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Abstract. In this paper, we study embedding efficiency, which is an im-
portant attribute of steganographic schemes directly influencing their se-
curity. It is defined as the expected number of embedded random message
bits per one embedding change. Constraining ourselves to embedding re-
alized using linear covering codes (so called matrix embedding), we show
that the quantity that determines embedding efficiency is not the cov-
ering radius but the average distance to code. We demonstrate that for
linear codes of fixed block length and dimension, the highest embed-
ding efficiency (the smallest average distance to code) is not necessarily
achieved using codes with the smallest covering radius. Nevertheless, we
prove that with increasing code length and fixed rate (i.e., fixed relative
message length), the relative average distance to code and the relative
covering radius coincide. Finally, we describe several specific examples
of q-ary linear codes with q matched to the embedding operation and
experimentally demonstrate the improvement in steganographic security
when incorporating the coding methods to digital image steganography.

1 Introduction

Steganography is the art of undetectable communication. It was originally for-
malized by Simmons [1] as the prisoners’ problem. Alice and Bob are prisoners in
separate cells who want to develop an escape plan. Their communication is mon-
itored by a warden. Alice and Bob resort to steganography and hide the details
of the escape plot in cover objects, such as digital images, by slightly modifying
them. Their goal is to not raise the warden’s suspicion. In the simplest case,
the warden is passive in that he just observes the traffic without modifying the
messages in any way.

The main requirement of any steganographic technique is undetectability—
the warden should not be able to distinguish between cover and stego objects
(cover embedded with data) with success better than random guessing. A formal
definition of steganographic security was given by Cachin [2]. The detectability
of data hidden in a stego object is influenced by many factors, such as the choice
of the cover object, the selection rule used to identify individual elements of the
cover that could be modified during embedding, the type of embedding operation
that modifies the cover elements, and the number of embedding changes (directly
related to the secret message length). Assuming two embedding methods share



the same source of cover objects, the same selection rule and embedding opera-
tion, the one that introduces fewer embedding changes will be less detectable as
it decreases the chance that any statistics used by the warden will be sufficiently
disturbed to mount a successful steganalysis attack. The expected number of
random message bits embedded per one embedding change is called embedding
efficiency. This concept has been introduced by Westfeld [3] and has since been
accepted as an important attribute of steganographic schemes [4, 5].

In 1998, Crandall [6] and Bierbrauer [7, page 195–197] showed that embed-
ding efficiency of steganographic schemes can be improved by applying covering
codes to the embedding process. This fact has been later independently rediscov-
ered by van Dijk et al. [8] and Galland et al. [9]. In particular, a linear code can
be used to construct an embedding scheme3 whose embedding capacity is the
code redundancy, while the covering radius corresponds to the maximal number
of embedding changes necessary for embedding any message.

In this paper, we first show that the expected number of embedding changes,
which is directly related to the concept of embedding efficiency as used in cur-
rent steganographic literature, corresponds to the average distance to code rather
than the covering radius. Moreover, we show that in the class of linear codes of
fixed length and dimension the highest embedding efficiency may not always be
attained for a code with the smallest covering radius. However, with increas-
ing code length and fixed rate (i.e., fixed relative message length), the relative
covering radius and the relative distance to code asymptotically coincide.

In Section 2, we review selected known facts about embedding schemes real-
ized using q-ary linear codes and state bounds on embedding efficiency. In Sec-
tion 3, we study the properties of the average distance to code. Examples of spe-
cific coding schemes that can substantially improve the embedding efficiency of
steganographic schemes are given in Section 4, where we experimentally demon-
strate the benefit of using the proposed coding techniques for steganography.
The paper is concluded in Section 5.

2 Covering codes in steganography

In this section, we briefly review some known results about steganographic
schemes and covering codes including bounds on achievable embedding efficiency.
We do so for a rather general definition of an embedding scheme in which mes-
sage symbols from some finite field (rather than bits) are embedded at each pixel.
The reason for this more general approach will become clear in Section 4 when
we discuss the importance of ternary codes for steganography. Throughout the
text, boldface symbols stand for vectors or matrices and the calligraphic font is
used for sets. Italicized text highlights definitions of new concepts.

