� TOC \o "1-3" �1. INTRODUCTION	� GOTOBUTTON _Toc380593484 � PAGEREF _Toc380593484 �3��

2. CHAOS BASED ENCRYPTION	� GOTOBUTTON _Toc380593485 � PAGEREF _Toc380593485 �5��

2.1 EXAMPLES OF BASIC MAPS AND THEIR GENERALIZATIONS	� GOTOBUTTON _Toc380593486 � PAGEREF _Toc380593486 �6��

2.2 DISCRETIZED VERSIONS OF BASIC MAPS	� GOTOBUTTON _Toc380593487 � PAGEREF _Toc380593487 �7��

2.2.1 DISCRETIZED BAKER MAP (Version A)	� GOTOBUTTON _Toc380593489 � PAGEREF _Toc380593489 �7��

2.2.2 DISCRETIZED BAKER MAP (Version B)	� GOTOBUTTON _Toc380593490 � PAGEREF _Toc380593490 �9��

2.2.3 EXTENSION TO RECTANGULAR IMAGES	� GOTOBUTTON _Toc380593493 � PAGEREF _Toc380593493 �10��

2.2.4 DISCRETIZED CAT MAP	� GOTOBUTTON _Toc380593495 � PAGEREF _Toc380593495 �10��

2.3 EXTENSION TO THREE DIMENSIONS	� GOTOBUTTON _Toc380593496 � PAGEREF _Toc380593496 �11��

2.4 CIPHERING KEY	� GOTOBUTTON _Toc380593497 � PAGEREF _Toc380593497 �12��

2.4.1 BAKER MAP	� GOTOBUTTON _Toc380593503 � PAGEREF _Toc380593503 �12��

2.4.2 CAT MAP	� GOTOBUTTON _Toc380593504 � PAGEREF _Toc380593504 �14��

2.5 ENCIPHERING / DECIPHERING PROCEDURE	� GOTOBUTTON _Toc380593506 � PAGEREF _Toc380593506 �14��

3. SAFETY OF THE CIPHER	� GOTOBUTTON _Toc380593507 � PAGEREF _Toc380593507 �15��

3.1 KNOWN PLAINTEXT TYPE OF ATTACK	� GOTOBUTTON _Toc380593509 � PAGEREF _Toc380593509 �20��

3.2 CIPHERTEXT ONLY TYPE OF ATTACK	� GOTOBUTTON _Toc380593535 � PAGEREF _Toc380593535 �21��

4. PROPERTIES OF THE ENCIPHERED IMAGE	� GOTOBUTTON _Toc380593538 � PAGEREF _Toc380593538 �22��

4.1 SPREAD OF SPATIALLY LOCALIZED INFORMATION	� GOTOBUTTON _Toc380593539 � PAGEREF _Toc380593539 �22��

4.2 STRUCTURE OF THE PERMUTATIONS	� GOTOBUTTON _Toc380593540 � PAGEREF _Toc380593540 �22��

4.3 RANDOM NUMBER GENERATOR BASED ON CHAOTIC MAPS	� GOTOBUTTON _Toc380593541 � PAGEREF _Toc380593541 �23��

5. IMPLEMENTATION	� GOTOBUTTON _Toc380593542 � PAGEREF _Toc380593542 �24��

5.1 OPTIMIZING THE CIPHERING CODE ON A SEQUENTIAL COMPUTER	� GOTOBUTTON _Toc380593543 � PAGEREF _Toc380593543 �24��

5.2 IMAGE ENCRYPTION	� GOTOBUTTON _Toc380593544 � PAGEREF _Toc380593544 �25��

5.3 ENCRYPTION OF GENERAL DATA STREAMS	� GOTOBUTTON _Toc380593545 � PAGEREF _Toc380593545 �26��

5.4 ENCRYPTION MODES	� GOTOBUTTON _Toc380593546 � PAGEREF _Toc380593546 �26��

6. SECRET MESSAGE HIDING IN IMAGES	� GOTOBUTTON _Toc380593547 � PAGEREF _Toc380593547 �27��

7. CONCLUSION	� GOTOBUTTON _Toc380593549 � PAGEREF _Toc380593549 �30��

7.1 ADVANTAGES	� GOTOBUTTON _Toc380593550 � PAGEREF _Toc380593550 �30��

7.2 DISADVANTAGES	� GOTOBUTTON _Toc380593552 � PAGEREF _Toc380593552 �31��

7.3 RECOMMENDED FURTHER RESEARCH	� GOTOBUTTON _Toc380593553 � PAGEREF _Toc380593553 �31��

7.3.1 ROBUSTNESS VERSUS SECURITY	� GOTOBUTTON _Toc380593554 � PAGEREF _Toc380593554 �31��

7.3.2 THEORETICAL ASPECTS OF SECURITY	� GOTOBUTTON _Toc380593555 � PAGEREF _Toc380593555 �33��

7.3.3 COMPRESSION AND EMBEDDING MULTIPLE IMAGES	� GOTOBUTTON _Toc380593556 � PAGEREF _Toc380593556 �33��

7.3.4 CHAOS AND PUBLIC KEY CRYPTOGRAPHY	� GOTOBUTTON _Toc380593557 � PAGEREF _Toc380593557 �33��

7.3.5 OTHER NONLINEAR MAPS	� GOTOBUTTON _Toc380593558 � PAGEREF _Toc380593558 �34��

7.3.6 WINDOWS BASED USER FRIENDLY IMPLEMENTATION	� GOTOBUTTON _Toc380593559 � PAGEREF _Toc380593559 �34��

8. SOFTWARE DESCRIPTION	� GOTOBUTTON _Toc380593560 � PAGEREF _Toc380593560 �35��

��
� TOC \c "Figure" �

Figure 1 Baker map	� GOTOBUTTON _Toc380593574 � PAGEREF _Toc380593574 �39��

Figure 2 Generalized baker map	� GOTOBUTTON _Toc380593642 � PAGEREF _Toc380593642 �39��

Figure 3 The cat map	� GOTOBUTTON _Toc380593643 � PAGEREF _Toc380593643 �40��

Figure 4 Discretized versions of the baker map	� GOTOBUTTON _Toc380593644 � PAGEREF _Toc380593644 �40��

Figure 5 The test image 472 x 472 pixels with 256 gray levels	� GOTOBUTTON _Toc380593645 � PAGEREF _Toc380593645 �41��

Figure 6 The test image after applying the baker map once	� GOTOBUTTON _Toc380593646 � PAGEREF _Toc380593646 �41��

Figure 7 The test image after applying the baker map nine times	� GOTOBUTTON _Toc380593647 � PAGEREF _Toc380593647 �42��

Figure 8 The test image after applying the cat map once.	� GOTOBUTTON _Toc380593648 � PAGEREF _Toc380593648 �42��

Figure 9 The test image after applying the cat map nine times	� GOTOBUTTON _Toc380593649 � PAGEREF _Toc380593649 �43��

Figure 10 The test image after one iteration of a 3d chaotic map. The histogram of the image is uniform.	� GOTOBUTTON _Toc380593650 � PAGEREF _Toc380593650 �43��

Figure 11 The test image after nine iterations of a 3d chaotic map. The histogram of the image is uniform.	� GOTOBUTTON _Toc380593651 � PAGEREF _Toc380593651 �44��

Figure 12 Histogram of a black square after one iteration of the baker map with gray level mixing function h(i, j) = i . j	� GOTOBUTTON _Toc380593652 � PAGEREF _Toc380593652 �44��

Figure 13 Histogram of a black square after two iterations with gray level mixing function h(i, j) = i . j	� GOTOBUTTON _Toc380593653 � PAGEREF _Toc380593653 �44��

Figure 14 The logarithm of the number of ciphering keys of length equal to m plotted as a function of m. Dashed curve ~ version B, continuous curve ~ version A of the baker map.	� GOTOBUTTON _Toc380593654 � PAGEREF _Toc380593654 �45��

Figure 15 The logarithm of the number of ciphering keys of length at most m plotted as a function of m. Dashed curve ~ version B, continuous curve ~ version A of the baker map.	� GOTOBUTTON _Toc380593655 � PAGEREF _Toc380593655 �45��

Figure 16 An image consisting of a 10 x 10 black square on a white background	� GOTOBUTTON _Toc380593656 � PAGEREF _Toc380593656 �46��

Figure 17 Encrypted after nine iterations	� GOTOBUTTON _Toc380593657 � PAGEREF _Toc380593657 �46��

Figure 18 Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 4 4 2 2 1)	� GOTOBUTTON _Toc380593658 � PAGEREF _Toc380593658 �47��

Figure 19 Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and decipohered with (8 8 8 118 4 4 118 118 4 2 4 4 59 8 4 1)	� GOTOBUTTON _Toc380593659 � PAGEREF _Toc380593659 �47��

Figure 20 Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 118 118 4 4 2 4 4 59 8 4 1)	� GOTOBUTTON _Toc380593660 � PAGEREF _Toc380593660 �48��

Figure 21 Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 59 59 59 59 4 2 4 4 59 8 4 1)	� GOTOBUTTON _Toc380593661 � PAGEREF _Toc380593661 �48��

Figure 22 Pixels with different gray levels after 320 iterations of the baker map with keys K1 and K2	� GOTOBUTTON _Toc380593662 � PAGEREF _Toc380593662 �49��

Figure 23 Pixels with different gray levels after 320 iterations of the baker map with keys K1 and K3	� GOTOBUTTON _Toc380593663 � PAGEREF _Toc380593663 �49��

Figure 24 A scheme for hiding images	� GOTOBUTTON _Toc380593664 � PAGEREF _Toc380593664 �50��

Figure 25 A scheme for recovering hidden images	� GOTOBUTTON _Toc380593665 � PAGEREF _Toc380593665 �50��

Figure 26 The coding of secret images inside a carrier image	� GOTOBUTTON _Toc380593666 � PAGEREF _Toc380593666 �51��

Figure 27 An example of a secret 236 x 236 image, a carrier image (left) and the carrier image with a hidden image (right)	� GOTOBUTTON _Toc380593667 � PAGEREF _Toc380593667 �51��

Figure 28 The test image after one iteration of the standard map	� GOTOBUTTON _Toc380593668 � PAGEREF _Toc380593668 �52��

Figure 29 The test image after nine iterations of the standard map	� GOTOBUTTON _Toc380593669 � PAGEREF _Toc380593669 �52��

�

INTRODUCTION

Images and other large binary data files require fast and robust encryption techniques. Current software implementations of most popular public key encryption methods, such as RSA or El Gamal do not provide encryption rates suitable for encryption of large data files and images. Moreover, the security of the majority of public key cryptographic schemes relies on the inability to perform factorization of large numbers or to solve the discrete logarithm problem in a fast, efficient manner. Recent advances in algorithmic techniques, number theory, and distributed computing have seriously challenged the basis of these techniques. In addition to that, the newly emerged field of quantum computing could, theoretically, make those methods totally unusable in the future. Other, private key bulk encryption algorithms, such as LUCIFER or DES, are more suitable for fast transmission of large amounts of electronic data. A general scheme of these bulk encryption algorithms is based on several iterative steps consisting of substitution and permutation. The security is mostly guaranteed by judiciously designed substitution, while the permutation part is somewhat neglected. It is the belief of the author of this report that utilization of complicated permutations might significantly increase the security of the whole cipher. In this report, we propose a class of parametrized permutations of a rectangular array of elements (symbols) based on discretized chaotic maps. A simple software implementation of the new cipher achieves encryption speeds higher than software implementations of DES on general purpose computers. Therefore, we believe that our technique is a viable and secure alternative to other bulk encryption techniques. It can be used for transfer and archival of large amounts of data, such as digital imagery or other large electronic data files.

