practical steganographic schemes—one based on a family
of codes constructed from simplex codes and the second one
based on random linear codes of small dimension. The embedding
efficiency of the proposed methods is evaluated with respect to
theoretically achievable bounds.

Index Terms— steganography, covering codes, embedding effi-
ciency.

I. I NTRODUCTION

T HE main requirement for a steganographic scheme is
statistical undetectability. Given the knowledge of the

embedding algorithm and the source of cover media, the
attacker should not be able to distinguish between stego and
cover objects with success rate better than random guessing.
Steganographic security is mostly influenced by the type of
cover media, the method for selection of places within the
cover that might be modified, the type of embedding operation,
and the number of embedding changes, which is a quantity
closely related to the length of the embedded data. Given two
embedding schemes that share the first three attributes, the
scheme that introduces fewer embedding changes will be less
detectable.

Matrix embedding is a general principle that can be applied
to most steganographic schemes to improve their embedding
efficiency, which is defined as the expected number of random
message bits embedded per one embedding change. Matrix
embedding was introduced by Crandall [3], analyzed by Bier-
brauer [1], and independently discovered by van Dijk et al. [8]
and Galand et al. [5]. It was made popular by Westfeld who
incorporated a specific implementation of matrix embedding
using binary Hamming codes in his F5 algorithm [9]. It is
intuitively clear that the gain in embedding efficiency can be
larger for short messages than for longer ones. Since in general
short messages are more difficult to detect than longer ones,
improving the embedding efficiency for increasingly shorter
messages becomes progressively less important for the overall
security. In current steganographic literature, however,no
codes suitable for embedding large payloads were described.
The goal of this correspondence is to fill in the gap and present
codes that practitioners will find useful for implementation.
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We describe two approaches. The first one is based on
simplex codes and codes constructed from them, while the
second approach uses random linear codes of small dimension.
In Section II, we introduce the terminology and basic concepts
of linear codes necessary to explain the embedding methods.
In Section III, we briefly describe the principles of matrix
embedding and state known bounds on achievable embedding
efficiency. Matrix embedding based on simplex codes and
random linear codes with small dimension is explained in
Section IV. In the same section, the performance is compared
to theoretically achievable bounds. Pseudo-codes are usedto
describe the embedding and extraction algorithms to ease the
implementation and make this text self-contained. The paper
is concluded in Section V.

II. NOTATION

Throughout this article, we will use some standard concepts
and results from Coding Theory that can be found for example
in [10]. Vectors or matrices are in bold and the calligraphic
font is used for sets. LetFn

2 denote the space of alln-
bit column vectorsx = (x1, . . . , xn)t. A binary [n, k] code
C of block length n and dimensionk is a k-dimensional
vector subspace ofFn

2 , where the sum of two vectors and
a multiplication of a vector by scalar are defined using the
usual binary arithmetics. Thek basis vectors written as rows
of a matrix form the generator matrixG. The orthogonal
complement of an[n, k] code is an[n, n − k] code (called
the dual code toC) with an (n − k) × n generator matrixH
with the property thatHx = 0 for eachx ∈ C. The matrixH
is called the parity check matrix ofC.

For any x ∈ F
n
2 , the vectors = Hx ∈ F

n−k
2 is called

the syndrome ofx. For each syndromes ∈ F
n
2 , the set

C(s) = {x ∈ F
n
2 |Hx = s} is called a coset. Note thatC(0) =

C. Obviously, cosets associated with different syndromes are
disjoint. Also, from elementary linear algebra we know that
every coset can be written asC(s) = x + C, wherex ∈ C(s)
arbitrary. Thus, there are2n−k disjoint cosets, each consisting
of 2k vectors. Any member of the cosetC(s) with the smallest
Hamming weight is called a coset leader and will be denoted
aseL(s) (the Hamming weightw of a vectorx is defined as
the number of ones inx, i.e., w(x) = x1 + · · · + xn).

The distance between two vectorsx andy is defined as the
Hamming weight of their differenced(x,y) = w(x−y). For
any x ∈ C, we denote asB(x, R) the ball with centerx and
radiusR, B(x, R) = {y ∈ F

n
2 |d(x,y) ≤ R}.

The covering radiusR of codeC is defined as

R = max
x∈F

n
2

d(x, C), (1)

where d(x, C) = minc∈C d(x, c) is the distance betweenx
and the codeC. An R-covering ofFn

2 is any subsetC of F
n
2
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such that
⋃

x∈C B(x, R) = F
n
2 , whereB(x, R) is the ball with

centerx and radiusR. The average distance to code is defined
as the average distance between a randomly selected vector
from F

n
2 and the codeC

Ra =
1

2n

∑

x∈F
n
2

d(x, C). (2)

Clearly, Ra ≤ R.