We will assume that the cover image X is an element of Gn, where G is the set
of all possible pixel values. For example, in steganography using 8-bit grayscale
digital images, G is the set of all integers in the range [0, 255] and n is the number

3 In steganographic literature, such embedding schemes realized using linear codes are
called matrix embedding [3, 6, 10].



of pixels. Data embedding consists of modifying the values of selected pixels so
that the modified (stego) image Y conveys the desired secret message. The
impact of embedding is captured by a distortion metric D : Gn × Gn → [0,∞).

We further assume that there is a symbol-assignment function s : G → Fq

that assigns an element of a finite field4
Fq to each possible pixel value. The

most common symbol-assignment function used in steganography is the least
significant bit (LSB) of pixel values

s(i) = i mod 2. (1)

Examples of other symbol-assignment functions are given in Section 4.
Writing the pixels of image X as a one-dimensional vector, its vector of

symbols s(X) = x ∈ F
n
q is obtained by applying s to each element. Everywhere

in this paper, we measure the impact of embedding in the symbol space F
n
q using

the Hamming distance d : F
n
q × F

n
q → {0, 1, . . . , n} between the corresponding

symbol vectors, which is the number of embedding changes

D(X,Y) = d(s(X), s(Y)) for all X,Y ∈ Gn. (2)

Let M be the set of all messages that can be communicated. An embedding
scheme with a distortion bound R is a pair of embedding and extraction functions
Emb and Ext,

Emb : F
n
q ×M → F

n
q and Ext : F

n
q → M, (3)

d(x, Emb(x,m)) ≤ R for all m ∈ M and all x ∈ F
n
q , (4)

such that for all messages m ∈ M and all x ∈ F
n
q , Ext(Emb(x,m)) = m. In

other words, (3) means that we can embed any message from M in any x and
(4) states that we can do it by imposing at most R changes.

The value h = log2 |M| is called the embedding capacity of the scheme (in
bits) and α = h/n the relative embedding capacity (or relative payload). We
have an obvious upper bound

|M| ≤ qn or α ≤ log2 q. (5)

We further define e = h
R as the lower embedding efficiency and e = h

Ra
as the

embedding efficiency, where Ra is the expected number of changes over uniformly
distributed cover objects x ∈ F

n
q and messages m ∈ M. Note that since R is the

upper bound on the number of embedding changes, for any embedding scheme
e ≤ e.

We next review some known facts about embedding schemes and covering
codes and state a bound on embedding efficiency. More details and proofs can be
found in [9,12,13]. Throughout this article, we will use some standard concepts
and results from Coding Theory that can be found for example in [11]. Unless

4 Here, q is a prime power. For background on finite fields, see for example Chapters
3 and 4 in [11].



stated otherwise, all codes considered in this article are linear codes, and we use
the notation “[n, k, d] code” for a k-dimensional linear code with block length
n and minimal distance d. If the minimal distance d is not important for our
considerations, we may omit it and only speak of an [n, k] code. We note that
the covering radius R of a q-ary code C is defined as

R = max
x∈Fn

q

d(x, C), (6)

where d(x, C) = minc∈C d(x, c) is the distance between x and the code C. An
R-covering of F

n
q is any subset C of F

n
q such that

⋃

x∈C B(x, R) = F
n
q , where

B(x, R) is the ball with center x and radius R.
We now state and prove the matrix embedding theorem. It gives a recipe how

to use an [n, k] code to communicate n− k symbols using at most R changes in
n pixels. Examples of specific matrix embedding schemes for binary and ternary
codes are given in Section 4.

Theorem 1. (Matrix embedding) Let C be an [n, k] code with a parity check
matrix H and covering radius R. The embedding scheme below can communicate
n− k symbols in n pixels with pixel symbols x using at most R changes:

Emb(x,m)=x + eL = y,

Ext(y) =Hy,

where m ∈ F
n−k
q is a sequence of n−k message symbols and eL is a coset leader

of the coset C(m−Hx) for the syndrome m−Hx.