A new class of encryption techniques based on two and three dimensional chaotic maps has been developed in this effort. Chaotic maps provide excellent security and have many desired cryptographic qualities. They are simple to implement which results in high encryption rates. A typical software implementation achieves 1Mb/sec encryption rate on a Pentium machine, which is by several orders of magnitude faster on a general purpose computer than current software implementations of public key and bulk encryption techniques. Applications of chaotic maps to steganography (secret hiding of messages), image compression, public key cryptographic primitives, such as hash functions, one-way trapdoor functions, user identification, authentication, and digital signature schemes is briefly outlined at the end of this report. In our future effort, we will investigate the possibility of real time digital video encryption / decryption using parallel computers.

The two basic properties of chaotic systems are the sensitivity to initial conditions and parameters, and mixing (topological transitivity [1]). Sensitivity to initial conditions means that when a chaotic map is iteratively applied to two initially close points, the iterates quickly diverge, and become uncorrelated in the long term. Sensitivity to parameters causes the properties of the map to change quickly when slightly perturbing the parameters on which the map depends. Mixing, or topological transitivity, is the tendency of the system to quickly “scramble up” small portions of the state space into an intricate network of filaments. Local, correlated information becomes scattered all over the state space. All these properties suggest that chaotic maps constrained to a discrete two-dimensional lattice could be used to generate complicated permutations of pixels and the gray levels in a digital image. Indeed, it is possible to modify certain invertible two dimensional maps on a torus or on a rectangle for the purpose of image encryption.

The process of creating a cipher starts with discretizing a two-dimensional chaotic map so that it maps a rectangular lattice of points onto itself in a one-to-one manner. The map is extended to three dimensions in order to modify the gray levels as well as the pixel positions. The parameters of the map play the role of the ciphering key. The encryption consist of several iterative applications of the chaotic map to a digital image. Even though chaotic maps are usually very simple, after several iterations a complex permutation of pixels is generated. This is a direct consequence of mixing and sensitivity to initial conditions. The size of the enciphered image is equal to the size of the original image. The deciphering phase consists of several applications of the inverse chaotic map. Since there is a simple analytic form available for both the map and its inverse, the enciphering / deciphering phases take approximately the same amount of time and can be carried out quickly. The general properties of chaotic maps guarantee: (a) cipher security, (b) very large number of ciphering keys, (c) easy parallelization, (d) simple and fast implementation. The cipher is a block type cipher with a private key. The security of the cipher was studied with respect to direct search for key for known-plaintext and for ciphertext only type of attack. Breaking the proposed cipher without the knowledge of the plaintext requires performing a large number of high level pattern recognition and image understanding tasks. Additionally, the encryption method can be used for construction of new, nontraditional random number generators.

In Section � REF _Ref366937473 \n �2�, we describe how to generalize and discretize simple chaotic maps for the purpose of secure ciphering. A general method is described for extending two-dimensional maps to three dimensions to change the gray levels together with the pixels and to change the histogram of the image. Detailed discussion of the number of ciphering keys for various discretized chaotic maps is presented in the last subsection of Section � REF _Ref366937473 \n �2�.

Security of the cipher is discussed in detail in Section � REF _Ref366937580 \n �3�. It is shown that ciphering keys which are close in a certain sense, produce similar enciphered images. Therefore, the security of the cipher should be judged by the number of different clusters of similar keys rather than by the total number of all possible ciphering keys. The study starts with a definition of similarity between two keys. Then the size of the largest possible cluster is calculated. A lower estimate for the number of different clusters is finally obtained. The study shows that the proposed ciphering technique is secure with respect to the direct search for key under known-plaintext type of attack and ciphertext only type of attack.

In Section � REF _Ref366937633 \n �4�, we study the properties of the permutations induced by the discretized baker map. We investigate the length of the cycles forming the permutations and make a comparison with random permutations. We also demonstrate that local, correlated information becomes decorrelated and scattered all over the encrypted image in a random manner. At the end of Section � REF _Ref366937633 \n �4�, nontraditional random number generators based on the image encryption technique are studied and tested for randomness.

Optimal implementation on sequential and parallel machines is discussed in Section � REF _Ref366937759 \n �5�. In Section 6, we apply the encryption technique to secret message hiding in digital images. As a result, an efficient, secure steganographic method is obtained. Applications to general data encryption is also discussed. Section 7 contains a brief summary of the proposed encryption method, together with its advantages and disadvantages. Several important future research directions are outlined.

In Section 8, we give a description of the encryption software and its usage on both UNIX and PC platforms. Additional routines for masking / unmasking images with random masks, and for comparing two images are also provided.

CHAOS BASED ENCRYPTION

In this section, we describe how to create a ciphering technique starting with a simple chaotic map. First, the chaotic map is generalized by introducing parameters into the map. Geometrical arguments are often used at this stage. Then the map is modified so that its domain and range are both the same rectangular lattices of points (pixels). The map is extended to three dimensions so that gray levels can be changed, too. The parameters of the three-dimensional map and the number of iterations play the role of the ciphering key. The number of all possible ciphering keys is estimated for various chaotic maps. Finally, the encryption / decryption procedure is described. The performance of the method is demonstrated on a real image. For the purpose of simplicity, in what follows a square image consisting of N (N pixels with L levels of gray is assumed (the extension to rectangular images is discussed in Section � REF _Ref366937932 \n �2.2.3�). The method for developing a cipher consists of four steps.

Step 1. Designing the basic map

In this step, the mathematical form of a chaotic two-dimensional map f which maps the unit square I (I, where I = [0, 1], onto itself in a one-to-one manner is chosen. There are a number of different chaotic maps which seem to be suitable for ciphering purposes. We are interested in those maps which are simple so that the ciphering / deciphering phases can be performed quickly. The map should allow natural parametrization to create a short ciphering key with a large number of possible keys. Such maps are often described geometrically (e.g., the baker map, the cat map, etc. [1]).

Step 2. Generalized map

In the second step, a set of parameters is introduced into the map to create a ciphering key. If the basic map is described in geometric terms, the parametrization is usually straightforward. If it can be done in several different ways, the one which best suits the purpose of secure ciphering needs to be chosen. Two-dimensional chaotic maps will be characterized by a sequence of integers. Another parameter is the number of applications of the chaotic map. It is typically an integer less than 30.

Step 3. Discretized version

This step consists of modifying the generalized map to account for the fact that an image is a finite lattice of points. The domain and range of the map is changed from the unit square I (I to the lattice � EMBED Equation.2 ��� (� EMBED Equation.2 ���, where � EMBED Equation.2 ��� = {0, (, N(1} with N equal to the number of pixels in one row. The discretized map F takes each pixel and assigns it to some other pixel in a bijective manner (e.g., the discretized version is a permutation of pixels). The discretization must satisfy the following asymptotic property.

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �1�)

where f is the continuous basic map and F is the discretized version. The formula requires the discretized map to become increasingly closer to the continuous map as the number of pixels tends to infinity.

Step 4. Extension to three dimensions

In order to change the histogram of the encrypted image, the generalized discretized map is extended to three dimensions. A general procedure which can be applied to any two-dimensional map is designed. The scrambling of pixels and their gray levels using the three-dimensional map is very effective. As discussed below, only two applications of the map to an image consisting of a black square create a uniform histogram.

EXAMPLES OF BASIC MAPS AND THEIR GENERALIZATIONS

The baker map, B, is described with the following formulas

� EMBED Equation.2 ���

� EMBED Equation.2 ���

The map acts on the unit square as depicted in � REF _Ref367595452 * MERGEFORMAT �Figure 1�. The left vertical column [0, 1/2) ([0, 1) is stretched horizontally and contracted vertically into the rectangle [0, 1) ([0, 1/2), and the right vertical column [1/2, 1) ([0, 1) is similarly mapped onto [0, 1) ([1/2, 1). The baker map is a chaotic bijection of the unit square I (I onto itself.

The map can be generalized in the following way [2][3]. Instead of dividing the square into two rectangles of the same size, the square is divided into k vertical rectangles � EMBED Equation.2 ��� ([0, 1), � EMBED Equation.2 ��� � EMBED Equation.2 ���, such that � EMBED Equation.2 ��� (see � REF _Ref367595629 * MERGEFORMAT �Figure 2�). The lower left corner of the i-th rectangle is located at � EMBED Equation.2 ���. The generalized baker map stretches each rectangle horizontally by the factor of � EMBED Equation.2 ���. At the same time, the rectangle is contracted vertically by the factor of � EMBED Equation.2 ���. Finally, all rectangles are stacked on top of each other as in � REF _Ref367595629 * MERGEFORMAT �Figure 2�. Formally,

� EMBED Equation.2 ��� for � EMBED Equation.2 ���

It is convenient to denote the baker map and its generalized version as � EMBED Equation.2 ��� and � EMBED Equation.2 ���, respectively. The generalized map inherits all important properties of the baker map such as sensitivity to initial conditions and parameters, mixing, and bijectiveness.

Another well-known example of a two-dimensional chaotic map is the cat map introduced by Arnold and Avez [4]. The action of the map on the unit square is often explained with a picture of a cat, which gave the map its name. The mathematical formula is:

� EMBED Equation.2 ���

where a mod 1 means the fractional part of a for any real a. Denoting the square 2 (2 matrix as A, the map can be written simply as � EMBED Equation.2 ��� where� EMBED Equation.2 ���stands for a vector transpose. The cat map is most easily described in geometric terms. The unit square ABCD, is linearly stretched so that the point C = (1, 1) is moved to (2, 3), and B is moved to (1,1). This stretching phase is described by the matrix A. After applying the mod operator, the pieces of the image lying in squares other than the unit square are cut and shifted back to the unit square (see � REF _Ref367596222 * MERGEFORMAT �Figure 3�). Similar to the baker map, the cat map is discontinuous along the lines of cutting.

It seems natural to use the elements of the matrix A as the parameters for the generalized version. A general matrix A,

� EMBED Equation.2 ���

with integer elements will be denoted � EMBED Equation.2 ���. Not all choices of the parameters will produce a correct generalization of the cat map. In particular, to make sure that the map is one-to-one, the determinant of A, |A| = tw - uv, has to be equal to 1.