III. M ATRIX EMBEDDING IN STEGANOGRAPHY

We will assume that thecover imageX is an element ofGn,
whereG is the set of all possible pixel values. For example,
in steganography using 8-bit grayscale digital images,G is
the set of all integers in the range[0, 255] and n is the
number of pixels. Data embedding consists of modifying the
values of selected pixels so that the modified (stego) imageY

conveys the desired secret message. The impact of embedding
is captured by adistortion metricD : Gn × Gn → [0,∞).

In most steganographic schemes, the message (a bit-stream)
is communicated through abit-assignment functions : G →
Fq that assigns a bit to each possible pixel value. The most
common bit-assignment function used in steganography is the
least significant bit (LSB) of pixel values

s(i) = i mod 2. (3)

The embedding operation is then designed so that its applica-
tion to a pixel value modifies its assigned bit. For example,
for LSB embedding, the embedding operation is flipping the
LSB of the pixel value. Writing the pixels of imageX as a
one-dimensional vector, its vector of bitss(X) = x ∈ F

n
2

is obtained by applyings to each element. Everywhere in
this paper, we measure the impact of embedding using the
Hamming distanced : F

n
2 × F

n
2 → {0, 1, . . . , n} between the

corresponding bit vectors, which is the number of embedding
changes

D(X,Y) = d(s(X), s(Y)) for all X,Y ∈ Gn. (4)

We now briefly review a few relevant known facts about
embedding schemes and covering codes that appeared in [1],
[5] and establish some more terminology. LetM be the set of
all messages. Anembedding schemeon F

n
2 with a distortion

boundR is a pair of embedding and extraction functionsEmb
andExt,

Emb : F
n
2 ×M → F

n
2 andExt : F

n
2 → M, (5)

d(x, Emb(x,m)) ≤ R for all m ∈ M andx ∈ F
n
2 , (6)

such that for allm ∈ M and allx ∈ F
n
2 , Ext(Emb(x,m)) =

m. In other words, (5) means that we can embed any message
from M in any binaryn-tuple and (6) states that we can do
it using at mostR changes.

The valueh = log2 |M| is called the embedding capacity
(in bits) andα = h/n the relative payload (in bits per pixel
or bpp). We have the obvious inequality

|M| ≤ 2n or α ≤ 1. (7)

We further definee = h
R as thelower embedding efficiency

and e = h
Ra

as theembedding efficiency, where Ra is the

expected number of changes over uniformly distributed cover
objectsx ∈ F

n
2 and messagesm ∈ M. Note that sinceR

is the upper bound on the number of embedding changes, for
any embedding schemee ≤ e. The reason why here we used
the same symbolsR andRa that already have the meaning of
the covering radius and average distance to code will become
clear from the matrix embedding theorem below. The matrix
embedding theorem is taken from [1], [5] and gives a recipe
on how to use an[n, k] code to communicaten−k bits using
at mostR changes inn pixels.

Theorem 1:(Matrix embedding) Let C be an [n, k] code
with a parity check matrixH and covering radiusR. The
embedding scheme below can communicaten−k bitsm ∈ F

n
2

in n pixels with bitsx using at mostR changes:

Emb(x,m)=x + eL(m − Hx) = y,

Ext(y) =Hy,

wherem ∈ F
n−k
q is a sequence ofn − k message symbols

andeL(m − Hx) is a coset leader of the cosetC(m − Hx).
Indeed, sinceC has covering radiusR, we know that

d(x,y) = w(eL(m − Hx)) ≤ R, which shows that the
embedding scheme has (a tight) distortion boundR. To see
that Ext(Emb(x,m)) = m, note thatExt(Emb(x,m)) =
Hy = Hx + HeL(m − Hx) = Hx + m − Hx = m.

