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Abstract. In this paper, new techniques and algorithms are developed for improving the accuracy of imprecise measurements of chaotic systems. Observational uncertainty  causes the states of a system (i.e., points in some appropriate state space) to be  replaced by uncertainty sets surrounding the exact “true” states. Given the uncertainty  sets, the problem investigated in this paper is to reconstruct the original states of the  system with improved precision. As an application, we describe a method for  building highly accurate measuring devices using a combination of a simple chaotic system and a low-accuracy measuring device.
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�
1. Introduction



In this paper, we study how observational uncertainty is transformed in a chaotic system. We describe general, novel techniques and algorithms to retrieve information about orbits (trajectories) of nonlinear dynamical systems lost in the process of data acquisition due to observational uncertainty. Observational uncertainty is a result of measurements (or observations) which do not perturb the system being measured. Imprecise measurements, additive noise, sampling of continuous variables, and/or incomplete knowledge are examples of observational uncertainty. Its presence causes the states of a system (i.e., points in some appropriate state space) to be replaced by uncertainty sets surrounding the exact “true” states. Given the uncertainty sets, the problem investigated in this paper is to reconstruct the original states of the system with improved precision.



It is assumed that observational uncertainty for discrete-time dynamical systems (DDSs) manifests itself in the following way. An orbit of a DDS (a sequence of points {xi}i) is replaced by a blurred orbit  ( a sequence of uncertainty sets {Ai}i surrounding the states, i.e., xi ( Ai. The task is to recover the original orbit {xi}i  with a better accuracy (i.e., with smaller uncertainty sets) knowing the blurred orbit. The probability distribution of the states within the uncertainty sets may or may not be known. The amount of possible improvement will generally depend on the properties of the system and on the accuracy with which the model of the system is known. When the uncertainty in data is due to a noise whose statistical characteristics can be estimated, filtering or statistical techniques can be employed.



The reconstructing method proposed here is based solely on geometric ideas. The primary focus is on the uncertainty removal after the system’s dynamics has been approximately found using some state space reconstruction method. The uncertainty sets {Ai}i are kept in the form of parallelepipeds, and the dynamics is linearized on each uncertainty set. By mapping the sets backward and forward to a fixed time i and subsequently intersecting the sets, the size of the uncertainty set {Ai}i can be significantly decreased. The accuracy improvement depends exponentially on the length of the orbit being reconstructed. Maximum achievable improvement is limited by the accuracy of the dynamical model. Exact mathematical results and estimates were obtained for a special case of blurred orbits called discretized orbits. While the technique works best when the model of the system is known, numerical experiments suggest that the technique is robust with respect to the dynamical model.





2. Observational uncertainty in chaotic systems



Chaotic dynamical systems work as a kind of a “dynamical microscope.” Two originally close (indistinguishable) initial conditions diverge exponentially and may become distinguishable even though only inaccurate measurements are performed. Therefore, we can afford to measure chaotic systems with low accuracy and still be able to retrieve the information by further processing the measured data. These considerations lead to the following thought experiment. Let us present an unknown value of some physical quantity as an initial condition to a chaotic system whose dynamics are known. By observing the chaotic system (i.e., by measuring its states with some accuracy � EMBED Equation.2  ��� we may be able to reconstruct the initial condition with a much better accuracy than � EMBED Equation.2  ���. In this way, we can actually measure the physical quantity on the input with a higher accuracy than the accuracy of the measuring devices used to measure the states of the chaotic system.



There are a number of issues that need to be answered. First, what properties should the system have in order to decrease the uncertainty about its orbits to the highest possible value? Second, how can one design a  practical algorithm for the reconstruction of the initial condition� ? Third, the reconstructing algorithm needs to be robust with respect to the chaotic system, i.e., the results obtained using a “slightly” different system should not differ too much. Before we start with a simple example demonstrating the ideas, we present the definitions of a discrete-time dynamical system, sensitivity, and mixing.