Proof. Since C has covering radius R, we know that d(x,y) = w(eL) ≤ R, which
proves that the embedding scheme has (a tight) distortion bound R. To prove
that Ext(Emb(x,m)) = m, note that Ext(Emb(x,m)) = Hy = Hx + HeL =
Hx + m−Hx = m.

Because there are
∑R

i=0

(

n
i

)

(q − 1)i ways in which one can make up to R
changes in n pixels, we have

h = log2 |M| ≤ log2

R
∑

i=0

(

n

i

)

(q − 1)i = log2 Vq(n,R) ≤ nHq(R/n), (7)

where Vq(n,R) is the volume of a ball of radius R in F
n
q and Hq(x) = −x log2 x−

(1 − x) log2(1 − x) + x log2(q − 1) is the q-ary entropy function5. Inequality (7)
also gives us an upper bound on the lower embedding efficiency e = h

R for a

given relative payload α = h
n :

H−1
q (α) ≤

R

n
=⇒ e =

h

R
= α ·

n

R
≤

α

H−1
q (α)

, (8)

5 We note that this definition of q-ary entropy function is slightly different from how
this concept is usually defined in the literature. The difference is the multiplicative
factor log

2
q. This is because we define the relative payload α in bits per pixel, which

is more common in steganography, rather than in q-ary symbols per pixel.



where H−1
q (α) ∈ [0, (q− 1)/q]. We note that this upper bound on e is asymptot-

ically achievable using linear codes because the relative redundancy (n−k)/n =
h/n of almost all random [n, k] codes asymptotically achieves Hq(R/n) for a
fixed R/n < (q − 1)/q and n → ∞ (see, e.g., Theorem 12.3.5 in [14] for the
binary case). Thus, there exist embedding schemes based on linear codes whose
lower embedding efficiency is asymptotically optimal.

3 Average distance to code

From the Matrix Embedding Theorem 1, for fixed block length n and embedding
capacity n−k, the highest lower embedding efficiency is achieved using an [n, k]
code with the smallest covering radiusR. However, as argued in the Introduction,
steganographers are more interested in the embedding efficiency and thus the
average number of embedding changes. In this section, we first show that this
concept is related to the average distance to code and then we demonstrate that
a code with the smallest average distance to code does not have to have the
smallest covering radius.

For an embedding scheme from Theorem 1, the expected number of embed-
ding changes for messages uniformly distributed in F

n−k
q is equal to the average

weight of all coset leaders of C. It is reasonable to assume that the messages are
drawn uniformly at random from F

n−k
q since typically they will be encrypted be-

fore embedding. We now show that the expected number of embedding changes
is equal to the average distance to the code defined as

Ra =
1

qn

∑

x∈Fn
q

d(x, C). (9)

Because any two words x,y from the same coset Ci have the same distance from
C: d(x, C) = d(y, C) = w(ei), the weight of a coset leader of Ci, we have

Ra =
1

qn

∑

x∈Fn
q

d(x, C) =
1

qn

qn−k

∑

i=1

∑

x∈Ci

d(x, C) =
1

qn

qn−k

∑

i=1

qkw(ei) =
1

qn−k

qn−k

∑

i=1

w(ei),

which is the average number of embedding changes for messages uniformly chosen
from F

n−k
q .

The remaining results in this section are formulated for binary codes. We first
study codes of small dimension k = 1, 2 because such codes allow calculating the
average distance to code analytically. Moreover, matrix embedding with codes
of small dimension was recently proposed as a means to improve steganographic
security when embedding large payloads close to the embedding capacity [13].

Theorem 2. For a binary [n, 1] code

Ra ≥
n

2

(

1 − 2−n+1

(

n− 1
⌈

n−1
2

⌉

))

. (10)



Proof. Consider the matrix H = [I,1], where I is the (n−1)×(n−1) identity ma-
trix and 1 is the column of n−1 ones. It is easy to see that for i ≤ b(n− 1)/2c all
(

n
i

)

possible sums of i columns of H produce all syndromes of weight i and n− i.