DISCRETIZED VERSIONS OF BASIC MAPS

DISCRETIZED BAKER MAP (Version A)

Since an image is defined on a lattice of finitely many points (pixels), a correspondingly discretized form of the basic map needs to be derived. In particular, we require the discretized map to assign a pixel to another pixel in a bijective manner. Since we want the discretized map to inherit the properties of the continuous basic map, the discretized map should become increasingly close to the basic map as the number of pixels tends to infinity. This requirement is expressed mathematically with formula � REF inf * MERGEFORMAT �(1)�. Following the approach suggested by Pichler and Scharinger [2][3], the discretized generalized baker map will be denoted � EMBED Equation.2 ���, where the sequence of k integers, � EMBED Equation.2 ��� is chosen such that each integer � EMBED Equation.2 ��� divides N, and � EMBED Equation.2 ���. Denoting � EMBED Equation.2 ��� the pixel (r, s), with � EMBED Equation.2 ��� and � EMBED Equation.2 ��� is mapped to

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �2�)

8�
16�
�
7�
15�
�
6�
14�
�
5�
13�
�
4�
12�
�
3�
11�
�
2�
10�
�
1�
 9�
�
This formula is based on the following geometrical considerations. An N (N square is divided into vertical rectangles of height N and width � EMBED Equation.2 ���. Following the action of the generalized baker map, these vertical rectangles should be stretched in the horizontal direction and contracted in the vertical direction to obtain a horizontal � EMBED Equation.2 ��� (N rectangle. To achieve this for the discretized map, each vertical rectangle N (� EMBED Equation.2 ��� is divided into � EMBED Equation.2 ��� boxes N/� EMBED Equation.2 ��� (� EMBED Equation.2 ��� containing exactly N points (see � REF _Ref367596335 * MERGEFORMAT �Figure 4�, version A). Each of these boxes is mapped to a row of pixels. Since there are � EMBED Equation.2 ��� boxes, a horizontal rectangle � EMBED Equation.2 ���(N is obtained, as required. Now, we need to specify how the pixels in each box are mapped to a row of pixels. Since the original baker map is continuous on each box, the only plausible discretization is to map the box column by column. An example for N = 16, � EMBED Equation.2 ��� = 2 is shown below. The rectangle N/� EMBED Equation.2 ���(� EMBED Equation.2 ���= 16/2 = 8 (2 is mapped to a row of 16 pixels as follows:

(

1�
2�
3�
4�
5�
6�
7�
8�
9�
10 �
11�
12�
13�
14�
15�
16�
�

The formula � REF baker * MERGEFORMAT �(2)� is a symbolic, mathematical description of this geometric procedure. It is possible to justify the formula via symbolic dynamic. The action of the generalized baker map can be described with Bernoulli shifts on double-infinite sequences. Analogically, it can be shown that the action of the discretized map defined by the formula � REF baker * MERGEFORMAT �(2)� can be represented by Bernoulli shifts in finite Abelian groups [2][3]. This representation enables an elegant description of the dynamic in a symbolic form. This form could also be utilized for an efficient software and hardware implementation.

The application of the baker map to a test image shown in Figure 5 produces encrypted images as demonstrated with � REF _Ref367596531 * MERGEFORMAT �Figure 6� and � REF _Ref367596610 * MERGEFORMAT �Figure 7�. The ciphering key was randomly generated and consists of the following sequence of 17 divisors of 472:

(8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1)

(� SEQ inf * MERGEFORMAT �3�)

� REF _Ref367596694 * MERGEFORMAT �Figure 5� shows the original image, and � REF _Ref367596531 * MERGEFORMAT �Figure 6� and � REF _Ref367596610 * MERGEFORMAT �Figure 7� show the results of applying the generalized discretized baker map once and nine times, respectively.

DISCRETIZED BAKER MAP (Version B)

It is possible to generalize the geometric procedure to an arbitrary combination of integers (e.g., not only divisors of N are considered) � EMBED Equation.2 ��� which add up to N. This is important for several reasons:

By constraining ourselves to divisors of N, certain values of N may produce relatively small number of ciphering keys (for example when N has only small number of divisors). Therefore, some images would have to be slightly enlarged to the nearest integer N with a large number of divisors. This will slightly increase the size of the encrypted file compared to the original image.

Limited number of divisors forces us to use a large number of small divisors, which may lead to many “similar” keys. This may be dangerous from the point of view of the security of the cipher. This point is discussed in detail in Section � REF _Ref366937580 \n �3�.

In order to generalize the procedure to an arbitrary sequence of numbers � EMBED Equation.2 ���, we use similar geometric arguments as before. The image is again divided into vertical rectangles N (� EMBED Equation.2 ���. Each rectangle is divided into � EMBED Equation.2 ��� boxes containing exactly N points. Now these boxes do not necessarily have to have a rectangular shape (see � REF _Ref367596335 * MERGEFORMAT �Figure 4�, version B). The top and bottom row of each box may exhibit a one-pixel “step.” However, it is still possible to map the pixels column by column to a row of pixels. The procedure is illustrated with N = 16, � EMBED Equation.2 ���= 6 below. The first 4 columns will be by one pixel longer than the remaining � EMBED Equation.2 ���- 4 columns. In particular, the first 4 columns will consist of � EMBED Equation.2 ��� pixels, where � EMBED Equation.2 ��� denotes the smallest integer greater or equal to x.

3�
6�
9�
12�
�
�
�
2�
5�
8�
11�
14�
16�
�
1�
4�
7�
10�
13�
15�
�

(

1�
2�
3�
4�
5�
6�
7�
8�
9�
10 �
11�
12�
13�
14�
15�
16�
�

The only small inconvenience is that there is no simple formula similar to � REF baker * MERGEFORMAT �(2)�. We also sacrifice the advantage of having a Bernoulli shift-based description of the discretized map. However, as discussed in Section � REF _Ref366937759 \n �5� on fast implementations of the ciphering technique on sequential computers, the implementation of the encryption algorithm for an arbitrary combination of � EMBED Equation.2 ��� is no more complicated than in the previous case. The study of security explained in Section � REF _Ref366937580 \n �3� is valid for both versions as well.

EXTENSION TO RECTANGULAR IMAGES

Since many images are rectangular rather than square, it is important to extend the cipher to rectangular lattices of points. The geometrical construction of the generalized baker map described in � REF _Ref367595629 * MERGEFORMAT �Figure 2� can be readily extended to a rectangle without any modifications. The only problem is with the discretized version. For an M (N image with M� EMBED Equation.2 ���N, the number of pixels in each vertical rectangle, � EMBED Equation.2 ���N, may not be a multiple of M. In order to keep the number of pixels in each vertical rectangle at some multiple of M, we need to modify the rectangles and allow a one-pixel step in the vertical sides of each rectangle. This is a similar modification as in the description of version B. Consequently, some boxes may have a unit step in pixels not only at the top or the bottom but also at the sides. Of course, when � EMBED Equation.2 ���N is divisible by M, there will be no steps in the vertical sides of the rectangle. This slight modification of the baker map preserves the geometric characteristics of the original continuous baker map. The discretization is also consistent with the formula � REF inf * MERGEFORMAT �(1)�. As explained in Section � REF _Ref366937759 \n �5�, since the implementation is done using transfer matrices, there is no additional complication of the practical implementation.

DISCRETIZED CAT MAP

The discretized version of the cat map is obtained simply by changing the range of (x, y) from the unit square I (I to the discrete lattice � EMBED Equation.2 ��� (� EMBED Equation.2 ���

� EMBED Equation.2 ���

The map � EMBED Equation.2 ��� transforms the square lattice of points � EMBED Equation.2 ��� (� EMBED Equation.2 ��� onto itself in a one-to-one manner. The result of applying the discretized cat map with the matrix � EMBED Equation.2 ��� to the same test image is shown in � REF _Ref367597054 * MERGEFORMAT �Figure 8�. � REF _Ref367597183 * MERGEFORMAT �Figure 9� is the result after nine iterations.

The study of the cat map will not be pursued further in this report because the map does not provide ciphers with a sufficiently large key space. This issue is discussed in more detail in Section 2.4.2.

EXTENSION TO THREE DIMENSIONS

The application of discretized chaotic maps creates a permutation of pixels. This means that the histogram of the image does not change, which may become a clue for a potential eavesdropper. The security of chaos-based ciphering can be significantly improved when the pixels in a digital image are permuted and their gray levels are simultaneously changed, too. In this section, we describe a general extension procedure using which any one-to-one two-dimensional mapping can be modified to a three-dimensional mapping which acts both on the pixels and on their gray levels. Since the new gray levels depend on pixel positions, a better, safer cipher is obtained.

We remind that we are considering an N (N square image with L gray levels. Let B be any discretized two-dimensional chaotic map. Let � EMBED Equation.2 ��� denote the gray level of the pixel (i, j), � EMBED Equation.2 ���. We need to find a map

 h: � EMBED Equation.2 ���(� EMBED Equation.2 ���(� EMBED Equation.2 ���� EMBED Equation.2 ���� EMBED Equation.2 ���

such that the pixel (i, j) with gray level � EMBED Equation.2 ��� is mapped to B(i, j) with a gray level � EMBED Equation.2 ���. The three-dimensional map

B3: � EMBED Equation.2 ���(� EMBED Equation.2 ���(� EMBED Equation.2 ���� EMBED Equation.2 ��� � EMBED Equation.2 ���(� EMBED Equation.2 ���(� EMBED Equation.2 ���

should be invertible to make deciphering possible. This means that B3(i, j, g')� EMBED Equation.2 ���B3(i, j, g'') for each (i, j) � EMBED Equation.2 ���� EMBED Equation.2 ��� (� EMBED Equation.2 ��� and g', g''� EMBED Equation.2 ���� EMBED Equation.2 ���. This is possible if and only if h is one-to-one for each i, j. This requirement is not restrictive at all and enables us to construct a large variety of gray level permutations. For example,

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �4�)

where � EMBED Equation.2 ��� is any (possibly not one-to-one) function of i and j, produces an acceptable map h. In this case, h can be interpreted as a simple shift cipher with the shift size � EMBED Equation.2 ��� dependent on the position of the pixel i, j. The shift size � EMBED Equation.2 ��� could be computed quickly using some bit operations on i and j, or it could be stored in a look up table. For a fast encryption, h should be chosen so that it can be performed quickly or, preferably, hard-wired into an encrypting hardware, while maintaining the security of the cipher. In the future, we plan to investigate the performance of the encryption scheme for various choices of h obtained using XOR operation with i and / or j. One possible choice for h is

� EMBED Equation.2 ���

The result of enciphering the test image in � REF _Ref367596694 * MERGEFORMAT �Figure 5� with the key � REF key * MERGEFORMAT �(3)� using � EMBED Equation.2 ���=i . j is shown in � REF _Ref367597441 * MERGEFORMAT �Figure 10� and � REF _Ref367597504 * MERGEFORMAT �Figure 11�. � REF _Ref367597441 * MERGEFORMAT �Figure 10� shows the enciphered image after one! iteration. The result after 9 iterations is shown in � REF _Ref367597504 * MERGEFORMAT �Figure 11�. Even one iteration of the 3d - chaotic map makes the histogram uniform, although the histogram of the original image was highly nonuniform.

Especially for images with a highly singular histogram, such as an image consisting of a black square, a simple permutation of pixels may not be safe enough. For such images, the use of 3d chaotic maps is absolutely essential. � REF _Ref367597643 * MERGEFORMAT �Figure 12� and � REF _Ref367597699 * MERGEFORMAT �Figure 13� show the result of enciphering a black square using one and two iterations, respectively. As can be seen from the figures, starting with a black square only two iterations of the 3d chaotic map create an image with a uniform histogram!

We note that the modification of the histogram can be achieved in other ways. For example, Pichler and Scharinger [2] take a product of the Bernoulli cipher with a maximal length linear feedback shift register. While this method also generates uniform histograms, our method based on 3d chaotic maps is more compact and directly transfers the properties of the 2d chaotic map to the gray level mixing.

There is one more important point about the gray level mixing which needs to mentioned. Our technique is robust with respect to errors, i.e., flipping one pixel in the plaintext changes one pixel in the ciphertext. While this property might be useful for some applications, it is potentially very dangerous because this error robustness may be used for breaking the cipher using chosen plaintext type of attack. In the section on future direction, we outline how the cipher can be modified to achieve complete diffusion of changes to the pixels. It is also possible to continuously decrease the error robustness by carefully choosing the number of rounds of the chaotic map and the diffusion technique (see the section on future directions).

CIPHERING KEY

BAKER MAP

The ciphering key is formed by the parameters of the chaotic map, the number of applications of the map, and the parameters of the gray level transformation h. For both versions of the baker map, the key � EMBED Equation.2 ��� is

� EMBED Equation.2 ���

where C is the number of iterations of the baker map, � EMBED Equation.2 ��� are the parameters of the baker map, and � EMBED Equation.2 ��� are the parameters necessary to describe h. Experiments with real images and the cipher security analysis in Section � REF _Ref366937580 \n �3� suggest that C < 30 produces a safe encryption.