Definition (Discrete-Time Dynamical System). Let f  be a map on a metric space X , f : X ( X. The couple (X, f) is called a discrete-time dynamical system (DDS). Given x(X, the sequence {xn}n(0 , xn = f n(x0), is called an orbit starting at x0. If f is invertible, the orbit is defined as {xn}n , n = ((,(,(, xn = f n(x0) for n(Z.



Definition (Sensitivity and Mixing). The DDS (X, f) is sensitive to initial conditions on X  if there is a sensitivity constant � EMBED Equation.2  ���>0 such that for any x(X and for any neighborhood Hx of x, there is y(Hx and n(N such that | f n(x) - f n(y)| >� EMBED Equation.2  ���. The DDS (X, f) is topologically transitive (mixing) if for any two open sets U, V there is n(N such that f n(U) (V ((.



Example 1. A simple, motivating example is the one-dimensional baker map. It is defined on the interval [0, 1) as b(x) = (2x( , x([0, 1), where (2x( means the fractional value of 2x. Starting at some initial condition x0 , the sequence of numbers {xn}n(0 = {bn (x0)} n(0 , with bn (x0) defined as b applied n-times at  x0, is called an orbit starting at x0. The concept of an orbit for discrete-time dynamical systems corresponds to a trajectory for continuous dynamical systems. The baker map is both sensitive to initial conditions on [0, 1), and topologically transitive [9]. The study of the baker map is usually done through the binary expansion of x0 . Let x0  = a1 2-1 + a2 2-2 + a3 2-3 + (. Then  b(x0) = (2x( is simply b(x0) = a2 2-1 + a3 2-2 + (. By representing any real number x([0, 1) by the sequence of coefficients in its binary expansion, {ai}i(1 , ai ({0, 1}, the map b acts as a shift map on binary sequences. It is easy to see that when� a1 = 0, x0 ([0, 1/2) = L, and when a1 = 1, x0 ([1/2, 1) = R. Therefore, bn(x0)(L when an = 0,  and bn(x0)(R  when an = 1.



Now, let us assume that the measurements we perform are such that we only register whether bn(x0)(L or bn(x0)(R. From the previous analysis it is clear that the first N such measurements (of accuracy 1/2) determine x0 with the accuracy of 2-N. The measurements registering in which half of the unit interval the orbit is, carry the same amount of information as the orbit {bn(x0)}n(0. In other words, the partition {L, R}of the unit interval induces a one-to-one correspondence between orbits and sequences of symbols L and R. The properties of the baker map lead us to the following generalization.



Definition (Discretized Orbit and Resolving Partition). Given a DDS (X, f), and a partition (={A1, (, AN} of the space X, the sequence of sets {Ai(n)} is called a discretized orbit starting at x0  if  f n(x0) ( Ai(n)  for n ( 0. Moreover, if two different initial conditions have two different discretized orbits, the partition ( is called resolving.



Definition (m-partition). If the sets Ai of a partition ( are connected with non empty interior, the partition ( is called an m-partition (measurement induced partition).



Definition (Maximal Resolving Partition). If ( is a partition which is not a refinement� of some other resolving partition, it is called maximal. 



Certain concepts from dynamical systems theory are related to the concept of a resolving partition. In symbolic dynamics, for example, the dynamics is described using symbols ( sets of the so called Markov partition (see, for example, [9][10]). One property of a Markov partition is the one-to-one  correspondence between orbits and sequences of symbols. Thus, a Markov partition is resolving. However, since Markov partitions must satisfy some additional properties, not every resolving partition is a Markov partition (see Example 2 below).



If the measurements we perform on a system are in the form of whether or not a certain state variable exceeds a threshold value, or when the measured values are rounded to finitely many digits, the measuring process induces a partition on the state space. For our purposes, it is important whether it is possible to extract more information about an orbit knowing only the discretized orbit. If the partition is resolving, and if an infinite sequence of measurements is available, there is only one orbit (initial condition) consistent with the measurements. However, in practice we will never have a complete knowledge of a discretized orbit, neither does the partition have to be resolving. A robust reconstructing procedure is needed to reconstruct the original orbit with a better accuracy then the accuracy of the measurements, especially for cases when only a finite segment of the orbit is available, and when the measurement-induced partition is not resolving.