Thus, for n odd, Ra = 2−n+1
∑(n−1)/2

i=1 i
(

n
i

)

and no other code can have a smaller

Ra. For n even, we need to include
(

n−1
d(n−1)/2e

)

sums of d(n− 1)/2e columns of

the identity matrix I. Thus, Ra = 2−n+1
∑b(n−1)/2c

i=1 i
(

n
i

)

+d(n− 1)/2e
(

n−1
d(n−1)/2e

)

and, again, no code can have a smaller Ra. Both expressions simplify to the right
hand side of (10) after simple algebra. Note that the proof also shows that the
inequality (10) is tight.

To present the analogue of Theorem 2 for 2-dimensional codes, we first need
to introduce some notation. For an [n, 2] code C with basis {x,y}, let us define
ψ(C) to be the multiset (set with possibly repeated elements) {α, β, γ}, where

α = |{i : xi = yi = 1}|, β = |{i : xi = 1, yi = 0}|, γ = |{i : xi = 0, yi = 1}|.

Notice that the mapping ψ is well defined, that is, ψ(C) is independent of the
choice of a basis for C.

Theorem 3. Let n be fixed, n ≥ 4, and let C be a binary [n, 2] code. Then C
achieves the minimum average distance to code among all binary [n, 2] codes
if and only if no coordinate of C is identically zero, and ψ(C) is in one of the
following forms:

{α, α, α+1}, {α, α+1, α+3}, {α, α+1, α+2}, {α, α+3, α+3}, {α, α+1, α+1}.

It is quite interesting to note that the most symmetric [3α, 2] codes C defined
by ψ(C) = {α, α, α} are never optimal unless α = 1. This theorem is taken
from [15].

To show that a code minimizing the average distance to code among all [n, k]
codes with given n, k does not need to minimize the covering radius in this class,
we now present the following example.

Let M be the 4 × 15 binary matrix whose columns are all nonzero vectors
from F

4
2. Let M′ be a matrix obtained from M by deleting a single column. Let

C be the [14, 4] code generated by M′. The average distance to C is 3548/210.
We have proved by an exhaustive classification of all [14, 4] binary codes up
to isomorphism that, for any [14, 4] code C ′ not isomorphic to C, the average
distance to C′ is at least 3602/210, which is at least 1.5% more than that of C.
Since the maximum weight of C is 8, the distance of the all-one vector from C is
6. However, there are [14, 4] codes with covering radius 5 (see Table 7.1 on page
193 in [14]) and thus C does not minimize the covering radius among all [14, 4]
codes.

Even though the average distance to code and the covering radius are two dif-
ferent values that are not necessarily optimized by the same code, we prove that
in the binary case these two concepts asymptotically coincide with increasing
length of the code and fixed rate. Let us suppose that we are embedding relative



payload α, 0 ≤ α ≤ 1, in an n-element cover object. Thus, the message consists
of αn bits and the code that realizes the embedding is a binary [n, (1 − α)n]
code6. The following theorem states that for almost all such codes the relative
covering radius ρ = R/n and the relative distance to code ρa = Ra/n converge
with n→ ∞.

Theorem 4. For any 0 < α < 1 and any ε > 0, the fraction of all binary [n, (1−
α)n] codes for which |ρ− ρa| ≤ ε tends to 1 as n goes to infinity.

The proof of this theorem is in the appendix. We note that this result implies
that the bound (8) is also an asymptotic bound on the embedding efficiency e

e .
α

H−1(α)
. (11)

4 Practical embedding schemes

In this section, we first explain the reasons for constructing steganographic
schemes using q-ary codes with q matched to the embedding operation and then
we give several examples of codes suitable for practical applications. Finally, we
demonstrate how the codes improve steganographic security of ±1 embedding
in the spatial domain.

Let us start with the simple LSB embedding paradigm frequently employed
in steganographic schemes for images, audio, and other digital media objects.
To be specific, we assume that the cover is a grayscale digital image and we also
assume that the sender can use all pixels for embedding, i.e., the embedding is
not constrained to any selection channel [5]. The message bits are embedded as
LSBs of pixels along a pseudo-random path determined by a secret stego key.
The recipient reads the message from LSBs of pixels obtained by scanning the
image in the same pseudo-random order as during embedding.