The number of possible keys grows very rapidly with the number of pixels in the image. To estimate the total number of different ciphering keys, we start with version A of the baker map. Our task is to estimate how many times an integer N can be written as an ordered sum of its divisors. The number of divisors, k, ranges from some small number, such as 2 if N is even, to N for a key consisting of N ones. The total number of ciphering keys, K(N), depends on N and on how many different divisors exist for N. Trivially, when N is a prime number, K(N) = 1. For N=� EMBED Equation.2 ���, K(� EMBED Equation.2 ���)� EMBED Equation.2 ���[K(� EMBED Equation.2 ���)]� EMBED Equation.2 ���. For N=64, 128, 256, 512, K(N) � EMBED Equation.2 ���� EMBED Equation.2 ��� respectively. The number K(N) tends to be higher for N with a large number of different divisors, such as N=30, 60, 120, 240. The table below shows K(N) as a function of N for selected values of N.

N�
K(N)�
N�
K(N)�
N�
K(N)�
�
4�
5�
27�
26425�
50�
2.6e11�
�
6�
24�
28�
5e6�
51�
1.8e8�
�
8�
55�
30�
1.5e8�
52�
3.1e12�
�
9�
19�
32�
4.7e7�
54�
8.0e13�
�
10�
128�
33�
2.2e5�
55�
6.6e6�
�
12�
1627�
34�
9.2e6�
56�
6.8e13�
�
14�
741�
35�
51885�
57�
1.8e9�
�
15�
449�
36�
1.5e10�
58�
9.5e11�
�
16�
5271�
38�
6.3e7�
60�
3.8e17�
�
18�
45315�
39�
2.0e6�
62�
6.5e12�
�
20�
83343�
40�
1.4e10�
63�
2.5e11�
�
21�
3320�
42�
1.8e11�
64�
3.8e15�
�
22�
29966�
44�
3.5e10�
128�
e31�
�
24�
5.1e6�
45�
4.7e8�
256�
e63�
�
25�
571�
46�
2.9e9�
512�
e126�
�
26�
2.0e5�
48�
4.8e13�
1024�
e255�
�

In the table, we accepted the following notation: 2.0e5 means 2.0(� EMBED Equation.2 ���, etc. For version B of the baker map, it is easy to see that the total number of ciphering keys K(N)=� EMBED Equation.2 ��� for all N. This number monotonically increases with N and is consistently larger by several orders of magnitude compared to version A. The number of keys, K(256, m), of length equal to m for N = 256 is plotted in � REF _Ref367597834 * MERGEFORMAT �Figure 14� for m = 1, . . . , 256. � REF _Ref367597901 * MERGEFORMAT �Figure 15� shows the number of keys, � EMBED Equation.2 ���, whose length is at most m. The continuous curve corresponds to version A while the dashed curve represents version B. As can be clearly seen from the figures, the number of ciphering keys for version B is significantly higher compared to version A, especially for ciphering keys of small length. Also, there is a simple formula for K(256, m) for version B,

K(N, m) = � EMBED Equation.2 ���.

CAT MAP

Keeping the same notation as for the baker map, the key � EMBED Equation.2 ��� for the cat map is

� EMBED Equation.2 ���

Since the four-tuple � EMBED Equation.2 ���generates the same cipher as the tuple (t, u, v, w) for any � EMBED Equation.2 ��� we may restrict the values of t, u, v, w to the set � EMBED Equation.2 ���. The total number of ciphering keys for the cat map is therefore smaller� than � EMBED Equation.2 ���. For a 512 (512 image, this number is approximately 6 (� EMBED Equation.2 ���. This shows that the safety of the baker cipher is significantly higher than the safety of the cipher based on the cat map. For this reason, the remainder of this study including the cipher security issues is devoted solely to the baker map.

We note that the previous estimates of the total number of different ciphering keys were based on the two-dimensional versions of the maps and did not take into account the three-dimensional extension of the map. Adding the map � REF h * MERGEFORMAT �(4)� further increases the total number of ciphering keys.

ENCIPHERING / DECIPHERING PROCEDURE

The enciphering phase consists of C applications of the chaotic map B. The resulting enciphered image� EMBED Equation.2 ���, to be transmitted, is obtained as

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �5�)

where B stands for � EMBED Equation.2 ��� in the case of the baker map, and B denotes � EMBED Equation.2 ��� for the cat map, both extended to three dimensions as described in the previous section. The deciphering procedure is obtained simply by inverting the enciphering formula � REF enciph * MERGEFORMAT �(5)� and � REF h * MERGEFORMAT �(4)� as

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �6�)

The implementation of both � REF enciph * MERGEFORMAT �(5)� and � REF deciph * MERGEFORMAT �(6)� using transfer matrices on serial and parallel computers is discussed in Section � REF _Ref366937759 \n �5�.

SAFETY OF THE CIPHER

The high number of possible ciphering keys for the baker map suggests that it would be very hard to break the cipher by a direct search for the key. However, the number of possible ciphering keys does not have to reflect the real security of the cipher. In � REF _Ref367598114 * MERGEFORMAT �Figure 18� - � REF _Ref367598174 * MERGEFORMAT �Figure 21�, we show the results of deciphering an image using wrong ciphering keys. The original image is shown in � REF _Ref367596694 * MERGEFORMAT �Figure 5� and consists of 472 (472 pixels with 256 gray levels. When the key � REF key * MERGEFORMAT �(3)�

 (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1)

was changed by replacing the parameter 4 on the sixteenth place by two parameters 2,

(8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 2 2 1)

(� SEQ inf * MERGEFORMAT �7�)

the deciphered image shown in � REF _Ref367598114 * MERGEFORMAT �Figure 18� is clearly recognizable, although it does contain some “noise.” Replacing the two parameters 59 on the fourth and the fifth place by their sum results in a much more noisy deciphered image (� REF _Ref367598289 * MERGEFORMAT �Figure 19�). However, one can still find some traces of the original image (e.g., the edge on the right side of the face). � REF _Ref367598348 * MERGEFORMAT �Figure 20� shows the result of deciphering using a key in which the parameter 4 on the seventh place in � REF key * MERGEFORMAT �(3)� was moved after the second parameter 118. Clearly, the attempt to decipher the image has been unsuccessful. � REF _Ref367598174 * MERGEFORMAT �Figure 21� was obtained using a modification of the key � REF key * MERGEFORMAT �(3)� in which the two parameters 118 were replaced by four parameters 59. Again, the deciphered image does not bear any resemblance to the original.

These examples suggest that the number of different keys which guarantee safe ciphering is lower than the total number of ciphering keys. In particular, those modifications of keys in which one parameter is replaced by a sequence of smaller parameters, or in which small parameters are merged into a larger one, can be successfully used for deciphering. This observation suggests that each ciphering key is surrounded by a cluster of keys which are almost equivalent for the purpose of ciphering. Therefore, the safety of the cipher should be judged by the number of those clusters rather than by the total number of different ciphering keys. This issue is investigated in detail in the remainder of this section.

The similarity between two keys, � EMBED Equation.2 ��� and � EMBED Equation.2 ���, should be measured by the difference in the performance of their ciphering maps � EMBED Equation.2 ��� and � EMBED Equation.2 ��� on a typical image.

Let � EMBED Equation.2 ��� denote the number of pixels (i, j) in the original image I which are mapped to different pixels after k applications of the maps � EMBED Equation.2 ��� and � EMBED Equation.2 ���, i.e., � EMBED Equation.2 ��� Clearly, when � EMBED Equation.2 ��� becomes comparable to the total number of pixels in the image, � EMBED Equation.2 ���, the images � EMBED Equation.2 ���and � EMBED Equation.2 ���will bear no resemblance. An important issue from the point of view of the security of the cipher is how fast � EMBED Equation.2 ��� increases with k, and how � EMBED Equation.2 ��� depends on the similarity between the ciphering keys � EMBED Equation.2 ��� and � EMBED Equation.2 ���. Both questions are answered below.

It will be useful to represent ciphering keys as disjoint unions of subintervals of the interval [0,N). Let

� EMBED Equation.2 ���

denote a ciphering key with � EMBED Equation.2 ���being the parameters, such that � EMBED Equation.2 ���. Denoting � EMBED Equation.2 ��� the key � EMBED Equation.2 ��� can be represented by a union � EMBED Equation.2 ��� of disjoint subintervals of [0, N)

� EMBED Equation.2 ���

The similarity between two keys, � EMBED Equation.2 ��� and � EMBED Equation.2 ���, will be measured by the total length of intervals from � EMBED Equation.2 ���. Denoting

� EMBED Equation.2 ���

let us assume that the two keys are the same with the exception of one interval in � EMBED Equation.2 ���, � EMBED Equation.2 ���, which corresponds to a union of several smaller consecutive intervals in � EMBED Equation.2 ���. This can be best visualized graphically as:

� EMBED Equation.2 ��� =|........|......|...|.................|.......|.................|.......................|......|......|

� EMBED Equation.2 ���=|........|......|...|.................|.......|.................|....|…..|....…..|.|......|......|

In this particular example, the seventh interval in � EMBED Equation.2 ��� has been replaced by a union of four smaller intervals in � EMBED Equation.2 ���. From the graphical interpretation of the baker map it is easy to see that the vertical rectangle with pixels with indices (i, j), � EMBED Equation.2 ���, � EMBED Equation.2 ���, will be placed differently under application of � EMBED Equation.2 ��� and � EMBED Equation.2 ���. Therefore, � EMBED Equation.2 ��� When applying the baker map the second time, the number of newly misplaced pixels increases by � EMBED Equation.2 ��� minus the relative portion of already misplaced pixels from the previous step

� EMBED Equation.2 ���

This argument can be repeated to obtain an approximate recurrent formula

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �8�)

By dividing the last expression by the total number of pixels, � EMBED Equation.2 ���, we obtain the following formula for the relative count of misplaced pixels,

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �9�)

� EMBED Equation.2 ���

where � EMBED Equation.2 ��� It is easy to solve this recurrent expression for � EMBED Equation.2 ��� to obtain

� EMBED Equation.2 ���

� EMBED Equation.2 ���

Since the formula � REF rk * MERGEFORMAT �(9)� is the basis of further cipher security considerations, it is important to study its validity for real images. In order to test the formula, an image was encrypted using two different keys with an increasing number of iterations. The images were compared and the pixels with different gray levels were counted. This number, which is a function of the number of iterations k, is denoted � EMBED Equation.2 ���. Finally, � EMBED Equation.2 ��� was compared to � EMBED Equation.2 ��� based on formula � REF rk * MERGEFORMAT �(9)�.

Set #1.

In the first set of experiments, we assume that each pixel in the image has a different gray level. The ciphering keys used in simulations are:

� EMBED Equation.2 ��� = (8 8 8 59 59 4 4 118 118 4 2 4 2 2 59 8 4 1),

 � EMBED Equation.2 ���= (8 8 8 59 59 4 4 118 118 4 2 4 2 2 59 4 4 4 1),

� EMBED Equation.2 ���= (8 8 8 59 59 4 4 118 118 4 2 4 2 1 1 59 8 4 1).

The 16-th interval of � EMBED Equation.2 ��� of length 8 was replaced by two subintervals of half the length in � EMBED Equation.2 ��� and the 14-th interval in � EMBED Equation.2 ��� was replaced by two subintervals of length 1 in � EMBED Equation.2 ���. The following table summarizes the number of differently placed pixels, � EMBED Equation.2 ���, under iterations with � EMBED Equation.2 ��� compared to iterations with � EMBED Equation.2 ��� and � EMBED Equation.2 ���.