2.1 Resolving partitions



As shown in the previous subsection, the partition {L, R} forms a resolving partition for the baker map. In general, any refinement of a resolving partition is a resolving partition. An example of a resolving partition for the baker map which is not a refinement of {L, R}, is the partition {[0, 1/3),[1/3, 2/3), [2/3, 1)} = {L’, M, R’}. To see that, we note that since b(M ( [0,1/2)) ( R’, and b(M ( [0,1/2)) ( L’, we can rewrite a discretized orbit for {L’, M, R’} into a discretized orbit for {L, R}. Simply replace L’ by L, R’ by R, M by R if M is followed by L’, and replace M by L if M is followed by R’. Both partitions are maximal. In general, a DDS may have many maximal resolving partitions.



The sensitivity to initial conditions is an important property which is clearly tied to the existence of resolving partitions. For continuous maps on the unit interval, the sensitivity guarantees the existence of a resolving partition. This is expressed in the following theorem. The proof of the theorem can be found in [6].



Theorem 1. If the following assumptions are satisfied for f : 



a)    f is continuous taking [0, 1] into [0, 1];

f is strictly monotone on [xi , xi+1], 0( i ( M,

c)    0 = x0 < x1 < ( < xM+1 =1;

([0, 1], f ) is sensitive to initial conditions on

        [0, 1],



then the partition



( = {[ x0 , x1), [x1 , x2), (, [xM , xM+1]}		(1)



is a maximal resolving partition.



Corollary 1. Any resolving m-partition for a function satisfying the conditions a) - c) is a refinement of the maximal resolving m-partition (1).



The sensitivity to initial conditions may be difficult to establish for functions obtained by an experiment or for functions whose analytic expression is not known. A typical “experimental” criterion for the sensitivity is the positivity of the Lyapunov exponent. Since the positivity of the Lyapunov exponent implies sensitivity [8], we include the following result.



Corollary 2. The m-partition (1) is resolving for any smooth function (with a finite number of humps) having a positive Lyapunov exponent.



Since f has to be injective (one-to-one) on each set of a resolving partition, we have the following corollary.



Corollary 3. For a function f satisfying the assumptions a) - c), the class of all resolving partitions forms a lattice, i.e., the class of all resolving partitions partially ordered by inclusion contains the smallest upper bound ( the partition (1), and the largest lower bound ( all singletons.



Surprisingly, the sensitivity to initial conditions is not a necessary condition for the existence of a resolving partition.



Example 2. Let X = {� EMBED Equation.2  ���| � EMBED Equation.2  ���[0, 2� EMBED Equation.2  ���]} (a unit circle in the complex plane with the usual metric), and  f :� EMBED Equation.2  ���(� EMBED Equation.2  ���, where � EMBED Equation.2  ��� is an irrational multiple of 2� EMBED Equation.2  ���. This dynamical system is often called an irrational shift. Note that any m-partition on X must be a set of arcs. It is easy to see that any m-partition is resolving, although (X, f) is not sensitive to initial conditions.



The results presented so far involved one-dimensional maps. The methodology can be extended to higher dimensional spaces in a straightforward manner. However, the proofs of the theorems above utilize the fact that the dynamics is one-dimensional in a substantial manner and cannot be easily generalized to higher dimensions. On the other hand, it is possible to prove that, for sensitive maps, the property that two different initial conditions have two different discretized orbits is generic. This result holds on general metric spaces. Formally, for a fixed initial condition z, the set of all initial conditions which have different discretized orbits forms an open dense set (as long as the partition is fine enough). The precise formulation is expressed by the following theorem, whose proof can be found in [5].



Theorem 2. Let (f, X) be a DDS satisfying the following assumptions:



a) The map f is continuous and sensitive to initial conditions on X with sensitivity constant � EMBED Equation.2  ���;

b) The phase space X is partitioned into finitely many sets {A1, ( , AN} whose diameter diam(Ai) ( � EMBED Equation.2  ���/2, i =1, (, N. 



Then the property that two different points x, y(X have two different discretized orbits with respect to the partition ( = {A1, ( , AN} is generic, i.e., for a fixed x(X, the set of all y(X which have different discretized orbits is an open dense set in X.





2.2 Reconstructing algorithm



In the previous section, we discussed the conditions under which a given DDS possesses a resolving partition. It was shown that, under some additional assumptions, the sensitivity to initial conditions is a sufficient but not necessary condition. In this section, we propose a reconstructing procedure which can be used to decrease uncertainty about an orbit of a DDS given approximate information about the orbit. Since in real-life applications, the measurements will not generally induce a resolving partition on the state space X, we need to develop a reconstructing procedure which can be used to increase the accuracy of measurements, and which would give us exact results when the partition is resolving. Actually, we need an even more general algorithm: In practice, measurements may not even induce any partition of the state space at all. Often, we will only be able to locate the value of a given physical variable in a certain uncertainty set, and those sets will not form a partition of the state space. Formally, an orbit {xi}i(0 will be replaced by a sequence of uncertainty sets {Ai}i(0 with the property xi(Ai. This sequence of uncertainty sets {Ai} will be called a blurred orbit. We repeat that the sets may not form a partition of the state space. Therefore, we need a reconstructing procedure which could be applied to decrease the uncertainty sets of blurred orbits, and which would give us a unique, correct answer when the sets Ai  form a resolving partition.



If the sets Ai do not form a resolving partition, or if they do not form a partition at all, no reconstructing procedure can remove the observational uncertainty completely. However, it is possible to design an algorithm which can be used to decrease the uncertainty sets Ai given a blurred / discretized orbit segment.



The basic idea of the reconstructing procedure is purely geometrical and is illustrated in Figure 1. Formally, to reconstruct the point xp given a finite segment of a discretized / blurred orbit {Ai}, i = p-s, (, p+r, the sequence of sets � EMBED Equation.2  ��� � EMBED Equation.2  ��� and � EMBED Equation.2  ��� is calculated



� EMBED Equation.2  ���



� EMBED Equation.2  ���



Once these sets have been calculated, the approximation to xp  is defined as � EMBED Equation.2  ���. When f is not invertible, the set f  -1(E) is defined as the set {x(X | f (x)(E}. For any x(� EMBED Equation.2  ��� the first r iterations, f (xp ), (, f r(x), will fall into the corresponding sets Ap+1, (, Ap+r , and the s backward iterations, f  -1(xp ) , (, f -s(x), will end up in Ap-1, (, Ap-s . On the other hand, once x(� EMBED Equation.2  ���, we can find an index k ({-s, -s+1, (, r-1, r} such that f k(x)(Ap+k . Therefore, it can be said that the intersection � EMBED Equation.2  ��� is the largest possible set consistent with the measurements Ap-s , ( , Ap+r .  Unless some additional information is given, we cannot specify a better approximation to xp .



In this paper, we discuss the algorithm in one dimension only. Applications of the algorithm to higher dimensional spaces are discussed in [4] [5] [7]. In one dimension, the sets (intervals) � EMBED Equation.2  ��� will be stretched, while the intervals � EMBED Equation.2  ��� will be contracted. Therefore, only the sets � EMBED Equation.2  ��� need to be calculated. If f has a positive Lyapunov exponent, the length of � EMBED Equation.2  ���decreases exponentially with the length of the orbit segment used for reconstruction.



�

Fig. � SEQ Figure \* ARABIC �1� Transformation of uncertainty sets in a chaotic system

Even non chaotic maps f may benefit from the reconstruction procedure in a limited manner. Those points which undergo a pseudo chaotic transient phase before converging to an attractive cycle will be reconstructed with better precision. In fact, the longer this transient phase lasts, the better the accuracy of the reconstruction.



The algorithm was tested on several one-dimensional maps. First, an orbit segment of finite length was computed. Then the points on the orbit were replaced by intervals (a blurred orbit). The algorithm was applied to the blurred orbit, and the results were compared with the exact orbit to see the accuracy improvement.



