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Abstract— Matrix embedding is a previously introduced coding We describe two approaches. The first one is based on
method that is used in steganography to improve the embedding simplex codes and codes constructed from them, while the
efficiency (increase the number of bits embedded per embed- go00nq approach uses random linear codes of small dimension

ding change). Higher embedding efficiency translates into better - . . .
steganographic security. This gain is more important for long In Section II, we introduce the terminology and basic cotep

messages than for shorter ones because longer messages a@f linear codes necessary to explain the embedding methods.
in general easier to detect. In this paper, we present two new In Section Ill, we briefly describe the principles of matrix
approaches to matrix embedding for large payloads suitable embedding and state known bounds on achievable embedding

for practical steganographic schemes—one based on a family gfficiency. Matrix embedding based on simplex codes and
of codes constructed from simplex codes and the second one

based on random linear codes of small dimension. The embedding ra”de linear codes with gmall dimension is e)_(pla'ned n
efficiency of the proposed methods is evaluated with respect to Section IV. In the same section, the performance is compared

theoretically achievable bounds. to theoretically achievable bounds. Pseudo-codes are tosed
Index Terms— steganography, covering codes, embedding effi- Qescrlbe the_ embedding and_extractlon aIgothms to ease th
ciency. implementation and make this text self-contained. The pape

is concluded in Section V.

I. INTRODUCTION II. NOTATION

HE main requirement for a steganographic scheme isThroughout this article, we will use some standard concepts

statistical undetectability. Given the knowledge of thand results from Coding Theory that can be found for example
embedding algorithm and the source of cover media, the[10]. Vectors or matrices are in bold and the calligraphic
attacker should not be able to distinguish between stego daat is used for sets. LeF; denote the space of ak-
cover objects with success rate better than random guesshig column vectorsx = (z1,...,z,)". A binary [n, k] code
Steganographic security is mostly influenced by the type 6f of block lengthn and dimensionk is a k-dimensional
cover media, the method for selection of places within thé&ctor subspace of;, where the sum of two vectors and
cover that might be modified, the type of embedding operatiod multiplication of a vector by scalar are defined using the
and the number of embedding changes, which is a quantitual binary arithmetics. Thee basis vectors written as rows
closely related to the length of the embedded data. Given t@#b & matrix form the generator matri&. The orthogonal
embedding schemes that share the first three attributes, €éagplement of ar{n, k] code is an[n,n — k] code (called
scheme that introduces fewer embedding changes will be I&g dual code t€) with an (n — k) x n generator matrixt{
detectable. with the property thaHx = 0 for eachx € C. The matrixH

Matrix embedding is a general principle that can be applidg called the parity check matrix af.

to most steganographic schemes to improve their embeddindor anyx € Fg, the vectors = Hx € F3~" is called
efficiency, which is defined as the expected number of randdi¢ syndrome ofx. For each syndrome € F7, the set
message bits embedded per one embedding change. Mdfix) = {x € F5|Hx = s} is called a coset. Note th&{0) =
embedding was introduced by Crandall [3], ana|yzed by B|éF_ ObViOUSly, cosets associated with different Syndromes ar
brauer [1], and independently discovered by van Dijk et&jl. [disjoint. Also, from elementary linear algebra we know that
and Galand et al. [5]. It was made popular by Westfeld wtyery coset can be written &s) = x + C, wherex € C(s)
incorporated a specific implementation of matrix embeddirgjbitrary. Thus, there arz"~* disjoint cosets, each consisting
using binary Hamming codes in his F5 algorithm [9]. It i®f 2 vectors. Any member of the cosegs) with the smallest
intuitively clear that the gain in embedding efficiency can bHamming weight is called a coset leader and will be denoted
larger for short messages than for longer ones. Since irgen@ser(s) (the Hamming weight of a vectorx is defined as
short messages are more difficult to detect than longer oné number of ones i, i.e., w(x) = 21 + -+ + zn).
improving the embedding efficiency for increasingly shorte The distance between two vectorsandy is defined as the
messages becomes progressively less important for thalbvedamming weight of their differencé(x,y) = w(x —y). For
security. In current steganographic literature, howeves, anyx € C, we denote a#3(x, R) the ball with centexx and
codes suitable for embedding large payloads were describ@flius R, B(x, R) = {y € F3|d(x,y) < R}.
The goal of this correspondence is to fill in the gap and pttesen The covering radiugz of codeC is defined as
codes that practitioners will find useful for implementatio R— max d(x,C), )
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such that J, .. B(x, R) = F3, whereB(x, R) is the ball with expected number of changes over uniformly distributed cove
centerx and radiusk. The average distance to code is defineobjectsx € FJ and messagem € M. Note that sinceR
as the average distance between a randomly selected vertdhe upper bound on the number of embedding changes, for
from F4 and the code& any embedding scheme< e. The reason why here we used
the same symbol& and R, that already have the meaning of
= > d(x,C). (2) the covering radius and average distance to code will become
xelFy clear from the matrix embedding theorem below. The matrix
Clearly, R, < R. embedding theorem is taken from [1], [5] and gives a recipe
on how to use arfn, k| code to communicate — k bits using