�
 � EMBED Equation.2 ����
�
 � EMBED Equation.2 ����
�
k�
� EMBED Equation.2 ����
� EMBED Equation.2 ����
�
� EMBED Equation.2 ����
� EMBED Equation.2 ����
�
1�
1.695e-2�
1.695e-2�
�
4.237e-3�
4.237e-3�
�
2�
3.361e-2�
3.361e-2�
�
8.457e-3�
8.457e-3�
�
3�
4.960e-2�
4.999e-2�
�
1.252e-2�
1.266e-2�
�
5�
8.020e-2�
8.192e-2�
�
2.054e-2�
2.100e-2�
�
10�
0.1481�
0.1571�
�
3.871e-2�
4.157e-2�
�
20�
0.2532�
0.2896�
�
6.842e-2�
8.142e-2�
�
40�
0.3817�
0.4953�
�
0.1108�
0.1562�
�
80�
0.4906�
0.7453�
�
0.1537�
0.2880�
�
160�
0.5354�
0.9351�
�
0.1841�
0.4931�
�
320�
0.5405�
0.9958�
�
0.1915�
0.7430�
�

As can be seen from the table, the accuracy of the formula � REF rk * MERGEFORMAT �(9)� is better than 7% when the number of iterations is less than 10. The accuracy decreases to about 15% when the number of iterations reaches 20. The main reason why � EMBED Equation.2 ���/� EMBED Equation.2 ��� and � EMBED Equation.2 ��� deviate for k > 30 is the discrete nature of the baker map. The ciphers � EMBED Equation.2 ���� EMBED Equation.2 ��� and � EMBED Equation.2 ���� EMBED Equation.2 ��� differ in an interval � EMBED Equation.2 ��� of length 8 and 2, respectively. In the course of iterations, the pixels from the vertical rectangle

� EMBED Equation.2 ���

will not be mapped to all pixels in the image but to a smaller set�. This is caused by periodicities which are present in the discretized map. Therefore, � EMBED Equation.2 ��� saturates at a different number than � EMBED Equation.2 ��� which always reaches the total number of pixels, � EMBED Equation.2 ���, as � EMBED Equation.2 ���.

The second set of experiments was performed with the same ciphering keys, � EMBED Equation.2 ���,� EMBED Equation.2 ���,� EMBED Equation.2 ���, for a real test image shown in � REF _Ref367596694 * MERGEFORMAT �Figure 5�. Note hat the number of misplaced pixels with different gray levels, � EMBED Equation.2 ���, is slightly lower compared to the previous case, which somewhat decreases the accuracy of the formula � REF rk * MERGEFORMAT �(9)�. This is caused by the finite number of gray levels (256) in the image. Some misplaced pixels may accidentally land on pixels with the same gray level. The frequency of this happening depends on the histogram of the image and on the total number of gray levels. The more uniform the histogram is, or, the more gray levels are in the image, the better the accuracy of the formula � REF rk * MERGEFORMAT �(9)�.

�
 � EMBED Equation.2 ����
�
 � EMBED Equation.2 ����
�
k�
� EMBED Equation.2 ����
� EMBED Equation.2 ����
�
� EMBED Equation.2 ����
� EMBED Equation.2 ����
�
1�
1.581e-2�
1.695e-2�
�
2.110e-3�
4.237e-3�
�
2�
3.183e-2�
3.361e-2�
�
4.224e-3�
8.457e-3�
�
3�
4.706e-2�
4.999e-2�
�
6.239e-2�
1.266e-2�
�
5�
7.632e-2�
8.192e-2�
�
1.020e-2�
2.100e-2�
�
10�
0.1410�
0.1571�
�
1.925e-2�
4.157e-2�
�
20�
0.2408�
0.2896�
�
3.468e-2�
8.142e-2�
�
40�
0.3619�
0.4953�
�
5.710e-2�
0.1562�
�
80�
0.4628�
0.7453�
�
8.019e-2�
0.2880�
�
160�
0.5035�
0.9351�
�
9.726e-2�
0.4931�
�
320�
0.5067�
0.9958�
�
0.1003�
0.7430�
�
Set #2.

Both sets of experiments suggest that � EMBED Equation.2 ��� forms an upper bound on the number of pixels in which two encrypted images differ. For a small number of iterations k < 30, the formula � REF rk * MERGEFORMAT �(9)� gives an accurate estimate of � EMBED Equation.2 ���. The difference between � EMBED Equation.2 ��� and � EMBED Equation.2 ��� is caused by a small number of gray levels in the image (256) compared to the total number of pixels (� EMBED Equation.2 ���). � EMBED Equation.2 ��� will be a better estimate of � EMBED Equation.2 ��� for color images which may have up to � EMBED Equation.2 ��� different colors. The accuracy of � EMBED Equation.2 ��� will clearly depend on the histogram of the image. The disagreement between � EMBED Equation.2 ��� and � EMBED Equation.2 ��� in the second experiment of set #2 for � EMBED Equation.2 ���� EMBED Equation.2 ��� is caused by the fact that in the first iteration a large portion of the misplaced pixels was accidentally mapped to pixels with the same gray levels. For the next iterations up to 30, the formula � REF rk * MERGEFORMAT �(9)� predicted the correct trend, i.e., � EMBED Equation.2 ���/� EMBED Equation.2 ���� EMBED Equation.2 ��� k = 1, . . . , 30. As discussed before, the main reason why � EMBED Equation.2 ���/� EMBED Equation.2 ��� and � EMBED Equation.2 ��� deviate for k > 30 is the discrete nature and periodicities of the discretized baker map.

The analysis above suggests that the formula for � EMBED Equation.2 ��� can be safely used for typical images for k < 30. This value of k is more than enough to guarantee a safe ciphering method.

The formula � REF rk * MERGEFORMAT �(9)� can be used for measuring the similarity between keys. Let us suppose that two keys represented by unions of intervals, � EMBED Equation.2 ��� differ in intervals of total length d. Formally, let

� EMBED Equation.2 ���

� EMBED Equation.2 ���

Then

� EMBED Equation.2 ���

The most important question for the security of the cipher is: what size of d will guarantee that two keys actually represent different keys and cannot be used interchangeably to decipher an image enciphered by the other key? To answer this question, we need to recognize two cases: the plaintext is available to the cryptanalyst, and the plaintext is not available.

KNOWN PLAINTEXT TYPE OF ATTACK

In this case, we will accept two keys as different, or dissimilar, if after 30 iterations the encrypted images differ by the same margin as two randomly chosen images. Since the expected number of the same pixels for two random images is � EMBED Equation.2 ���with the standard deviation equal to � EMBED Equation.2 ���, we will consider two ciphers as different if at least (1-1/L (� EMBED Equation.2 ���) (100% of pixels are misplaced. Taking the midpoint of this interval, the following equation for d needs to be satisfied (for 256 gray levels)

� EMBED Equation.2 ���

By solving the equation we find � EMBED Equation.2 ��� In other words, when two ciphering keys differ by more than 17%, they are considered to be dissimilar for a known-plaintext type of attack. The ratio d/N can be taken as a measure of similarity between two keys. When d/N < 0.17 we will say that the two keys are similar and can be used for ciphering / deciphering phase interchangeably.

Now that we know when two keys are similar, it is possible to estimate the maximal number of keys which are similar to a given key. Two similar keys may differ in intervals of length at most 17%. Therefore, the number of keys similar to the key � EMBED Equation.2 ���is equal to

� EMBED Equation.2 ���

where � EMBED Equation.2 ��� is the number of all ciphering keys of length � EMBED Equation.2 ���. The summation will be maximal when all � EMBED Equation.2 ��� are equal to 0.17 (N. Consequently, � EMBED Equation.2 ��� and the total number of different clusters for an N (N image is at least

� EMBED Equation.2 ���

This lower estimate for the number of different clusters for version B of the baker map is calculated in the table below.

�
 # of keys�
 # of clusters

�
�
N�
K(N)�
Ciphertext only�
Known plaintext�
�
64�
1.8e19�
1.0922e16�
8.3202e14�
�
128�
3.4e38�
2.3858e33�
8.1441e30�
�
256�
1.2e77�
1.1384e68�
7.8032e62�
�
512�
1.4e154�
2.5917e137�
7.1635e126�
�
1024�
1.8e308�
1.3434e276�
6.0372e254�
�

The results clearly suggest that the number of dissimilar ciphering keys is still very large in spite of the presence of clusters of similar keys. Therefore, we conclude that the proposed ciphering technique is secure with respect to a known plaintext type of attack.

CIPHERTEXT ONLY TYPE OF ATTACK

In the second case, when the plaintext is not available, we would have to perform pattern recognition analysis and high level image understanding tasks to see if there is some pattern in the decrypted image. For this problem, a similarity between keys can be defined with less severe restrictions. Namely, we could probably safely assume that just 90% of differently placed pixels would prevent us from being able to recognize a pattern in the decrypted image. Similar arguments as before will give us that two keys can be considered dissimilar (for the ciphertext only type of attack) if they differ in just 10% of their length. The number of clusters in this case increases as � EMBED Equation.2 ���. This calculation is based on performing just 20 iterations. Specific numbers for selected values of N are shown in the table above.

We close this section devoted to security issues by a few remarks on diffusion. The clusters of similar keys are caused by non diffusive properties of the cipher. This means that changes to one pixel level do not spread to neighboring pixels, and small changes in encryption keys do not drastically change the ciphertext. This is highly undesirable from the security point of view. The cipher would fall to a chosen plaintext type of attack. However, it is possible to build in a diffusion step into the scheme (see Section 7.3.1) and make the cipher much more secure. As indicated by computer experiments, when the diffusion is brought in, there will be no clusters of similar keys - the “clusters” will contain just one key. The above analysis can be viewed as the analysis of the least favorable case. Including the diffusion can only increase the security of the whole scheme.

PROPERTIES OF THE ENCIPHERED IMAGE

SPREAD OF SPATIALLY LOCALIZED INFORMATION

One of the advantages of chaos-based image cryptography is the fact that spatially localized information in the original image becomes non local and uncorrelated in the encrypted image. This can be demonstrated with the following example, in which the original image consists of a 10 (10 black square on a white background of a 472 (472 image (see Figure 16). A randomly generated ciphering key � REF key * MERGEFORMAT �(3)� was used to iterate the discretized generalized baker map nine times. The result is shown in Figure 17. The black pixels are scattered all over the image in a random manner. The fact that spatially localized information in the original image is distributed in the encrypted image in an apparently random fashion, contributes to the safety of the encryption.

STRUCTURE OF THE PERMUTATIONS

The discretized generalized baker map transforms the set of pixels onto itself in a one-to-one manner, i.e., it is a permutation. Each permutation can be uniquely represented as a collection of cycles. In this subsection, we study the structure of the permutations induced by the generalized discretized baker map. The average length of a cycle, and the average number of cycles were used to compare the permutations with a typical random permutation.