For an embedding scheme realized using matrix embedding,
the expected number of embedding changes for messages
uniformly distributed inF

n−k
2 is equal to the average weight

of all coset leaders ofC. It is reasonable to assume that the
messages are drawn uniformly at random fromF

n−k
2 since

typically they will be encrypted before embedding. We now
show that the expected number of embedding changes is equal
to the average distance to the code (2). Because any two words
x,y from the same cosetC have the same distance fromC:
d(x, C) = d(y, C) = w(eL), the weight of any coset leader of
C, we have for the average distance to code

1

2n

∑

x∈F
n
2

d(x, C)=
1

2n

∑

s∈F
n−k
2

∑

x∈C(s)

d(x, C(s))

=
1

2n

2n−k

∑

i=1

2kw(eL(s)) =
1

2n−k

2n−k

∑

i=1

w(eL(s)),

which is the average number of embedding changes for
messages uniformly chosen fromFn−k

2 .
We now state a few useful bounds on the embedding

efficiency. Because there are
∑R

i=0

(

n
i

)

ways in which one
can makeR or fewer changes inn pixels, we have

h = log2 |M| ≤ log2

R
∑

i=0

(

n

i

)

= log2 V (n,R) ≤ nH(R/n),

(8)
whereV (n,R) is the volume of a ball of radiusR in F

n
2 and

H(x) = −x log2 x− (1−x) log2(1−x), 0 ≤ x ≤ 1/2, is the
binary entropy function. Inequality (8) also gives us an upper
bound on the lower embedding efficiencye = h

R for a given
relative payloadα = h

n :

H−1(α) ≤
R

n
=⇒ e =

h

R
= α ·

n

R
≤

α

H−1(α)
. (9)
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We note that this bound is also an asymptotic bound on the
embedding efficiencye

e .
α

H−1(α)
(10)

which holds for almost all[n, n(1 − α)] codes because the
relative covering radiusρ = R/n and the relative distance
to codeρa = Ra/n converge withn → ∞. To state this
more precisely, we formulate (and prove in the Appendix) the
following theorem.

Theorem 2:For any0 < α < 1 and anyε > 0, the fraction
of all binary [n, (1−α)n] codes for which|ρ − ρa| ≤ ε tends
to 1 asn → ∞.
We close this section with one more useful bound on the
embedding efficiency for codes restricted to a class of linear
codes with relative payloadα, or the class of[n, n(1 − α)]
codes. An upper bound one requires a lower bound onR
andRa. Because there are

(

n
i

)

possible sums ofi columns of
the parity check matrixH, the number of cosets whose coset
leaders have weighti is at most

(

n
i

)

. Thus, the covering radius
R must be at least equal toRn for which

(

n

0

)

+

(

n

1

)

+ · · · +

(

n

Rn − 1

)

+ ξn

(

n

Rn

)

= 2αn,

where0 ≤ ξn < 1 is a real number. Besides the lower bound
R ≥ Rn, we obtain a lower bound forRa

Ra ≥

∑Rn−1
i=1 i

(

n
i

)

+ Rnξn

(

n
Rn

)

2αn
(11)

and an upper bound

e =
αn

Ra
≤

αn2αn

∑Rn−1
i=1 i

(

n
i

)

+ Rnξn

(

n
Rn

)
. (12)

IV. M ATRIX EMBEDDING FOR LARGE PAYLOADS

The first example of matrix embedding given by Crandal [3]
and Westfeld [9] was realized using[2p − 1, 2p − 1 − p, 3]
Hamming codes. Here, we can embedp message bits in a
block of 2p − 1 pixels by performing at most one embedding
change (we make no change with probability2−p). Thus, the
embedding efficiency isep = p/(1− 2−p). Embeddingp bits
per2p−1 pixels means that the relative payload isα = p

2p−1 .
Note that Hamming codes do not lead to any embedding

efficiency improvement for messages of relative length2/3
or higher. It is possible to use Hamming codes for message
lengths larger than2/3 using a construction called the direct
sum [2]. We can divide the message into two or more segments
and embed them in disjoint parts of the cover using Hamming
codes with different parameters. For example, given a relative
payload 0.8 bpp, we may divide it into two halves and
embed the first half in0.4 × n pixels and the second half
in 0.6 × n pixels. In the first part, we do not use matrix
embedding and embed with efficiency2, while in the second
part, we may use matrix embedding with Hamming codes with
p = 2 (because we are embedding at relative message length
0.4/0.6 = 2/3). This will lead to embedding efficiency of
0.8/(0.4/2+0.4/e2) = 16/7

.
= 2.286, which is better than not

using matrix embedding at all but still far from theoretically
achievablee

.
= 0.8/H−1(0.8) = 3.292.

Algorithm 1 EmbeddingM bits in anN -element cover object
using random linear codes.

1) To embedM bits in an N -element cover object, first
find n such thatαn ≥ M

N > αn−1.
2) Read the nextn−k bitsx from the cover object (along a

stego-key dependent path) and the next message segment
m of the same length.

3) Find anye that solvesHe = m − Hx.
4) In the list of all2k codewords, find the closest codeword

to e, denotec(e).
5) [Embedding modifications]y = x+e−c(e) is the stego

object.
6) If we are at the end of the cover object, stop, otherwise

go to 1.
7) [Extraction step] The message bits are extracted by

following the same embedding path and calculatingn−k
bits m from each blocky of the stego objectm = Hy.

A. Matrix embedding using random linear codes

Since random linear codes asymptotically achieve the bound
(10) [5], we may attempt to construct good codes randomly.
The downside of random codes is that they lack structure
needed for fast encoding. Fortunately, for large relative pay-
loads withα → 1 the codimension of the code will be close
to code length and thus the dimension will be small enough
to enable fast finding of coset leaders.

Indeed, to find the coset leader of the cosetC(Hx−m), we
can first find an arbitrary vectore satisfyingHe = Hx−m.
If c(e) is the closest codeword toe, thene−c(e) is the coset
leader ofC(Hx − m) because

d(e, c(e)) = min
c∈C(Hx−m)

w(e − c) = w(eL(Hx − m)).

We note that ifH is generated randomly but already in a
systematic form1, finding e will be trivial. Thus, the most
time consuming part of encoding is determining the closest
codewordc(e). Since there are2k codewords, keeping the
table of all codewords in memory requiresn2k bits. Finding
the closest codeword requires the same order of computations
O(n2k). To keep the complexity and memory requirements
low, the code dimensionk should be small, e.g.,k ≤ 14. We
note that for a fixedk, the relative payloadαn for the class
of [n, k] codes isαn = n−k

n . The pseudo-code for embedding
is given in Algorithm 1.

While the parameterk can be a public knowledge, the
block length n must be communicated to the recipient in
the stego image itself because it depends on the message
length. This is also theonly piece of information that needs
to be communicated along with the payload2. One possibility
is to encoden using regular (non-matrix) embedding in a
small subset of pixels pseudo-randomly chosen using the
shared secret stego-key. The same stego-key can be used to
generate the(n − k) × n matrix H using a pseudo-random

1
H = [In−k,D], whereIn−k is a square(n − k) × (n − k) identity

matrix.
2If we limit ourselves, for example, ton ≤ 256, we would only need8

bits for this overhead.
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TABLE I

SPEED OF EMBEDDING FOR1.3 MEGA-PIXEL IMAGE WITH FIXED BLOCK

LENGTH n = 100.

dimensionk speed in seconds

10 0.82

12 2.42

14 8.65

number generator so that it does not have to be communicated.
Alternatively, the matrixH could be even public as long as
the message bits are embedded along a pseudo-random path
generated from the stego-key.

Figure 1 shows the embedding efficiency of random linear
codes fork = 10 and k = 14 for n ≤ 165. A nice feature
of random codes is that they provide an almost continuously
changing family of codes with the same coding algorithm,
allowing the sender to choose the code lengthn to match
αn = (n − k)/n to the relative payload length and thus use
the whole embedding space in the cover object.

To see how much the coding improves the embedding
efficiency, let us take two relative payloads0.9 and0.8. From
Figure 1, using random linear codes of dimension14, the
embedding efficiency improves from2 (no coding) to ap-
proximately2.7 and3, respectively. Thus, the coding reduces
the impact of embedding the two messages as if we were
embedding messages of length0.9×2

2.7

.
= 0.67 and 0.8×2

3

.
=

0.53, respectively, without any coding. This is a significant
improvement in view of the fact that the performance of
current steganalyzers for some embedding methods may be
quite sensitive to the relative payload in this range (see, for
example, [6], [7]).

Note that the embedding efficiency of random codes is fairly
close to the upper bound (11) for codes of the same length. The
strange little “wiggles” in the upper bound are not a computing
artifact but a real phenomenon whose explanation can be found
in [4].

We can also see in Figure 1 the increase in embedding
efficiency as the code dimension is increased from10 to 14.
Better performance could be obtained by further increasing
the code dimension at the price of exponentially increasing
complexity. Even though typical steganographic algorithms are
run off-line on a computer and thus have less stringent require-
ments on complexity than typical channel coding applications,
the code dimension cannot be increased much without severe
complexity increase (recall that the complexity of coding is
O(n2n(1−α)).

In Table IWe give a small example of how fast the embed-
ding based on random codes runs on a computer. We simulated
embedding into an image withN = 1280×1024 pixels using
a random code with block lengthn = 100. We measured
the time taken to perform the embedding with dimensions
k = 10, 12, and 14. The test was performed on Pentium IV
running at 3.4 GHz with 1 GB RAM. The algorithm was
implemented in C++ and compiled under Linux with GCC
3.4.3.

Algorithm 2 EmbeddingM bits in anN -element cover object
using simplex codes.

1) To embedM bits in an N -element cover object, first
find q such that2

q−1−q
2q−1 ≥ M

N > 2q−1−1−q−1
2q−1−1 .

2) Read the nextp = 2q − 1 bits x from the cover object
and the next message segmentm of lengthp = 2q−1−q
(follow a pseudo-random path through the image).

3) Find any e that solvesHe = m − Hx, e.g., using
Gaussian elimination.

4) For ê = (0, e1, . . . , e2q−1) calculateE = (1 − 2ê)H2q

using the fast Hadamard transform.
5) Ei0 = max{E1, . . . , E2q}, u = binary expansion ofi0−

1 (LSB is the last).
6) The closest codeword toe is c(e) =

∑q
i=1 uiv

t
i , where

vi is the i-th row of the generator matrixG.
7) [Embedding modifications]y = x+e−c(e) is the stego

object.
8) If we are at the end of the cover object, stop, otherwise

go to 1.

B. Matrix embedding using simplex codes

Any structured codes with low dimension and fast decoding
algorithms that are quantizers can be used for our purpose. In
this section, we study the performance of the dual to Hamming
codes — the simplex codes.

In Algorithm 2, we give the pseudo-code for matrix em-
bedding using the simplex codes. The decoding algorithm for
simplex codes can be found, for example, in [10]. We note that
H is a parity check matrix of the[2q−1, q] simplex code,H2q

is the Hadamard (Sylvester) matrix of order2q and the symbol
1 is a column vector of2q ones.

Other codes derived from simplex codes using common
operations on codes, such as lengthening (increasing length
by one) or augmenting (adding a codeword to the generator
matrix) also give good performance and can be decoded using
a simple modification of the decoding algorithm for simplex
codes. If we augment the simplex code with an all-one vector
(1, . . . , 1), we obtain a[2q − 1, q + 1] code, which coincides
with the punctured first-order Reed-Muller code [10].

To embed with this code, we need to slightly modify Algo-
rithm 2. We need to run Step 4 withe prepended with both ’0’
and ’1’: ê0 = (0, e1, . . . , e2q−1) and ê1 = (1, e1, . . . , e2q−1),
obtaining now two vectorsc0 and c1 in Step 6, taking the
vector closer toe asc(e). To avoid calculating the Hadamard
transform twice, note that(1−2ê1)H2q = (1−2ê0)H2q−2h1,
whereh1 is the first row ofH2q .

The embedding efficiency of simplex codes and augmented
simplex codes forq = 3, . . . , 11, is shown in Figure 1. Note
that their performance is not as good as that of random linear
codes. Also, they do not cover the range ofα as densely
as random codes—their relative payloads areαq = 2q−1−q

2q−1

and αq = 2q−2−q
2q−1 for the simplex and augmented simplex

codes, respectively. On the other hand, they easily reach into
the range of relative payload close to1 and they do so with
low computational complexityO(q2q) = O(n log n) in terms
of the code lengthn.
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Again, to give an example of the improvement obtained
from embedding using these structured codes, for a relative
payload0.94, the application of the augmented simplex code
leaves the same impact as an uncoded embedding of a message
with relative length0.9×2

2.4 = 0.75, which is an improvement
of about 20%.

We note that the parameterq is again the only information
that needs to be communicated to the recipient in the same
manner as described in the previous section.

V. CONCLUSIONS

In this paper, we present two simple coding schemes
suitable for matrix embedding of large payloads. The codes
can be applied to most steganographic schemes without any
other changes to their embedding mechanism to increase their
embedding efficiency—the expected number of random bits
embedded using one embedding change. This will improve
their steganographic security.

We showed that random linear codes provide good embed-
ding efficiency and their relative embedding capacity densely
covers the range of large payloads making such codes suitable
for practical applications. Matrix embedding using simplex
codes is more computationally efficient and can be used even
for relative payloads above0.9.

In this paper, we also introduce a new concept of an average
distance to code as it is more relevant and directly related
to embedding efficiency as currently used in steganography.
We derive asymptotic bounds on the average distance to code
to better contrast the performance of the proposed codes to
the theoretically achievable embedding efficiency. The average
distance to code asymptotically coincides with the covering
radius with increasing code length. However, for small code
lengths, codes with the smallest average distance to code may
not necessarily have the smallest covering radius. We plan to
elaborate on this issue in our future work.
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APPENDIX

Before we give a proof of Theorem 2, we formulate two
auxiliary lemmas.

Lemma 1:For any 0 ≤ ρ < 1/2 there exists an integer
sequencekn with

kn/n ≤ 1 − H(ρ) + f(n),

where f(n) ∈ O(n−1 log n), such that the fraction of all
binary [n, kn] codes that arebρnc-coverings tends to 1.

Proof: This lemma is proved in [2, page 325] (Theo-
rem 12.3.5).

Lemma 2:For anyH−1(α) < ρ < 1/2, the fraction of all
binary [n, (1− α)n] codes with covering radius at mostbρnc
tends to 1 asn → ∞.

Proof: Let us denoteρ? = H−1(α). Because1−H(ρ) <
1−H(ρ?) andf(n) → 0 asn goes to infinity, there existsn0

such that for anyn > n0,

1 − H(ρ) + f(n) ≤ 1 − H(ρ?) = 1 − α.

Applying Lemma 1 toρ, we obtain an integer sequencekn

for which

kn/n ≤ 1 − H(ρ) + f(n) ≤ 1 − H(ρ?) = 1 − α,

for n > n0. Thus, kn ≤ (1 − α)n and the fraction of all
[n, kn] codes whose covering radius is at mostbρnc tends to
one. However the same is true for at least the same fraction
of [n, (1 − α)n] codes as well. This is so because for any
two codesC1 ⊂ C2, C1 an [n, k1] code with covering radius
R1 andC2 an [n, k2] code with covering radiusR2, we have
R2 ≤ R1.
Proof of Theorem 2.Let ρ? = H−1(α) and letC be an[n, (1−
α)n] code. From (8) applied toC (note thath = αn), we have
for its relative covering radiusρ, ρ? = H−1(α) ≤ R/n = ρ.
On the other hand, from Lemma 2 it follows thatρ ≤ ρ? + ε
for all n > n0, for a fraction of all[n, (1 − α)n] codes that
goes to1 asn → ∞.

The average distance to such codes isRa = 1
2αn

∑ρn
l=0 lcl,

wherecl is the number of coset leaders of weightl. Because
ρa ≤ ρ, we need a lower bound onρa. Writing

Ra =
1

2αn

b(ρ?−ε)nc
∑

l=0

lcl +
1

2αn

ρn
∑

l=b(ρ?−ε)nc+1

lcl, (13)

we will find a lower bound on the second sum. To do so, we
first derive an upper bound oncl for l satisfyingl < (ρ?−ε)n.
We start with

cl ≤

(

n

l

)

≤ 2nH(l/n). (14)

The second inequality follows from Lemma 2.4.2 in [2] and
holds for anyl < n/2 for sufficiently largen (e.g.,n > n1).
Using the fact thatH(x) is increasing on[0, 1/2], from Taylor
expansion ofH(x) at ρ?,

2nH(l/n) ≤ 2nH(ρ?−ε) = 2n(α−εH′(ξ)), (15)

whereρ? − ε < ξ < ρ?. Finally, becauseH ′ is decreasing on
the same interval,

cl ≤ 2αn2−nεH′(ξ) < 2αn2−nεH′(ρ?), (16)

for any l < (ρ? − ε)n.
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Fig. 1. Embedding efficiency vs. relative capacity (large payload case).

We now obtain a lower bound forRa. Writing l0 = b(ρ? −
ε)nc, from (13)

Ra ≥

ρn
∑

l=l0+1

lcl

2αn
≥ (ρ? − ε)n

ρn
∑

l=l0+1

cl

2αn
(17)

=(ρ? − ε)n

(

1 −

l0
∑

l=0

cl

2αn

)

because
∑R

l=0 cl = 2αn. Using (16)

Ra ≥(ρ? − ε)n
(

1 − (ρ? − ε)n · 2−nεH′(ρ?)
)

(18)

=(ρ? − ε)n(1 − δ(n)),

whereδ(n) → 0 exponentially fast withn → ∞. Combining
this result withρa ≤ ρ ≤ ρ? + ε, we obtain the following
bounds for the average distance to code in terms of the relative
quantities (forn > max(n0, n1))

(ρ? − ε)(1 − δ(n)) ≤ ρa ≤ ρ ≤ ρ? + ε, (19)

which proves the claim becauseε > 0 was arbitrary and
δ(n) → 0 for n → ∞.
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