[1l. M ATRIX EMBEDDING IN STEGANOGRAPHY at mostR changes im pixels.

We will assume that theover imageX is an element o§™, Theorem 1:(Matrix embedding Let C be ann, k] code

where g is the set of all possible pixel values. For exam IWlth a parity check matrixH and covering radiusiz. The
P P P& émbedding scheme below can communieate: bitsm € FY
in steganography using 8-bit grayscale digital imaggss

the set of all integers in the range,255] and n is the in n pixels with bitsx using at mostr changes:

number of pixels. Data embedding consists of modifying the Emb(x,m)=x + ez (m — Hx) =y,
values of selected pixels so that the modified (stego) in¥ge Ex —H
. . . xt(y) =Hy,
conveys the desired secret message. The impact of embedding _
is captured by aistortion metricD : G x G" — [0, 00). wherem € F;—F is a sequence of, — k message symbols
In most steganographic schemes, the message (a bit-streaf)e. (m — Hx) is a coset leader of the cosétm — Hx).
is communicated through lit-assignment function : G — Indeed, sinceC has covering radiusk, we know that

F, that assigns a bit to each possible pixel value. The maktx,y) = w(er(m — Hx)) < R, which shows that the
common bit-assignment function used in steganographyeis g¢mbedding scheme has (a tight) distortion boutdTo see
least significant bit (LSB) of pixel values that Ext(Emb(x,m)) = m, note thatExt(Emb(x, m)) =
N Hy =Hx+He;,(m - Hx)=Hx+m-Hx=m

s(i) = i mod 2. @) For an embedding scheme realized using matrix embedding,
The embedding operation is then designed so that its appliéa€ expected number of embedding changes for messages
tion to a pixel value modifies its assigned bit. For exampléniformly distributed inF3~"* is equal to the average weight
for LSB embedding, the embedding operation is flipping thef all coset leaders of. It is reasonable to assume that the
LSB of the pixel value. Writing the pixels of imagk as a Messages are drawn uniformly at random frét* since
one-dimensional vector, its vector of bii§X) = x € Fz typically they will be encrypted before embedding. We now
is obtained by applyings to each element. Everywhere inshow that the expected number of embedding changes is equal
this paper, we measure the impact of embedding using fifethe average distance to the code (2). Because any two words

Hamming distancel : F} x F3 — {0,1,...,n} between the X,y from the same cosel have the same distance frofh
corresponding bit vectors, which is the number of embeddigx, C) = d(y,C) = w(er), the weight of any coset leader of
changes C, we have for the average distance to code
D(X,Y) = d(s(X),s(Y)) for all X, Y € G". 3 Z d(x,0)= Z > d(x.C(s
We now briefly review a few relevant known facts about x€Fg SGF" " x€C(s)
embedding schemes and covering codes that appeared in [1], 2k 1 2nr
[5] and establish some more terminology. ket be the set of Z 2kw(er (s = onk Z w(er(s)),
all messages. Aembedding schemen F5 with a distortion i=1
boundR is a pair of embedding and extraction functidis:b  which is the average number of embedding changes for
and Ext, messages uniformly chosen frdf§ —".
Emb: F} x M — F? and Ext : FY — M, () We now state a few useful bounds on the embedding

efficiency. Because there a@f;o (") ways in which one

d(x, Emb(x,m)) < R for all m € M andx € F3, (6) can makeR or fewer changes im pixels, we have

such that for alim € M and allx € F%, Ext(Emb(x, m)) =

m. In other words, (5) means that we can embed any message- log, | M| < log, Z ( > =log, V(n,R) < nH(R/n),

from M in any binaryn-tuple and (6) states that we can do i=0

it using at mostR changes. o (8)
The valueh = log, | M| is called the embedding capacity whereV (n, R) is the volume of a ball of radiu® in F3 and