The average length of a cycle is defined as the expected value of the number of iterations of the map necessary to bring a randomly chosen pixel back to its original position. Given � EMBED Equation.2 ��� pixels, if a permutation consists of k cycles of length � EMBED Equation.2 ���the expected value, C(N), of the cycle for a randomly chosen pixel is

� EMBED Equation.2 ���

(� SEQ inf * MERGEFORMAT �10�)

The average number of cycles, cyc(N), is defined as the expected value of k. It can be shown [5], that for a random permutation,

� EMBED Equation.2 ���

A set of computer experiments with 1000 randomly chosen keys of length between 10 and 15 for a square image 472 (472 pixels gives us C(N) = 111,115.7, cyc(N) = 33.5. These values should be compared to random permutations with C(N) = 111,392.5, cyc(N) = 12.3. A typical permutation induced by the baker map contains almost three times more cycles when compared to a random permutation. However, most of those cycles are very short cycles of length less than 10. This fact is supported by the observation that the average length of a cycle for the baker map is very close to the corresponding value for a random permutation. As the formula � REF cn * MERGEFORMAT �(10)� suggests, C(N) is mostly influenced by large cycles rather than by a small number of short ones. The average number of cycles of mutually different lengths turned out to be 14.6 which is reasonably close to 12.3 - the corresponding value for random permutations.

RANDOM NUMBER GENERATOR BASED ON CHAOTIC MAPS

Since an encrypted image resembles an uncorrelated random static on a TV monitor, we may try to generate a sequence of pseudo random numbers� EMBED Equation.2 ��� by reading the gray levels of pixels in a row-by-row manner or some other scanning pattern. Starting with an M (N image with L gray levels (we could start, for example, with the image consisting of a black square) after performing k iterations, we obtain M (N pseudo random integers in the range [0, L-1]. Majority of traditional random number generators generate the next number in the sequence by following certain deterministic rule, i.e., there is a deterministic relationship between � EMBED Equation.2 ��� and � EMBED Equation.2 ���. The random number generator based on three-dimensional maps is nontraditional because it does not have this property. If more than M (N random numbers are needed, we can perform another k iterations of the chaotic map and get another set of M (N random numbers, etc.

The quality of stream ciphering based on mixing the plaintext with a sequence of pseudo random numbers depends on the following factors:

The period of the pseudo random sequence

Randomness properties of the generator

It should be computationally hard to determine the key and the seed based on the knowledge of a finite segment of pseudo random numbers

As described in the previous section, the structure of permutations of the pixels suggests that the period of the sequence is very high. This statement needs to be quantified by an asymptotic estimate for the period. This topic is currently under investigation. The third requirement is equivalent to breaking the cipher using ciphertext only type of attack. As described before, the complexity of a direct key search increases exponentially as � EMBED Equation.2 ���. The randomness properties of the proposed random number generator were tested on a 472 (472 image with 256 gray levels with the following tests for randomness [6]:

Uniformity of distribution test

Coupon collector’s test

Permutation test

Poker test

Serial pairs test

All five tests were satisfied by the sequence of pseudo random numbers obtained from an encrypted image of a black square after 9 iterations. The numbers were read in a row-by-row manner. Computer experiments done with other scanning patterns suggest that the properties of the pseudo random sequence do not depend on the scanning pattern.

IMPLEMENTATION

OPTIMIZING THE CIPHERING CODE ON A SEQUENTIAL COMPUTER

Both A and B versions of the generalized discretized baker map use a short ciphering key consisting of a sequence of integers to identify a chaotic map which is later applied to a digital image. The chaotic transformation B maps a pixel with coordinates (r, s) to a new position (t1(r,s), t2(r,s)). The map B needs to be applied to each pixel of the original image K-times, where K is typically between 10 and 20. The number of integer operations, such as addition, subtraction, division, or multiplication, increases as� EMBED Equation.2 ���. It is possible to scale down the number of arithmetic operations to� EMBED Equation.2 ���using the concept of a transfer matrix. The proposed scheme will be especially useful for encrypting a sequence of images with the same key, such a sequence of digital video frames. The transfer matrices t1, t2 are square N (N matrices defined by the formula

� EMBED Equation.2 ���

The matrices t1, t2 need to be computed only once for a given ciphering key. The number of integer arithmetic operations needed to obtain the matrices is� EMBED Equation.2 ���. Once the transfer matrices have been determined, the enciphering process can be described using the following code fraction written in C. It is assumed that the gray levels of the original image are stored in a two-dimensional integer array a[0. . . N-1][0. . . N-1], and the new, enciphered image is stored in the integer array na[0. . . N-1][0. . . N-1]. The variables i, jj, and aux are auxiliary integer variables.

�
Code fraction:

for(i = 0; i < N; i++)

{

	for(j = 0; j < N; j++)

	{

		ii = i; jj = j;

		for(k = 0; k < K; k++)

		{

			aux = t1[ii][jj];

			jj = t2[ii][jj];

			ii = aux;

		}

		na[ii][jj]=a[i][j];

	}

}

The loop contains assignment statements only and does not contain any arithmetic operations. Therefore, it can be executed by a computer in a much shorter time than direct implementation of the formula � REF baker * MERGEFORMAT �(2)�. The deciphering process can be implemented using transfer matrices in a similar way. In fact, having computed the transfer matrices t1 and t2, the inverse transfer matrices � EMBED Equation.2 ���can be obtained directly from t1, t2 without having to perform any integer arithmetic operations:

� EMBED Equation.2 ���

IMAGE ENCRYPTION

The encryption method is ideally suited for parallel (matrix) input / output of images, such as data coming from a holographic three dimensional memory or from a CID element. However, in most situations, the image data will be available in a sequential, vector form. The encryption / decryption of images which are in a vector form needs to be done using buffers. Let us suppose that the input data are arriving sequentially in the form of a vector g(i), where g(i) is the i-th item in the data stream, and tg is the transfer matrix for gray levels. The value of tp(i) is the position of the i-th pixel in the encrypted / decrypted image, and tg(i, g) is its new gray level which depends both on the pixel position i and on its old gray level. Proceeding in this way for i = 1 to i =� EMBED Equation.2 ���, we build a new stream of data ng(i) with ng(tp(i)) = tg(i,g(i)) . The new encrypted / decrypted vector, ng(i), cannot be further processed until the whole input vector g(i) has been read. Therefore, the vector ng(i) needs to be stored in a buffer before it can be displayed on a monitor.

Further improvements such as pipelining and parallel processing are suggested to increase the speed of encryption. If the information about an image is arriving by rows, each row is read by a separate processor and once the row has been read each processor starts with decrypting / encrypting the corresponding row and storing the information in one buffer shared by all processors. If there are M lines in the image, M processors are needed. Provided there are N pixels in each row, the j-th processor reads the j-th row of the image, which corresponds to indices i = jN to jN+N-1 of the input vector g(i). Each processor has its own transfer matrices tp and tg, which correspond to submatrices of the original tp(i) and tg(i) for i = jN to jN+N-1. In this manner, an almost linear speed up with respect to M can be achieved. A Pentium 66MHz computer can encrypt a 472 (472 image with 8 bits per pixel in less than 2 seconds. This corresponds to a speed of encryption of � EMBED Equation.2 ��� bits/sec. The speed could be increased up to � EMBED Equation.2 ��� bits/sec using 100 Pentium processors working in parallel. This speed of encryption would enable real time video encryption.

ENCRYPTION OF GENERAL DATA STREAMS

The chaos-based encryption can be used not only for images but for any large data files. For example, we can combine image information, text, and a header into one file according to a specified protocol. If compression of information is required, it is important that the compression is done prior to encryption since the encrypted image has very little spatial correlations. The resulting stream of data is in a sequential form and can be treated as described above.

ENCRYPTION MODES

The proposed encryption method can be used in at least three different encryption modes: Single image encryption, CBC mode (Chain Block Cipher Mode), and one time pad.

In the single image encryption mode, our discretized baker map is directly applied to a digital image (or, a rectangular array of symbols). Having a sequence of ciphertext arranged in blocks � EMBED Equation.2 ���, the sequence of corresponding blocks of the ciphertext is � EMBED Equation.2 ���, where

� EMBED Equation.2 ���

The third mode is the one time pad mode. In this mode, the chaotic cipher is used for generating a sequence of rectangular arrays of pseudo random numbers, and this sequence is XOR-ed with the plaintext. Formally, we start with a sequence of blocks of the plaintext� EMBED Equation.2 ���, and some (maybe publicly known) seed image S. Using as private key, a sequence of random masks � EMBED Equation.2 ��� is obtained using the following expression

� EMBED Equation.2 ���

Encryption is achieved by simply XOR-ing the plaintext with the sequence of one time pads:

� EMBED Equation.2 ���

We believe that 10 iterations of the chaotic map is enough to obtain independent masks for the one time pad. We already know that the sequence of pseudo random numbers has good randomness properties. The security of the pseudo random generator corresponds to the security of the chaotic cipher. Although, we have no formal proof that the cipher is computationally secure, we believe so. It remains to show in an exact mathematical manner the asymptotic properties of the random number generator, estimate its period, etc. These issues will be the subject of further study.

SECRET MESSAGE HIDING IN IMAGES

In this section, we describe an important application of chaos-based image encryption techniques to steganography (secret sending of messages in other “innocent looking” messages. A method for hiding of messages in a digital image (a carrier) is proposed here. The inverse technique of extracting the hidden information is also described. The method combines the secure chaos-based encryption techniques as described above and a steganographic method similar to LSB method (Least Significant Bit method). The appearance of the carrier with a hidden secret message should be such that an eavesdropper should not even suspect that a secret information is being sent. If the secret message is encrypted before hidden in the carrier, the security of the scheme further increases. It is important that a potential eavesdropper should not be able to recognize that a secret message is being transmitted even under close scrutiny of the carrier message. We propose to hide a message inside a digital image by slightly modifying the gray levels of the carrier image. The modifications will have the properties of a thermal, Gaussian noise commonly present in digitized images taken with CCD elements or with an ordinary scanner.

In what follows, we consider the secret message to be a digital square image with 256 gray levels. It is clear that any message written in some alphabet can be easily transformed to a square or rectangular array of 8-bit symbols, thus forming “an image.”

The secret image is first encrypted using a chaotic baker map as described above. As demonstrated above, the resulting image is a random collection of pixels with randomly distributed gray levels without any spatial correlations. Each gray level of the encrypted secret image will be coded using four pixels in the carrier. By modifying the gray level of each pixel by 1, 0 , -1, -2, four values of information can be hidden. Therefore, four pixels can hide 4(4(4(4 = 256 values of gray levels. The details of the coding are explained in Figure 25.

In this report, we describe a method for hiding one N (M digitized image with 256 gray levels inside a carrier 2N (2M pixels with 256 gray levels. An example of a secret image, a carrier image, and a carrier image with an embedded secret image is shown in Figure 27. We emphasize that other schemes are certainly possible and these techniques will be the subject of future research.

An algorithmic scheme for hiding a secret image inside a carrier image

Encrypt the secret image N (M pixels with 256 gray levels using a chaotic map as described above.

Choose some carrier image 2N (2M pixels with 256 gray levels.

Modify the carrier image according to the following pseudocode:

	(i) For each pixel P = (i, j) of the secret image, convert the gray level � EMBED Equation.2 ��� to the base 4

		(i.e., � EMBED Equation.2 ��� = t1 + 4 t2 + 16 t3 + 64 t4, 0 (t1, t2, t3, t4 (3)

	(ii) Modify the gray levels of pixels (2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1) by 2 - t1,

		2 - t2, 2 - t3, 2 - t4, respectively.

	(iii) Send the modified image to the recipient

Comments:

In part (ii), care needs to be taken so that a pixel with a gray level close to zero or close to 255 is not changed to a value outside the interval [0, 255]. This can be easily arranged by applying special rules for pixels whose gray levels are close to 255 or to zero.

Extracting the secret image from the modified carrier

Subtract the original (unmodified) carrier from the image received (modified carrier).

Extract the encrypted secret image from the difference image by following the pseudocode:

(i) For each (i, j), 0 (i (N-1, 0 (j (M-1 take the four values at positions (2i, 2j), (2i+1, 2j), 	(2i, 2j+1), (2i+1, 2j+1) of the subtracted image from part 1.