The accuracy improvement increases exponentially with the length of the orbit used for reconstruction. The rate of improvement depends on the Lyapunov exponent of f. The higher the exponent, the better the improvement. Practical limitation of the degree of improvement is imposed by the accuracy with which f is known and by the length of the orbit segment.



The algorithm was found to be robust with respect to perturbations of the map f. First, a blurred orbit was generated using f. Then, the reconstructing algorithm was run with an approximation to f, which was linearly interpolated between finitely many sampling points. For the logistic map, even when the number of sampling points was lowered to only 10, the accuracy of improvement was of the order of 102 (103.





A clone of an extremely accurate measuring device 



The proposed reconstructing analysis can be used to make a copy of a very accurate (and perhaps unique) measuring device, preserving the accuracy of measurements. Let us assume (just for concretness) that we have a device capable of measuring electrical current with an extremely high precision. Such a measuring device may be very expensive, complicated, bulky, or not easily available. We can use this device to calibrate an electrical circuit such as Chua’s circuit [3] whose input-output characteristic is chaotic (a positive Lyapunov exponent). We can also assume that, after proper rescaling, the function describing the response of the chaotic device is a continuous mapping, f(x), of the unit interval into itself. There are no other special requirements on f(x), except that it should not change its material properties with time. Also, the larger the Lyapunov exponent of  f(x) the fewer iterations we need for the reconstruction of an orbit (performing a measurement) with a specified accuracy.



We can now manufacture a “clone” of the original device that will be capable of measuring electrical current with a precision approximately equal to the sampling accuracy of f (the accuracy of the original unique device) in the following way.



The unknown value of the electrical current that is to be measured will be presented as an input for the chaotic device which will perform several iterations (the exact value depending on the Lyapunov exponent of f). The output of the chaotic device will be measured by a measuring device with poor precision. Finally, a computer, with appropriate software, will be used to reconstruct the initial condition.



Storing the response curve, f, of the chaotic device (in a sampled form) on a diskette or a CD-ROM, if necessary, the clone of the accurate device would then consist of this data, the chaotic device, a computer capable of calculations with an arbitrary precision (e.g., a PC with a high precision arithmetic software), and of a measuring device with “poor” precision.



The idea of using the sensitivity of chaotic systems for construction of highly accurate measuring devices has been previously suggested by Wiesenfeld [11] and Böhme [1] [2]. Wiesenfeld describes a method which uses a period-doubling bifurcation for the detection of weak signals. The method is based on the sensitivity of a non chaotic system to parameters rather than on the sensitivity to initial conditions. This creates problems with manufacturing such devices since a very precise tuning of electronic components is necessary. Böhme creates the concept of a chaotic bridge which can be used as an amplification sensor for weak signals. In his approach, the initial states of two (identical) chaotic circuits are set such that their difference is the quantity to be measured (amplified). The time evolution of both systems is then used for estimating the difference in the initial conditions. However, the accuracy as well as the practical implementation may be hindered by the requirement that the two circuits be identical. This  difficulty is not present in our approach since only a single chaotic device is used.





4. Summary and future effort



In this paper, we demonstrate an application of chaotic dynamics – the construction of simple highly accurate measuring devices based on the sensitivity to initial conditions and mixing, two basic properties of chaotic systems. We argue that it is possible to reconstruct orbits of chaotic systems with a higher accuracy than orbits of non chaotic systems. Due to the sensitivity to initial conditions, only an exponentially small portion of initial states is compatible with imprecise measurements. It is assumed that the presence of observational uncertainty (e.g., additive noise, incomplete or inaccurate measurements, etc.) for discrete-time dynamical systems (DDSs) changes orbits (sequences of points {xi} into blurred orbits ( sequences of uncertainty sets {Ai} surrounding the states, i.e., xi ( Ai. Given the blurred orbit the task is to recover the original orbit {xi} with an improved accuracy (i.e., with smaller uncertainty sets). The probability distribution of the states within the uncertainty sets may or may not be known. It is assumed that at least an approximate model of the dynamics is given. The amount of possible improvement depends on the properties of the system and on the accuracy with which the model of the system is known.



In higher dimensions, we represent the uncertainty sets Ai in the form of parallelepipeds, and linearize the dynamics on each uncertainty set. By mapping the sets backward and forward to one common time i, and subsequently intersecting the sets, the size of the uncertainty sets can be decreased exponentially with the length of the orbit segment�. 



We demonstrate how the proposed method could be applied for the construction of inexpensive, highly accurate measuring devices. A simple chaotic device, such as Chua’s circuit [3], can be used to realize a low-dimensional chaotic system. An accurate model of the system is created by calibrating the performance of the circuit by a highly accurate measuring device. An unknown physical quantity (such as electrical current) is presented as an initial condition, and the chaotic circuit is observed using an inexpensive measuring device with a crude precision. By applying our reconstructing procedure to this sequence of imprecise measurements, the initial condition is reconstructed with an accuracy equal to that of the model.



In the future, we plan to generalize the approach to fuzzy uncertainty sets. This makes sense because in many cases, the observational uncertainty could be more meaningfully captured by a fuzzy set. The transformation of uncertainty sets by the function f will conform to the extension principle. Therefore, we expect that the analyses of blurred orbits in the crisp and fuzzy cases will be closely related. The case of discretized orbits will be, however, more interesting. A fuzzy partition would induce a sequence of fuzzy symbols as a fuzzy discretized orbit. It will be surely interesting to study how the concepts of symbolic dynamics and Markov partitions generalize to the fuzzy case. These research directions will form the backbone of our future research. 





References



F. Böhme. Sensitivität nichtlinearer dyna-mischer Netzwerke als Wirkungsprinzip elektronischer Sensoren. Dissertation, Technische Universität Dresden, 1993 (in German.)

F. Böhme and W. Schwarz. “Chaotic bridges - a new concept for highly sensitive devices.” In: Nonlinear Dynamics of Electronic Systems, Proceedings of the Workshop NDES 93, pp. 281(293, Dresden, Germany, 1994.

A.C. Davies and W. Schwarz. Nonlinear  Dynamics of Electronic Systems, Proceedings of the workshop NDES 93. Dresden, Germany, 1993.

































































J. Fridrich. Removing observational uncertainty from orbits of nonlinear dynamical systems. Dissertation, SUNY Binghamton, 1995.

J. Fridrich. “Discrete-time dynamical systems under observational uncertainty.” J. Appl. Math. and Comp. (82), 181(207, 1997.

J. Fridrich and J. Geer. “Reconstruction of chaotic orbits under finite resolution.” J. Appl. Math. and Comp. (66), 129(159, 1994.

J. Fridrich and J. Geer. “Reconstruction of blurred orbits under finite resolution.” J. Appl. Math. and Comp. (71), 227(245, 1994.

R.L. Ingraham. A Survey of Nonlinear Dynamics (Chaos Theory). World Scientific, Singapore, 1992.

E.A. Jackson. Perspectives in Nonlinear Dynamics. Cambridge University Press, Cambridge, 1991.

H.G. Schuster. Deterministic Chaos. An Introduction. VCH, Weinheim, Federal Republic of Germany, 1989.

K. Wiesenfeld and B. McNamara. “Period-doubling systems as small-signal amplifiers.” Phys. Rev. Lett. 55(1), 13(15, 1985.



� By considering x1, x2, ( as the new initial conditions, we can reconstruct not only the initial condition but the whole segment of an orbit

� Here, we assume that when there are two possible binary expansions for x0 , the one which ends with zeroes is chosen (e.g., 0.5 is represented as 0.1000 ( , and not as 0.0111 ().

� The partition ( = {B1, (, BM} is a refinement of the partition ( = {A1, (, AN}if and only if for each Bi there is Aj such that Bi ( Aj .

� The degree of improvement depends on the Lyapunov exponents of the system at hand.