(in bits) anda = h/n the relative payload (in bits per plerH( ) = —wlogy x — (1 —)logy(l —x), 0 <@ < 1/2,is the
or bpp). We have the obvious inequality binary entropy function. Inequality (8) also gives us anempp
bound on the lower embeddlng efficieney= % h for a given

IM|<2"ora <1. (7)  relative payloady =
We further definee = % as thelower embedding efficiency

— b i e i
ande = 7 as theembedding efficiencywhere R, is the
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We note that this bound is also an asymptotic bound on tAégorithm 1 Embedding)/ bits in anN-element cover object
embedding efficiency using random linear codes.
Q 1) To embedM bits in an N-element cover object, first
es H(a) (10) find n such thato, > & > a,_1.
2) Read the next—k bits x from the cover object (along a

which holds for almost allz, n(1 — a)] codes because the stego-key dependent path) and the next message segment
relative covering radiup = R/n and the relative distance m of the same length

to codep, = R,/n converge withn — oo. To state this ) Find anye that solvesHe = m — Hx
more precisely, we formulate (and prove in the Appendix) the 4) In the list of all2* codewords, find the closest codeword
following theorem. to e, denotec(e) '

Theorem 2:For any0 < o < 1 and anye > 0, the fraction ; e ;
. ) ’ Embedding modifications} = -
of all binary [n, (1 — a)n] codes for whichp — p,| < € tends ) E)bject b ficationgt = x+e—c(e) is the stego
to 1 asn — oo. ) . .
; . . If
We close this section with one more useful bound on the6) govf) zire at the end of the cover object, stop, otherwise

embedding efficiency for codes restricted to a class of finea 7)
codes with relative payload, or the class ofin,n(1 — «)]
codes. An upper bound os requires a lower bound o®
and R,. Because there ar') possible sums of columns of
the parity check matriH, the number of cosets whose coset
leaders have weighitis at most(’;). Thus, the covering radius

[Extraction step] The message bits are extracted by
following the same embedding path and calculatingk
bits m from each blocky of the stego objecin = Hy.

R must be at least equal ,, for which A. Matrix embedding using random linear codes
n n n n Since random linear codes asymptotically achieve the bound
(0) + (1> +- 1+ (R B 1) +&n (R ) = 29" (10) [5], we may attempt to construct good codes randomly.

_ _ The downside of random codes is that they lack structure
where0 < &, <1 is a real number. Besides the lower boungeeded for fast encoding. Fortunately, for large relatiag-p

R > R,, we obtain a lower bound foR, loads witha: — 1 the codimension of the code will be close
Ro—1 ./n n to code length and thus the dimension will be small enough
R, > > i)+ Rnfn(Rn) (11) to enable fast finding of coset leaders.
T 2an Indeed, to find the coset leader of the cad@x —m), we
and an upper bound can first find an arbitrary vectar satisfyingHe = Hx — m.
an _ an2an 12) If c(e) is the closest codeword g thene —c(e) is the coset
e=—< — . _
R, Zf:l 12(?) Y RE (é;) leader ofC(Hx — m) because
d(e,c(e))= min w(e—c)=w(e,(Hx —m)).
IV. MATRIX EMBEDDING FOR LARGE PAYLOADS c€C(Hx—m)

The first example of matrix embedding given by Crandal [3)ve note that ifH is generated randomly but already in a
and Westfeld [9] was realized usifg? — 1,2 — 1 — p,3] systematic forrh finding e will be trivial. Thus, the most
Hamming codes. Here, we can embgdnessage bits in a time consuming part of encoding is determining the closest
block of 27 — 1 pixels by performing at most one embeddingodewordc(e). Since there are* codewords, keeping the
change (we make no change with probability?). Thus, the table of all codewords in memory requireg® bits. Finding
embedding efficiency is, = p/(1 — 277). Embeddingp bits the closest codeword requires the same order of compusation
per2P —1 pixels means that the relative payloachis= 5. O(n2%). To keep the complexity and memory requirements

Note that Hamming codes do not lead to any embeddify, the code dimensiok should be small, e.gk < 14. We
efficiency improvement for messages of relative lengf8 note that for a fixedk, the relative payloady, for the class
or higher. It is possible to use Hamming codes for messagk[n, k| codes isx,, = "T*’“ The pseudo-code for embedding
lengths larger thar2/3 using a construction called the directis given in Algorithm 1.
sum [2]. We can divide the message into two or more segmentdVhile the parametek can be a public knowledge, the
and embed them in disjoint parts of the cover using Hammitijock lengthn must be communicated to the recipient in
codes with different parameters. For example, given aivelatthe stego image itself because it depends on the message
payload 0.8 bpp, we may divide it into two halves andlength. This is also thenly piece of information that needs
embed the first half irD.4 x n pixels and the second halfto be communicated along with the payléa®ne possibility
in 0.6 x n pixels. In the first part, we do not use matrixs to encodern using regular (non-matrix) embedding in a
embedding and embed with efficien2y while in the second small subset of pixels pseudo-randomly chosen using the
part, we may use matrix embedding with Hamming codes wighared secret stego-key. The same stego-key can be used to
p = 2 (because we are embedding at relative message lengémerate then — k) x n matrix H using a pseudo-random
0.4/0.6 = 2/3). This will lead to embedding efficiency of . _ o
0.8/(0.4/2+0.4/¢5) = 16/7 = 2.286, which is better than not __* = [Ln—k, D], whereL,, _ is a square(n — k) x (n — k) identity
using matrix embedding at all but still far from theoretlgal :

: ) 2|f we limit ourselves, for example, ta < 256, we would only need
achievablee = 0.8/H~1(0.8) = 3.292. bits for this overhead.



TABLE |
SPEED OF EMBEDDING FORL.3MEGA-PIXEL IMAGE WITH FIXED BLOCK
LENGTH n = 100.

Algorithm 2 EmbeddingM bits in anN-element cover object
using simplex codes.
1) To embedM bits in an N-element cover object, first

dimensionk | speed in seconds find ¢ such thatQL;;in > M %_
10 0.82 2) Read the nexp = 27 — 1 bits x from the cover object
12 242 and the next message segmanbf lengthp = 2¢9—1—¢q
14 8.65 (follow a pseudo-random path through the image).

3) Find anye that solvesHe = m — Hx, e.g., using
Gaussian elimination.
4) Foré = (0,e1,...,e2q_1) calculateE = (1 — 2é)Hoq
number generator so that it does not have to be communicated. using the fast Hadamard transform.

Alternatively, the matrixH could be even public as long as 5) E; = max{E,..., Fs}, u = binary expansion of, —
the message bits are embedded along a pseudo-random path 1 (LSB is the last).
generated from the stego-key. 6) The closest codeword tois c(e) = >, u;v!, where

Figure 1 shows the embedding efficiency of random linear  v; is thei-th row of the generator matri&.
codes fork = 10 andk = 14 for n < 165. A nice feature  7) [Embedding modificationg} = x+e—c(e) is the stego
of random codes is that they provide an almost continuously  object.
changing family of codes with the same coding algorithm, 8) If we are at the end of the cover object, stop, otherwise
allowing the sender to choose the code lengthio match go to 1.
an = (n — k)/n to the relative payload length and thus use
the whole embedding space in the cover object.

To see how much the coding improves the embeddi®) Matrix embedding using simplex codes
efficiency, let us take two relative payload$ and0.8. From

Fi 1 . q i q ¢ di X h Any structured codes with low dimension and fast decoding
igure 1, using random linear codes of dimensiph the algorithms that are quantizers can be used for our purpose. |

embgdding efficiency improv_es from (no coding) 10 ap- yhig section, we study the performance of the dual to Hamming
proximately2.7 and 3, respectively. Thus, the coding reduceﬁOdeS — the simplex codes

the impact of embedding the two messages as if we were, Algorithm 2, we give the pseudo-code for matrix em-

H gQ|,§><2 - 0.8x2 -
embedding messages of lengdy7" = 0.67 and =3 = bedding using the simplex codes. The decoding algorithm for

.0’53’ respec:wlely, .W'thogtﬂ?nyf CCtJdLEgi E"S IS fa significan implex codes can be found, for example, in [10]. We note that
improvement in view ol the tact that the perlormance is a parity check matrix of th2?—1, ¢] simplex codeHs.

current steganalyzers for some embedding methods may. he Hadamard (Sylvester) matrix of ordsrand the symbol
quite sensitive to the relative payload in this range (see tj

'’ 1 is a column vector oR? ones.
example, [6], [7]). Other codes derived from simplex codes using common
Note that the embedding efficiency of random codes is fairb’perations on codes, such as lengthening (increasinghlengt
close to the upper bound (11) for codes of the same length. Tie one) or augmenting (adding a codeword to the generator
strange little “wiggles” in the upper bound are not a compuiti matrix) also give good performance and can be decoded using
artifact but a real phenomenon whose explanation can b“-‘”OLH‘simpIe modification of the decoding algorithm for simplex
in [4]. codes. If we augment the simplex code with an all-one vector
We can also see in Figure 1 the increase in embeddifly...,1), we obtain a2¢ — 1, ¢ + 1] code, which coincides
efficiency as the code dimension is increased friito 14.  with the punctured first-order Reed-Muller code [10].
Better performance could be obtained by further increasingTo embed with this code, we need to slightly modify Algo-
the code dimension at the price of exponentially increasimghm 2. We need to run Step 4 withprepended with both '0’
complexity. Even though typical steganographic algordrare and '1: &y = (0,€e1,...,e2—1) andé, = (1,e1,...,e21),
run off-line on a computer and thus have less stringent reguiobtaining now two vectorg, and c; in Step 6, taking the
ments on complexity than typical channel coding applicstjo vector closer ta: asc(e). To avoid calculating the Hadamard
the code dimension cannot be increased much without seveemsform twice, note thdtl —2é&; )Hss = (1—2é&)Haq —2h;,
complexity increase (recall that the complexity of codisg iwhereh; is the first row ofHss.
O(n2n(1=a)), The embedding efficiency of simplex codes and augmented

In Table IWe give a small example of how fast the embe@implex codes foy = 3,...,11, is shown in Figure 1. Note
ding based on random codes runs on a computer. We simuldie@f their performance is not as good as that of random linear
embedding into an image with' = 1280 x 1024 pixels using codes. Also, they do not cover the range @fas densely
a random code with block length = 100. We measured as random codes—their relative payloads afe= 271
the time taken to perform the embedding with dimensiorsd o, = 2;;3? for the simplex and augmented simplex
k = 10,12, and 14. The test was performed on Pentium I\Vcodes, respectively. On the other hand, they easily reéoh in
running at3.4 GHz with 1 GB RAM. The algorithm was the range of relative payload close toand they do so with
implemented in C++ and compiled under Linux with GCQow computational complexity)(¢2?) = O(nlogn) in terms

3.4.3. of the code length.




Again, to give an example of the improvement obtainedhere f(n) € O(n~'logn), such that the fraction of all
from embedding using these structured codes, for a relatiimary [n, k,,] codes that arépn |-coverings tends to 1.
payload0.94, the application of the augmented simplex code Proof: This lemma is proved in [2, page 325] (Theo-

leaves the same impact as an uncoded embedding of a message12.3.5). |
with relative length%2x2 = (.75, which is an improvement | emma 2:For anyH () < p < 1/2, the fraction of all
of about 20%. binary [n, (1 — a)n] codes with covering radius at motn |

We note that the parameteris again the only information tends to 1 as, — oo.
that needs to be communicated to the recipient in the same proof: Let us denote* = H~'(«). Becausd — H (p) <

manner as described in the previous section. 1— H(p*) and f(n) — 0 asn goes to infinity, there exists

such that for any: > ng,
V. CONCLUSIONS

In this paper, we present two simple coding schemes 1—H(p)+ f(n) <1-H(p") =1-a.
suitable for matrix embedding of large payloads. The codes
can be applied to most steganographic schemes without A8Plying Lemma 1 top, we obtain an integer sequengg
other changes to their embedding mechanism to increase tfi@f which
embedding efficiency—the expected number of random bits
embedded using one embedding change. This will improve kn/n<1—H(p)+ f(n) <1-H(p")=1-a,
their steganographic security. .

We showed that random linear codes provide good embd@t 7 > no. Thus, &, < (1 — a)n and the fraction of all
ding efficiency and their relative embedding capacity dignsd’ #»] codes whose covering radius is at most.| tends to
covers the range of large payloads making such codes sitae- However the same is true for. at. least the same fraction
for practical applications. Matrix embedding using simple©f [n, (1 — a)n] codes as well. This IS SO beca.use for. any
codes is more computationally efficient and can be used ev¥fp codesCy C C, C1 an[n, k1] code with covering radius
for relative payloads abov@9. R, andC; an [n, ks3] code with covering radiug,, we have

In this paper, we also introduce a new concept of an avera@e < Ry u
distance to code as it is more relevant and directly relat€goof of Theorem 2.et p* = H~'(«) and letC be an[n, (1—
to embedding efficiency as currently used in steganographyn| code. From (8) applied t6 (note thath = an), we have
We derive asymptotic bounds on the average distance to cé@eits relative covering radiug, p* = H™'(a) < R/n = p.
to better contrast the performance of the proposed codesQ® the other hand, from Lemma 2 it follows that< p* + €
the theoretically achievable embedding efficiency. Theaye for all n > ng, for a fraction of all[n, (1 — a)n] codes that
distance to code asymptotically coincides with the cowprirfoes tol asn — oc.
radius with increasing code length. However, for small code The average distance to such codesis= 51 >/ loi,
lengths, codes with the smallest average distance to cogle mdierec; is the number of coset leaders of weighBecause
not necessarily have the smallest covering radius. We plang, < p, we need a lower bound am,. Writing
elaborate on this issue in our future work.

1 [(p*—e)n] pn
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2nH(l/n) < 2nH(p*—e) — Qn(a—eH’(E)), (15)

APPENDIX

Wherep* — e < £ < p*. Finally, becausd?’ is decreasing on

Before we give a proof of Theorem 2, we formulate twi )
the same interval,

auxiliary lemmas.
Lemma 1:For any0 < p < 1/2 there exists an integer

sequencek,, with o < 20m el () < gangmneH ("), (16)

kn/n<1—H(p)+ f(n), for anyl < (p* — €)n.



upper bound (10), any

upper bound (12), fixead, k = 14
—— k=14

upper bound (12), fixed, k£ = 10
k=10

simplex codeg; = 3,...,11

4.5

O

aug. simplex codeg = 3,...,11

embedding efficiency

0.5 0.6 0.7 0.8 0.9 1
relative message length

Fig. 1. Embedding efficiency vs. relative capacity (largelpag case).

We now obtain a lower bound faR,. Writing lo = [(p* —  [6] M. Goljan, J. Fridrich, and T. Holotyak. New blind stegdysis and
e)nJ, from (13) its implications. In E. Delp Ill and P. W. Wong, editorBroceedings
SPIE, Electronic Imaging, Security, Steganography, andeWszarking
le pn c of Multimedia Contents VIII, San Jose, CA, January 16—I®9afipear)
R, > Z RS (p* —e)n Z ! (17) January 2006. _ o _
2an [7] A. D. Ker. Steganalysis of LSB matching in grayscale image&&EES-
I=lo+1 I=lo+1 ignal Processing Lettersl2(6):441-444, June 2005.
lo [8] M. van Dijk and F. Willems. Embedding information in graykea
_ e)n 1— Z . images. InProceedings of the 22nd Symposium on Information and
2an Communication Theory in the Benelux, Enschede, The Netits] May
15-16, 2001 pages 147-154.
R _ san . [9] A. Westfeld. High capacity despite better steganalysis—a stegano-
becauseZl:o c =2%". Using (16) graphic algorithm). In I. S. Moskowitz, editoinformation Hiding,
4th International Workshgpvolume 2137 ofLNCS pages 289-302.

=0

R, >(p* —€e)n (1 —(p*—¢€)n- 2_"€H/(p*)) (18) Springer-Verlag, New York, 2001.
[10] F. J. M. Williams and N. J. SloaneThe Theory of Error-Correcting
=(p* —e)n(l —d(n)), Codes North-Holland, Amsterdam, 1977.

whered(n) — 0 exponentially fast withh — oo. Combining
this result withp, < p < p* + ¢, we obtain the following
bounds for the average distance to code in terms of thevelati
quantities (forn > max(ng,n1))

(P* —e)(1=0(n)) < pa <p < p* e, (19)

which proves the claim because > 0 was arbitrary and
d(n) — 0 for n — oo.
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