(ii) Recover the gray level � EMBED Equation.2 ��� of the encrypted image by applying the formula 	� EMBED Equation.2 ��� = t1 + 4 t2 + 16 t3 + 64 t4, 0 (t1, t2, t3, t4 (3

Decrypt the encrypted image and recover the original secret image.

Comments:

Both the sender and the recipient need the original unmodified carrier image and a secret key for encrypting the secret image. Even if an eavesdropper gets hold of the original image, the secret image is still protected by the chaotic cipher. Thus, the scheme for hiding images provides a high degree of security and does not raise a suspicion that any secret information is being sent.

It is possible to modify the hiding scheme so that the knowledge of the exact form of the carrier image is not necessary (see below).

We stress that the encryption using chaos has two purposes in the whole scheme. First, it increases the security of the scheme. Second, it converts the secret image into an uncorrelated, random looking image which, when encoded into the carrier, resembles a thermal Gaussian noise commonly present in digital images. This is extremely important because the encoded information is well masked, and an eavesdropper will not even suspect that a secret information is being sent.

In the above scheme, a carrier 2N (2M image is used to send one secret N (M image. In other words, in order to hide x bytes of information, 4x bytes of data need to be send. The efficiency of the scheme is x/4x = 1/4. Ideally, the efficiency should be as close to 1 as possible. It is possible to increase the efficiency (bandwidth) of the scheme by

	(1) using only three or two pixels in the carrier for coding the information about one 	pixel of the secret image. This would require modifications of pixels in the carrier image 	by more than one or two gray levels. If two pixels are used instead of four, the efficiency 	increases from 1/4 to 1/2.

	(2) If slight modifications of the secret image are acceptable, we can decrease the color 	depth of the secret image by a factor of two or four, and increase the efficiency to almost 	1. For example, using two pixels in the carrier image per one pixel in the secret image 	with 121=11 (11 gray levels would result in an efficiency factor equal to 1. This would 	require modification of the gray levels in the carrier by (5 gray levels.

In the hiding scheme as described above, both the sender and the receiver need to share a secret key for enciphering / deciphering the secret image and they also need to know the original carrier image. Since sharing a carrier image is a large amount of information it would be desirable to eliminate the need of the exact knowledge of the unmodified carrier. Indeed, it is possible to modify the scheme to achieve that.

One possible approach to this problem is to design a scheme (an agreement) using which both parties can fix the least two significant bits of any carrier image. Of course, one could simply require that the least two significant bits of the unmodified carrier be 0 and 1, for example. However, this simple agreement would be too transparent for an eavesdropper. A better solution is to use our chaos cipher again. For example, we can request that the least two significant bits of the unmodified carrier be the same as the least two significant bits of some simple seed image (a black square, for example) encrypted 10 times using the secret key already shared by both parties. Since the pattern of the least two significant bits is random by all statistical tests, a complex, hard to detect structure is obtained.

CONCLUSION

Chaotic maps possess several properties which make them suitable for encryption of large amounts of data, such as images.

simplicity � EMBED Equation.2 ��� short ciphering keys (small number of map parameters), easy implementation, fast enciphering / deciphering

sensitivity to initial conditions and mixing � EMBED Equation.2 ��� several iterations of the map creates complex permutation of pixels and their gray levels, no spatial correlations in the encrypted image

sensitivity to parameters � EMBED Equation.2 ��� large number of ciphering keys, cipher security

The method: Discretized chaotic map in two or three dimensions is iteratively applied to a digital image. Several iterations of the map create a complex permutation of pixels and their gray levels. The encrypted image resembles a static on a TV monitor without a signal.

Ciphering key: Parameters of the chaotic map

Enciphering: Applying the chaotic map iteratively several times

Deciphering: Applying the inverse chaotic map iteratively the same number of times

ADVANTAGES

The encryption method is simple and fast. The encryption rate is 1Mbit per second on a 66MHz Pentium computer.

The ciphering method can be easily parallelized. A linear increase in speed with respect to the number of processors is expected.

The method was found to be computationally secure with respect to known plaintext type of attack.

Ciphertext only type of attack requires performing an unreasonably large number of high level pattern recognition and image understanding tasks for each key. The large number of keys and the computational complexity of high level image understanding guarantee the cipher safety.

The encrypted file has the same size as the original file (e.g., the encryption does not increase the amount of information to be transmitted).

The time to perform encryption and decryption is approximately the same.

Images can be compressed, combined with text, comments, new encrypting keys, etc.

The method can be applied to secure message hiding in digital images.

The method is appropriate for real time digital video signal encryption. This application would require parallel processing and pipelining.

DISADVANTAGES

The choices for the ciphering key depend on the size of the data to be encrypted. Files smaller than 10kB would not be safely encrypted. The problem could be solved by using the cipher as a block cipher with blocks larger than 10kB. This might, however, slightly increase the size of the data to be transmitted. Also, for some applications, the size of the block may too big to be practical.

RECOMMENDED FURTHER RESEARCH

The research performed under this grant has generated a large number of new research directions.

ROBUSTNESS VERSUS SECURITY

In this report, it is shown that the encryption method is safe with respect to a direct search for key under known-ciphertext type of attack and under known-plaintext type of attack. The method has a robustness property in the sense that flipping one pixel in the encrypted image influences one pixel in the decrypted image. The error does not diffuse through the image. While this error robustness is a good property, it may be potentially dangerous and decrease the security of the method under a chosen-plaintext type of attack. If an eavesdropper can choose the images to be encrypted, he could encrypt two images which differ in one pixel, and then compare the encrypted versions. This way, he can learn to which pixel is the modified pixel mapped to. Repeating this procedure for each pixel in the image can reveal the permutation of pixels. It is then possible to reconstruct the ciphering key. Consequently, finding an appropriate balance between error robustness and security with respect to a chosen ciphertext type of attack is important. In order to do that, we suggest to modify the three-dimensional extension of the baker map so that the gray value of the mapped pixel depends not only on the old gray value and on the pixel’s position in the image, but also on pixels from some neighborhood. The gray level permutation function will depend on gray levels in the neighborhood of the pixel � EMBED Equation.2 ���

� EMBED Equation.2 ���

This way, an error will diffuse to neighboring pixels each time the chaotic map is iterated. By adjusting the number of iterations and the size of the neighborhood, we can specify the percentage of pixels influenced by one pixel in the course of iterations. In this way we will make the cipher secure with respect to chosen plaintext type of attack, while partially keeping its robustness. One changed pixel will introduce some noise into the decrypted image, but the image will still be recognizable. The noise can be to some extent corrected using image enhancement techniques.

We insert a diffusion step into the encryption scheme after the permutation and gray level mixing. Therefore, one complete encryption step consists of (i) permutation with simultaneous gray level mixing, (ii) diffusion step during which information spreads over the image. There are many ways one can implement a diffusion step into our scheme. We have experimented with two different methods.

Method 1

Assuming the dimensions of the image are even numbers, we divide the image into a regular tessellation of 2 (2 squares. The new gray levels of each pixel within each 2 (2 group depend on all four gray levels in the group. This way, after one iteration, the number of influenced pixels approximately quadruples. By adjusting the number of iterations, one can achieve complete diffusion, or partial diffusion which will enable partial recovery of the image, while keeping the chosen plaintext attacks unfeasible. It has been observed that this modification can not only achieve complete diffusion with respect to changes in pixels, but also complete diffusion with respect to changes to the ciphering key. Modifying the ciphering key by one bit, or modifying the plaintext by one bit changes completely the ciphertext. We tested that by comparing the two ciphertexts and evaluating the correlation between these two. The results of many computer tests showed that only statistical correlation corresponding to two random images occurred.

Method 2

In the second method, the diffusion was obtained by scanning the image by rows (starting, for example, in the upper left corner), and changing the gray levels according to the formula

� EMBED Equation.2 ���

where � EMBED Equation.2 ��� denotes the gray levels arranged in a one dimensional vector obtained by scanning the image by rows. The function G is some arbitrary function of the gray level, and it was chosen as a fixed random permutation implemented using a lookup table in our tests. The corresponding inverse step used in the deciphering procedure is

� EMBED Equation.2 ���

This procedure achieves complete mixing very quickly and also produces excellent results for complete diffusion. This technique cannot achieve partial robustness / diffusion compared to the previous technique. The previous technique can, however, be easily paralellized, in contrast to the second method. Both methods also make our ciphering technique sensitive to the key in the sense that small changes to the key produce statistically independent ciphertexts. In other words, there are no clusters of similar keys, and each key constitutes its own cluster. This, in turn, increases the number of usable ciphering keys.

Detailed study of the cipher with diffusion will be the subject of further research.

THEORETICAL ASPECTS OF SECURITY

On the theoretical side, it is necessary to guarantee the security of our ciphering technique by relating the difficulty of breaking the cipher to a known class of hard problems. In this report, we could not find any other type of attack than a direct search for key and testing the deciphered image for emerged patterns, or testing the correlation with a known plaintext. It is hard to imagine that some other “shortcut” exists where the cipher could be broken. However, we could show the security of the cipher by other means than counting the number of different clusters in the key space. We may attempt, for example, to estimate the unicity distance of the cipher - the minimal amount of ciphertext which allows a unique deciphering. However, it may be hard to estimate a priori probabilities for the symbols of the plaintext. If messages are written in English, the a priori probabilities for k-tuples of letters are well tabulated. For binary files and images, it may not be simple to estimate the a priori probabilities. We propose to model images as Markov random fields.

COMPRESSION AND EMBEDDING MULTIPLE IMAGES

A potentially very useful idea is to combine encryption images with compression. We could embed more than one image into one encrypted image. For example, let us encrypt image � EMBED Equation.2 ��� with key � EMBED Equation.2 ��� and image � EMBED Equation.2 ��� with key � EMBED Equation.2 ���. The corresponding encrypted images � EMBED Equation.2 ��� and � EMBED Equation.2 ��� will then be mixed using a checkerboard pattern - pixels from � EMBED Equation.2 ��� will correspond to white squares on a checkerboard, while pixels from � EMBED Equation.2 ��� will correspond to black squares. By using two different keys, we can send the same encrypted image (actually two secretly embedded images) to a person which knows � EMBED Equation.2 ��� only and to another person which knows � EMBED Equation.2 ��� only. Each one of them will only be able to access one image while the other one will be inaccessible. Both of them will have to reconstruct the missing pixels to get the original image. For this step, we suggest to apply ideas similar to compression techniques developed by Das [7]. The ideas of embedding two images into one encrypted image could also be used to confuse an enemy who thinks he knows the ciphering key. The eavesdropper will decipher the image using one key obtained by espionage or other non cryptographic means and will get a false message being unaware of the existence of a subliminal channel.

CHAOS AND PUBLIC KEY CRYPTOGRAPHY

The chaos based encryption technique has many properties of high cryptographic qualities. As C. Shannon pointed out in his paper [8], a safe cipher must include confusion and diffusion. He also pointed out the importance of stretching and folding operations for cryptographic purposes. Chaos based ciphers generally have good confusion properties (random mixing), and can also induce good diffusion by coupling the confusion with the diffusion by introducing neighboring pixels into the gray level permutation function h. This observation suggests that discretized chaotic maps are good candidates for building several important cryptographic primitives of today’s modern public key cryptography [9]. In particular, we believe that chaotic maps can be used for designing one-way functions for user identification, trapdoor one-way functions for creating public key type of cryptography, hash functions for digital signature schemes and authentication schemes. One dimensional chaotic maps are exponentially sensitive when applied forward in time, and the are exponentially insensitive when applied backward in time. This observation suggests that such mappings could be used for building one-way and trapdoor functions. Higher dimensional maps constrained to appropriate submanifolds could also be used in a similar manner. This topic is an important research direction which deserves to be further investigated.