LSB flipping is a very unnatural operation that is quite detectable by modern
steganalytic tools (see [16] and references therein). The fundamental reason for
this is the special character of the LSB flipping operation that pairs up grayscale
values 2i and 2i + 1 for i = 0, . . . , 127. In other words, during embedding the
value 2i is either left unchanged or changed to 2i+ 1. In particular, it is never
changed to 2i − 1. All reliable LSB detectors rely on this fact in some way or
another.

An obvious and quite simple countermeasure is to make the embedding oper-
ation symmetrical and allow changes in both directions for all pixel values (with
the obvious exception of the boundary values 0 and 255). For example, to modify
the LSB of the grayscale value i of a given pixel, the embedder may flip a coin
and with probability 1/2 increase the value of i by one and with probability 1/2
decrease its value by one. Note that this process introduces the same distortion

6 Statements involving the quantity αn hold whenever this value is an integer, and
are void otherwise.



to the image as LSB embedding. This type of embedding is known as ±1 em-
bedding [17,18] or LSB matching [19,20]. In this paper, we will call this method
binary ±1 embedding.

The embedding efficiency of LSB embedding and binary ±1 embedding is
the same and equal to 2—assuming we are embedding a random bit-stream with
uniform distribution of 0’s and 1’s, we embed 1 bit by making a change with
probability 1/2. However, in the case of ±1 embedding, we have three possibilities
for each pixel—either leave it unchanged or modify by ±1. Obviously, we can
use the following symbol-assignment function

t = s(i) = i mod 3 (12)

and embed a ternary symbol t ∈ {0, 1, 2} = F3 in each pixel. We call this method
ternary ±1 embedding.

Assuming the embedded stream of ternary symbols is random with uniform
distribution on F

n
3 , the probability that the pixel value i will stay unchanged,

be modified by 1, or −1 is the same and equal to 1/3. Thus, we make a change
with probability 2/3 and embed log2 3 bits. The embedding efficiency is thus
log2 3/( 2

3 )
.
= 2.3774. This is already larger than the embedding efficiency of

binary ±1 embedding. We can do, obviously, much better because we can now
embed up to log2 3 bits per pixel (bpp) and thus the relative payload α shortens
by the same factor. This means that we can further increase the embedding
efficiency by applying matrix embedding with ternary codes.

4.1 Examples of good covering codes

Probably the simplest case of matrix embedding is based on q-ary [ qm−1
q−1 ,

qm−1
q−1 −

m, 3] Hamming codes, which are perfect codes with minimum distance 3 and
covering radius R = 1. Since there are qn−m codewords whose distance to code
is 0 and qn−qn−m words x ∈ F

n
q whose distance to code is 1, the average distance

to code is Ra = (qn − qn−m)/qn = 1− q−m. Using Theorem 1, we can embed m

q-ary symbols in qm−1
q−1 pixels using at most one change. In other words, we can

embed a relative payload α = m q−1
qm−1 log2 q bpp with lower embedding efficiency

e = m log2 q and embedding efficiency e = m log2 q/(1 − q−m).
Note that for q = 2, m = 1, and the symbol-assignment function (1), we

obtain the classical LSB embedding. With increasing m, the payload α decreases
while the embedding efficiency increases. The binary Hamming code was used
for the first time in the JPEG steganographic algorithm F5 [3].

In Figure 1, we show the upper bound (8) on embedding efficiency for q =
2, 3, 4 as a function of relative payload α (in bpp). The embedding efficiency
of binary and ternary Hamming codes for different values of m is shown with
“+” and “×” signs, respectively. Note that the curves start at the point α =
log2 q, e = q

q−1 log2 q, which corresponds to embedding at the largest relative
payload of log2 q bpp. We also want to point out the benefit of using q-ary codes
for a fixed relative payload α. For example, for α = 1, the ternary ±1 embedding
can theoretically achieve embedding efficiency e ' 4.4, which is significantly
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higher than 2—the maximal efficiency of LSB embedding at this relative message
length.

The remaining non-trivial perfect codes, the binary [23, 12, 7] Golay code
and the ternary [11, 6, 5]3 Golay code, also provide very good performance (see
Figure 1). The average distance to the binary Golay code is Ra = 1

223 (1 ·
(

23
1

)

+

2·
(

23
2

)

+ 3 ·
(

23
3

)

) · 212 .
= 2.8525, which gives e = 11/Ra

.
= 3.8562 at relative

payload α = 11/23
.
= 0.4783. The average distance to the ternary Golay code is

Ra = 1
311

(

1 ·
(

11
1

)

· 2 + 2 ·
(

11
2

)

· 4
)

· 36 .
= 1.9012, giving e = 5 log2 3/Ra

.
= 4.1683

at relative payload α = 5 log2 3/11
.
= 0.7204.

For large payloads close to log2 3 bpp, the following simple one-dimensional
ternary code can greatly improve embedding efficiency. Let C be the ternary [n, 1]
code (1-dimensional subspace of F

n
3 ) spanned by the all-one vector. Suppose that

we use matrix embedding defined by the code C, and that the embedding of
ternary symbols into the grayscale image is realized using the ±1 embedding as
explained earlier in this section. If we denote the number of 0’s, 1’s and 2’s in
an arbitrary vector of F

n
3 by a, b and c, respectively, then the average distance



to C can be computed as

Ra =
1

3n

∑

(n− max{a, b, c})

(

n

a

)(

n− a

b

)

, (13)

where the sum extends over all triples (a, b, c) of non-negative integers such that
a + b + c = n. For the matrix embedding part, we can use the ternary matrix
H = [I,u] where I is the (n− 1) × (n− 1) identity matrix and u is the column
vector of 2’s. The number of bits embedded per n pixels is log2 3n−1, which gives
relative payload α = n−1

n log2 3. The points [α,Ra] are shown in Figure 1 as “?”
signs. For example, we can embed 1.188 bpp with embedding efficiency of almost
3 bits per change.

Binary matrix embedding schemes for large payloads were discussed in [13].
The authors proposed a class of random linear codes of small dimension and
codes derived from simplex codes.

Finally, as shown in [5] random linear codes in F
n
2 with small codimension can

also be used to construct computationally tractable embedding schemes with im-
proved embedding efficiency (the triangle signs in Figure 1 correspond to codes
with codimension n− k = 19). In this case, due to the small code codimension
the coding can be done using efficient search techniques. Note that these ran-
dom linear codes outperform binary Hamming codes. Another advantage of this
approach is that we obtain a parametrized family of codes rather than a few
instances of individual coding schemes, which greatly simplifies implementation.

4.2 Experiments

Even though it is clear that increased embedding efficiency should improve
steganographic security, it would be useful to obtain a quantitative statement
for a specific embedding scheme applied to real images. We evaluate the stegano-
graphic security using the current state-of-the-art blind feature-based classi-
fier [21] on 2500 cover images obtained with 22 different digital cameras. The
images include a mixture of indoor and outdoor shots taken under varying light
conditions with and without flash, landscapes, and closeups. All images were
taken in the raw (uncompressed) format, converted to grayscale and cropped to
their central 1000 × 1000 region. We chose a database of raw images intention-
ally because previously JPEG compressed images should not be used for spatial
domain steganography [22].

For our tests, we used three methods: (1) uncoded binary ±1 embedding,
(2) binary ±1 embedding with binary Hamming codes, and (3) ternary ±1 em-
bedding with ternary Hamming codes. Note that in order to embed a message
of relative length α bpp, we need to choose the parameter m of the Hamming
code so that (m+ 1) q−1

qm+1−1 log2 q < α ≤ m q−1
qm−1 log2 q. Obviously, we are most

efficient when α is close to m q−1
qm−1 log2 q. Thus, we chose the payloads for our

tests in such a manner so that α is close to the upper bound for both binary and
ternary codes.



We ran the following experiment for each payload and each embedding tech-
nique. Half of the images from the database were chosen as cover images and the
other half were embedded using the corresponding method and payload. Then,
using the blind classifier [21] we calculated the Receiver Operating Characteris-
tic curve (ROC) as a measure of separability between the clusters of features of
cover and stego images. To obtain a numerical characteristic of the performance
of the detector, we used two quantities that are frequently used in current ste-
ganalysis literature—false alarms (cover images incorrectly detected as stego)
at stego image detection accuracy 50% and 80%. Table 1 shows both numerical
characteristics for the three embedding methods and two relative payloads. The
parameters for payloads α1 and α2 were m = 2 and 3, respectively, for both
binary and ternary Hamming codes.

Table 1. False alarms at 50% and 80% stego image detection for three embedding
methods and two relative payloads.

α1 = 0.666 α2 = 0.365 bpp

Embedding method FA50% FA80% FA50% FA80%

Uncoded binary 1.3% 15% 3.9% 21%

Binary Hamming 2.5% 19% 8.1% 29%

Ternary Hamming 3.9% 21% 12.7% 38%

The results in Table 1 demonstrate that methods that use matrix embedding
can be detected less reliably than the uncoded method. For example, for relative
payload α1 = 0.666 bpp applying a ternary Hamming code triples the false alarm
rate when compared to the uncoded binary ±1 embedding.

We close this section with some general considerations about the limitations
of the applicability of matrix embedding to steganography. It is not clear what
improvement in embedding efficiency can be expected from using q-ary codes
with q > 3 because in this case the act of embedding will have to start making
changes with amplitude more than 1. It is an open and little researched area
in steganography whether it is beneficial to decrease the number of embedding
changes by allowing embedding changes of higher amplitude. In other words,
it is not clear whether it is better to make more changes of low amplitude or
fewer changes with larger amplitude. The answer to this question likely depends
on other properties of the steganographic scheme, such as placement of embed-
ding changes, the type of embedding operation, and the cover object. Recent
studies [17] suggest that with increasing amplitude of embedding changes, the
detection of steganography becomes more reliable quite rapidly. Because the im-
provement in embedding efficiency becomes increasingly smaller with increasing
q (see Figure 1), it is not likely that incorporating q-ary codes for q > 3 would
improve steganographic security.



Also, not all steganographic algorithms can benefit from ternary encoding.
For example, in the F5 algorithm for JPEG images [3], the absolute value of
quantized DCT coefficients is always decreased when necessary to change the
LSB. If changes in both directions were allowed in F5, severe artifacts would be
introduced in the histogram. Thus, the embedding operation in F5 does not allow
applying ternary codes. Another example is Perturbed Quantization [23]. In this
case, the direction of embedding changes is determined by side-information pro-
vided by a high resolution version of the cover object to minimize the combined
distortion due to quantization and embedding. The character of the embedding
operation here is also inherently binary.

5 Conclusions

Matrix embedding using linear codes (syndrome coding) is a general approach to
improving embedding efficiency of steganographic schemes. The covering radius
of the code corresponds to the maximal number of embedding changes needed
to embed any message. Steganographers, however, are more interested in the
average number of embedding changes rather than the worst case. In fact, the
concept of embedding efficiency—the average number of bits embedded per em-
bedding change—has been frequently used in steganography to compare and
evaluate performance of steganographic schemes.

In this paper, we showed that the embedding efficiency is determined by
the average distance to code rather than the covering radius. Thus, designers
of steganographic systems should minimize the average distance to code rather
than the covering radius. We demonstrated on an example that, within the class
of linear codes of fixed dimension and length, the code with the minimal average
distance to code does not have to have the smallest covering radius. However,
with increasing code length and fixed rate, we proved that the average distance
to code and the covering radius coincide.

In the second part of this paper, we demonstrated that embedding efficiency
can be dramatically improved using q-ary codes with q matched to the stegano-
graphic embedding operation. We also briefly studied specific coding methods
that can be used to realize embedding schemes in practice. In particular, we
compared the performance of binary and ternary Hamming codes. Addition-
ally, we proposed a simple one-dimensional ternary code suitable for improving
embedding efficiency when embedding large payloads.

An important open problem is how to find families of binary or ternary codes
with efficient coding procedures with embedding efficiency close to the theoreti-
cal bound. The recently proposed computationally efficient quantizers based on
sparse generator matrices [24] look especially relevant to this problem. Alterna-
tively, we plan to investigate random ternary linear codes and development of
computationally efficient algorithms similar to those reported in [5].
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A Proof of Theorem 4

Before we give a proof of the theorem, we formulate two auxiliary lemmas (H(x)
is the binary entropy function).

Lemma 1. For any 0 ≤ ρ < 1/2 there exists an integer sequence kn with

kn/n ≤ 1 −H(ρ) + f(n),

where f(n) ∈ O(n−1 logn), such that the fraction of all binary [n, kn] codes that
are bρnc-coverings tends to 1.

Proof. This lemma is proved in [14, page 325] (Theorem 12.3.5).

Lemma 2. For any H−1(α) < ρ < 1/2, the fraction of all binary [n, (1 − α)n]
codes with covering radius at most bρnc tends to 1 as n→ ∞.

Proof. Let us denote ρ? = H−1(α). Because 1−H(ρ) < 1−H(ρ?) and f(n) → 0
as n goes to infinity, there exists n0 such that for any n > n0,

1−H(ρ) + f(n) ≤ 1 −H(ρ?) = 1 − α.

Applying Lemma 1 to ρ, we obtain an integer sequence kn for which

kn/n ≤ 1 −H(ρ) + f(n) ≤ 1 −H(ρ?) = 1 − α,

for n > n0. Thus, kn ≤ (1 − α)n and the fraction of all [n, kn] codes whose
covering radius is at most bρnc tends to one. However the same is true for at
least the same fraction of [n, (1 − α)n] codes as well. This is so because for any
two codes C1 ⊂ C2, C1 an [n, k1] code with covering radius R1 and C2 an [n, k2]
code with covering radius R2, we have R2 ≤ R1.

Proof of Theorem 4. Let ρ? = H−1(α) and let C be an [n, (1 − α)n] code. From
(7) applied to C (note that h = αn), we have for its relative covering radius ρ,
ρ? = H−1(α) ≤ R/n = ρ. On the other hand, from Lemma 2 it follows that



ρ ≤ ρ? + ε for all n > n0, for a fraction of all [n, (1 − α)n] codes that goes to 1
as n→ ∞.

The average distance to such codes is Ra = 1
2αn

∑ρn
l=0 lcl, where cl is the

number of coset leaders of weight l. Because ρa ≤ ρ, we need a lower bound on
ρa. Writing

Ra =
1

2αn

b(ρ?−ε)nc
∑

l=0

lcl +
1

2αn

ρn
∑

l=b(ρ?−ε)nc+1

lcl, (14)

we will find a lower bound on the second sum. To do so, we first derive an upper
bound on cl for l satisfying l < (ρ? − ε)n. We start with

cl ≤

(

n

l

)

≤ 2nH(l/n). (15)

The second inequality follows from Lemma 2.4.2 in [14] and holds for any l < n/2
for sufficiently large n (e.g., n > n1). Using the fact that H(x) is increasing on
[0, 1/2], from Taylor expansion of H(x) at ρ?,

2nH(l/n) ≤ 2nH(ρ?−ε) = 2n(α−εH′(ξ)), (16)

where ρ? − ε < ξ < ρ?. Finally, because H ′ is decreasing on the same interval,

cl ≤ 2αn2−nεH′(ξ) < 2αn2−nεH′(ρ?), (17)

for any l < (ρ? − ε)n.
We now obtain a lower bound for Ra. Writing l0 = b(ρ? − ε)nc, from (14)

Ra ≥

ρn
∑

l=l0+1

lcl
2αn

≥ (ρ? − ε)n

ρn
∑

l=l0+1

cl
2αn

= (ρ? − ε)n

(

1 −

l0
∑

l=0

cl
2αn

)

because
∑R

l=0 cl = 2αn. Using (17)

Ra ≥ (ρ? − ε)n
(

1 − (ρ? − ε)n · 2−nεH′(ρ?)
)

= (ρ? − ε)n(1 − δ(n)), (18)

where δ(n) → 0 exponentially fast with n → ∞. Combining this result with
ρa ≤ ρ ≤ ρ? + ε, we obtain the following bounds for the average distance to code
in terms of the relative quantities (for n > max(n0, n1))

(ρ? − ε)(1 − δ(n)) ≤ ρa ≤ ρ ≤ ρ? + ε, (19)

which proves the claim because ε > 0 was arbitrary and δ(n) → 0 for n→ ∞.
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