OTHER NONLINEAR MAPS

The baker map is a piece wise linear discontinuous map. In the future, we also plan to study other, nonlinear continuous chaotic maps, such the standard map [1], from the point of view of cryptographic applications. These maps may provide additional security and larger key spaces.

The standard map is described using the following formulas:

� EMBED Equation.2 ���

where K is a positive constant, and N is the number of pixels in each row of a square image. An example of the test image encrypted using this map is shown in Figures 28 and 29. The standard map can be easily generalized to the following form while keeping its invertibility:

� EMBED Equation.2 ���

where � EMBED Equation.2 ��� are arbitrary functions containing parameters (the key). Detailed study of the generalized standard map are subject of the future research.

WINDOWS BASED USER FRIENDLY IMPLEMENTATION

Finally, we intend to create a window based user friendly object oriented software package for easy and fast image encryption and decryption. The software should be able to handle both square and rectangular images with any number of bits per pixel. We propose to design a protocol using which a digital image is first compressed, then a secret information in a text form is added, the combined file is encrypted and sent together with a header to the recipient. The recipient uses the same protocol to decipher and decompress the information.

SOFTWARE DESCRIPTION

Part of the deliverables committed in this proposal was creating a software package in C for encryption / decryption purposes. The following files accompany the final report:

encipher.c

decipher.c

compare.c

mask.c

unmask.c

hide.c

extract.c

Usage of encipher, decipher on a UNIX platform:

To encipher an image I perform the following steps

1. Convert the image I to a pgm (Poskanzer’s portable greyscale map) map. Suppose the name of the file is image.pgm.

2. Create a *.key file, image.key containing the following information (the format is required!)

 	TYPE OF CIPHERING (BAKER ... B, CAT ... C)	= B

GRAY LEVEL MIXING (YES ...Y, NO ... N)	= Y

KEY TYPE (RANDOM ... R, CUSTOM ... C)	= C

NUMBER OF ITERATIONS				= 10

SEED							= 84

KEY							= 59 59 59 60 58 59 59 59

3. Encipher the image using the command: encipher image.pgm

4. The encrypted image is stored in c_image.pgm

5. To decrypt the image, type: decipher c_image.pgm.

6. The decrypted image is stored in the file image.pgm.

Comments: By entering “C” for the key type, you have to specify a ciphering key on the fifth line. The key is a sequence of integers which add up to N - the number of pixels in one row. If an incorrect key is specified, an error message will be displayed.

You can let the computer to generate a random key for you by typing “R” for the key type. You do not have to erase the old key on the last line (if there is some). The new random key will replace the old one. The user is required to specify a random seed for the random number generator.

By entering “Y” for the gray level mixing, the encrypted image will have a uniform histogram. We recommend to always use this feature, otherwise the histogram of the image may be used by an eavesdropper to learn some information about the encrypted image.

The number of iterations should be at least 5 for safe encryption. We do not recommend to use the number of iterations larger than 30 since it slows down the encryption process and no real gain in security is gained.

The program compare compares two image files, image1.pgm and image2.pgm and counts the relative fraction of pixels which image1 and image2 differ. To compare, type: compare image1.pgm image2.pgm. The result is a percentage of different non matching pixels. We stress that one cannot compare images of different sizes. If the dimensions of image1 and image2 do not agree, an error message is issued.

The program mask.c masks a file image1.pgm with a random mask image2.pgm. As a random mask, one can use an encrypted image of some other image. Make sure that the encrypted image has a uniform histogram before using an encrypted image as a mask. Using a mask with a non uniform histogram may result in an unsafe cipher.

Usage of mask, unmask on a UNIX platform:

To mask an image1.pgm with image2.pgm, type: mask image1.pgm image2.pgm

The masked file is stored in m_image1.pgm.

To unmask m_image1.pgm, type: unmask m_image1.pgm image2.pgm.

The unmasked file is stored in image1.pgm.

Usage of encipher, decipher on a UNIX platform:

To hide the N (M image I in the 2N (2M carrier C, perform the following steps

Convert the both images to a pgm (Poskanzer’s portable greyscale map) map. Suppose the names of the files are image.pgm and carrier.pgm, respectively

Create a image.key file for image.pgm.

Hide image.pgm inside carrier.pgm using the command: hide image.pgm carrier.pgm

4. The modified carrier image is stored in subli.pgm

To extract image.pgm from subli.pgm using carrier.pgm as the original carrier, type:

extract image.pgm carrier.pgm

6. The extracted image is stored in the file extract.pgm.

Comments: The key file image.key is for the smaller image to be hidden in the bigger, carrier image. Therefore, the integers forming the key should add to N - the number of pixels in one row of image.pgm.

In order to produce executable files from the source code, type

cc encipher.c -o encipher -lm

cc decipher.c -o decipher -lm

cc compare.c -o compare -lm

cc mask.c -o mask -lm

cc unmask.c -o unmask -lm

cc hide.c -o hide -lm

cc extract.c -o extract -lm

Usage for a PC platform:

Make sure you compile the source codes for a protected mode. Any C compiler may be used. One can also directly use the executable files on any 386 of higher Intel processor. On a PC platform, a different graphical format for manipulating the images is used. The default format is SUN raster format *.ras. For example, Paintshop Pro can view this type of format. The usage of the software is the same. For example, to encipher image.ras, create the appropriate image.key file and type: encipher image.ras. The encrypted image will be stored in c_image.ras. Decryption, masking, hiding, and extracting is the same.

ACKNOWLEDGMENTS

The work on this paper was supported by Rome Laboratory, Air Force Material Command, USAF, under grant number F30602-96-1-0047. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation there on. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of Rome Laboratory, or the U. S. Government.

BIBLIOGRAPHY

[1]	Jackson, E. A., Perspectives in Nonlinear Dynamics. Cambridge University Press,

Cambridge, 1991.

[2]	Pichler, F. and J. Scharinger, "Ciphering by Bernoulli-shifts in finite Abelian groups.''

Johannes Kepler University, Linz, Austria, May 10, preprint, 1995

[3]	Pichler, F. and Scharinger, "Ciphering by Bernoulli shifts in finite abelian groups.'' In:

Contributions to General Algebra, Proc. of the Linz-Conference, June 2-5, 1994.

[4]	Arnold, E. A. and A. Avez , Ergodic Problems of Classical Mechanics. W. A. Benjamin,

New Jersey, 1968.

[5]	Feller, W. , An Introduction to Probability Theory and Its Applications. John

Wiley&Sons, New York, 1957.

[6]	Karian, Z. A. and E. J. Dudewicz, Modern Statistical Systems, and GPSS Simulation.

Computer Science Press, New York, 1991.

[7]	Das M. K., A Study of Simple and Efficient Techniques for Lossless and near-lossless

Compression of Digitized Images. Final Report for Summer Faculty Research Program,

Rome Laboratory, NY, August 1995.

[8]	Shannon C., “Communication Theory of Secrecy Systems.” Bell System Technical

Journal, 28, pp. 656-715.

[9]	Brassard G., Modern Cryptography. Springer-Verlag, New York, 1988.

�
�

Figure � SEQ Figure * ARABIC �1� Baker map

�

Figure � SEQ Figure * ARABIC �2� Generalized baker map

�

Figure � SEQ Figure * ARABIC �3� The cat map

�

Figure � SEQ Figure * ARABIC �4� Discretized versions of the baker map

�

Figure � SEQ Figure * ARABIC �5� The test image 472 x 472 pixels with 256 gray levels

�

Figure � SEQ Figure * ARABIC �6� The test image after applying the baker map once

�

Figure � SEQ Figure * ARABIC �7� The test image after applying the baker map nine times

�

Figure � SEQ Figure * ARABIC �8� The test image after applying the cat map once.

�

Figure � SEQ Figure * ARABIC �9� The test image after applying the cat map nine times

�

Figure � SEQ Figure * ARABIC �10� The test image after one iteration of a 3d chaotic map. The histogram of the image is uniform.

�

Figure � SEQ Figure * ARABIC �11� The test image after nine iterations of a 3d chaotic map. The histogram of the image is uniform.

�

Figure � SEQ Figure * ARABIC �12� Histogram of a black square after one iteration of the baker map with gray level mixing function h(i, j) = i . j

�

Figure � SEQ Figure * ARABIC �13� Histogram of a black square after two iterations with gray level mixing function h(i, j) = i . j

�

Figure � SEQ Figure * ARABIC �14� The logarithm of the number of ciphering keys of length equal to m plotted as a function of m. Dashed curve ~ version B, continuous curve ~ version A of the baker map.

�

Figure � SEQ Figure * ARABIC �15� The logarithm of the number of ciphering keys of length at most m plotted as a function of m. Dashed curve ~ version B, continuous curve ~ version A of the baker map.

�

Figure � SEQ Figure * ARABIC �16� An image consisting of a 10 x 10 black square on a white background

�

Figure � SEQ Figure * ARABIC �17� Encrypted after nine iterations

�

Figure � SEQ Figure * ARABIC �18� Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 4 4 2 2 1)

�

Figure � SEQ Figure * ARABIC �19� Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and decipohered with (8 8 8 118 4 4 118 118 4 2 4 4 59 8 4 1)

�

Figure � SEQ Figure * ARABIC �20� Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 118 118 4 4 2 4 4 59 8 4 1)

�

Figure � SEQ Figure * ARABIC �21� Test image enciphered with (8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 59 59 59 59 4 2 4 4 59 8 4 1)

�

Figure � SEQ Figure * ARABIC �22� Pixels with different gray levels after 320 iterations of the baker map with keys K1 and K2

�

Figure � SEQ Figure * ARABIC �23� Pixels with different gray levels after 320 iterations of the baker map with keys K1 and K3

�

Figure � SEQ Figure * ARABIC �24� A scheme for hiding images

�

Figure � SEQ Figure * ARABIC �25� A scheme for recovering hidden images

�

Figure � SEQ Figure * ARABIC �26� The coding of secret images inside a carrier image

�

Figure � SEQ Figure * ARABIC �27� An example of a secret 236 x 236 image, a carrier image (left) and the carrier image with a hidden image (right)

�

�

Figure � SEQ Figure * ARABIC �28� The test image after one iteration of the standard map

�

Figure � SEQ Figure * ARABIC �29� The test image after nine iterations of the standard map

�

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and technologies of command, control, communications and intelligence and to transition them into systems to meet customer needs. To achieve this, Rome Lab:

a. Conducts vigorous research, development and test programs in all applicable technologies;

b. Transitions technology to current and future systems to improve operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of surveillance, communications, command and control, intelligence, reliability science, electro�magnetic technology, photonics, signal processing, and computational science.

The thrust areas of technical competence include: Surveillance, Communications, Command and Control, Intelligence, Signal Processing, Computer Science and Technology, Electromagnetic Technology, Photonics and Reliability Sciences.

� Since a four tuple is a cipher if it satisfies the additional condition |tw-uv|=1, we expect the total number of keys to grow with the third power only.

� This set is shown after 320 iterations in � REF _Ref367598596 * MERGEFORMAT �Figure 22� and � REF _Ref367598669 * MERGEFORMAT �Figure 23� for � EMBED Equation.2 ���� EMBED Equation.2 ��� and � EMBED Equation.2 ���� EMBED Equation.2 ���, respectively.

�PAGE �

�PAGE �32�

